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Abstract

We prove a simple level-raising result for regular algebraic, conjugate self-dual automorphic forms
on GLn . This gives a systematic way to construct irreducible Galois representations whose residual
representation is reducible.
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1. Introduction

Let N be a positive integer, and let f be an elliptic modular newform of weight
2 and level Γ0(N ). If l is a prime and ι is a choice of isomorphism Ql

∼= C, then
there is an associated Galois representation

rι( f ) : GQ→ GL2(Ql),

unramified outside Nl, uniquely characterized by the requirement that the trace
of Frobenius at a prime p - Nl equal the pth Fourier coefficient of f (or rather,
its image in Ql under ι).

After possibly making a change of basis, we may assume that rι( f ) takes
its values in GL2(Zl). We may then consider the reduced representation rι( f ) :
GQ→ GL2(Fl), which we assume to be irreducible. Let p be a prime not dividing
Nl, and let α1, α2 ∈ F×l denote the eigenvalues of Frobp. If α1 = p±1α2, then there
exists a lift of rι( f )|GQp

to a representation

ρ : GQp → GL2(Zl)
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such that ρ ⊗Zl
Ql corresponds, under the local Langlands correspondence for

GL2(Qp), to an unramified twist of the Steinberg representation, which has
conductor p. It therefore makes sense to ask if there exists an elliptic modular
newform g of weight 2 and level Γ0(N p) such that rι(g) ∼= rι( f ), there being in
this instance no obstruction from local–global compatibility.

This question was first posed and answered by Ribet [Rib84], and the theme of
congruences between algebraic automorphic representations has been developed
in many different directions since that work. In particular, an understanding of
such congruences plays a fundamental role in the proofs of all known automorphy
lifting theorems.

The aim of this work is to prove new level-raising theorems for automorphic
representations π of GLn(AE), where E is a CM field satisfying some additional
hypotheses. (By definition, a CM field is an imaginary quadratic extension of
a totally real number field.) Suppose that π is regular algebraic and conjugate
self-dual. In this case, it is known that there exists a Galois representation
rι(π) : G E → GLn(Ql), and one can formulate the question of level raising in
much the same way as we have done for elliptic modular forms above. Broadly
speaking, there are two main approaches. The first is to try to understand directly
the natural integral structures appearing in spaces of algebraic automorphic forms.
In this case, one can attempt to generalize Ribet’s original argument. For unitary
groups, this rests on the still unproven ‘Ihara lemma’ of [CHT08]. This conjecture
is a statement about the structure as a GLn(Qp)-representation of the space of
automorphic forms in characteristic l, which generalizes the classical fact that
the direct sum of the two degeneracy maps from level Γ0(N ) to level Γ0(N p) is
injective in characteristic l (at least, after localizing at a non-Eisenstein maximal
ideal).

If the residual representation rι(π) has large image (and, in particular, is
irreducible), a second approach is possible. A trick due to Taylor [Tay08] allows
one to use automorphy-lifting theorems to construct automorphic representations
π ′ congruent to π modulo l, and such that π ′ has essentially any local behavior
away from l not ruled out by the existence of a lifting ρ as above; see [Gee11].

In this work, we therefore restrict our focus to regular algebraic, conjugate
self-dual automorphic representations π of the form π = π1 � π2, where the
πi are cuspidal automorphic representations of GLni (AE) and n1 + n2 = n. By
the theory of endoscopy, these representations often admit a descent to discrete
automorphic representations of unitary groups. In this paper, we exploit this fact to
find congruences between representations of this form and cuspidal automorphic
representations on GLn(AE), by studying the integral structure of spaces of
algebraic automorphic forms on unitary similitude groups.

We now give an example of a theorem that follows from our main result.
Suppose that E is an imaginary CM field with maximal totally real subfield F ,
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and let p be a rational prime which is inert in F . Let w0 denote a place of E
above p, and suppose that w0 is split over F . We assume that [F : Q] is odd.
Let n1, n2 be distinct even integers, and let π1, π2 be cuspidal, conjugate self-dual
automorphic representations of GLn1(AE) and GLn2(AE), respectively, such that
π1 � π2 is regular algebraic of strictly regular weight (see (2.2) below).

THEOREM 1.1. Suppose that π1,w0 and π2,w0 are isomorphic to unramified twists
of the Steinberg representation. Then there exists a set L of rational primes l of
Dirichlet density 1 such that, for all l ∈ L and for all isomorphisms ι : Ql

∼= C,
there exists a finite order characterψ : G E → C× withψψ c = 1, a CM quadratic
extension E1/E, and an RACSDC automorphic representation Π of GLn(AE1)

satisfying the following.

• rι(Π) ∼= rι(π1 � (π2 ⊗ ψ))|G E1
.

• Ifw1 is a place of E1 abovew0, thenΠw1 is an unramified twist of the Steinberg
representation.

• Π has the same infinity type as the base change of π1 � π2 to E1 and is
unramified at the primes dividing l.

Moreover, if π1 � π2 is ι-ordinary in the sense of [Ger, Definition 5.1.2], then we
can assume that Π is also ι-ordinary.

For our main theorem, see Theorem 7.1 below. It is worth noting that, at the
same time as proving our main result, we also establish the analogue of Ihara’s
lemma in the simplest possible nontrivial case. This is a new result even when we
localize at a non-Eisenstein maximal ideal, and it would presumably allow one
to establish the first nonminimal R = T theorems for Galois representations of
unitary type, when our hypotheses are satisfied, although we have not pursued
this here.

Our main interest in proving such theorems is the applications to automorphy-
lifting theorems for RACSDC automorphic representations with residually
reducible Galois representations. We note that for applications of this type it is
essential to be able to find congruences to automorphic representations which
have the same l-adic Hodge type at the primes dividing l. By combining the
theorems of this paper with the main theorem of [Tho], one can often prove
the automorphy of Galois representations r : G E → GLn(Ql) satisfying the
following kinds of condition.

• r is ordinary, and there exists a place w of E not dividing l at which r looks
like it corresponds to a twist the Steinberg representation; that is, there is an
unramified character ψ : G Ew → Q×l and an isomorphism r |ss

G Ew
∼= ψ⊕ψε−1⊕

· · · ⊕ ψε1−n (where ε denotes the cyclotomic character).
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• The residual representation r is reducible, and the Jordan–Hölder factors of r
are residually automorphic.

We now come to a description of main ideas of this paper. Let E be an
imaginary CM field, and let π be an RACSDC automorphic representation of
GLn(AE). Let F denote the maximal totally real subfield of E . If I is a definite
unitary group over F , split over E , then one expects (provided there is no local
obstruction) to be able to descend π to an automorphic representation of I (AF),
which therefore admits a description in terms of algebraic modular forms. Since
spaces of algebraic modular forms admit natural integral structures, they are
a good place to look for congruences. (In the body of the paper, we use the
notation I1 for a definite unitary group, and I for a closely related group of unitary
similitudes. In this introduction, we ignore this slight difference.)

Let v be a place of F , split in E , such that I (Fv) ∼= GLn(Fv). Our first main
observation is that one can prove level-raising results for algebraic modular forms
on I at the place v if one assumes that the cohomology groups of the OF [1/v]-
arithmetic subgroups of I (Fv) have no l-torsion. We thus reduce the problem of
level raising to the problem of showing that these groups have no l-torsion.

In order to show such torsion vanishing, we compare the cohomology of these
arithmetic groups with the cohomology of a PEL-type Shimura variety S(G,U )
obtained by ‘switching primes’, which is associated to an inner form G of I which
has type U (1, n−1)×U (n)d−1 at infinity and which looks like a division algebra
locally at the place v. According to a theorem of Rapoport and Zink [RZ96],
these varieties admit a v-adic uniformization by the Drinfeld upper half plane.
The link between the cohomology of these Shimura varieties and the group
cohomology of the OF [1/v]-arithmetic groups of I (Fv) comes from the weight
spectral sequence, whose definition we recall in Section 5, and which computes
the cohomology of these Shimura varieties. We show that the E1-page of this
spectral sequence can be written down in terms of algebraic modular forms on
the definite unitary group I , and that the cohomology groups of the OF [1/v]-
arithmetic groups of I (Fv) appear as the terms in the first row of the E2-page of
this spectral sequence.

Lan and Suh [LS12] have proved torsion-vanishing results for the cohomology
of local systems on Shimura varieties of sufficiently regular weight, using
geometric methods. When the weight spectral sequence of S(G,U ) degenerates
at E2, we deduce from their results that the cohomology of our arithmetic
groups with corresponding coefficient systems has no l-torsion. Tying everything
together, this allows us to go back and prove a level-raising result for RACSDC
automorphic representations of GLn(AE).

The assumption that l is a banal characteristic for GLn(Fv) plays a key role
at several points of the proof. First, our level-raising arguments use the fact that
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the representation IndGLn
B 1 decomposes in banal characteristic in the same way as

it does in characteristic 0, and that the cohomology groups H ∗(GLn(Fv), π) of
the irreducible constituents have the same explicit description. (Here, Ind denotes
the unnormalized induction, as in Section 4.) A related point is that the complex
which appears as the first row of the E1-page of the weight spectral sequence
computes the desired cohomology groups only in banal characteristic. Finally, to
show that the weight spectral sequence degenerates at E2, even in characteristic l,
we use a trick that mimics the use of weights in characteristic 0, and this again
relies on the fact that the elements 1, qv, . . . , qn−1

v are distinct modulo l. Our main
theorem also contains the assumption that the weight of the initial automorphic
representation is sufficiently regular, relative to the prime l. This is necessary in
order to be able to apply the results of [LS12].

We now describe the organization of this paper. In Section 2, we introduce
notation regarding the RACSDC automorphic representations of GLn(AE) and
their relation to automorphic forms on unitary and unitary similitude groups. In
Section 3, we introduce the Drinfeld upper half plane. In Section 4, we show
how to prove level-raising results in banal characteristic, assuming that suitable
cohomology groups are l-torsion free. The methods in this section are purely
local.

In Section 5, we introduce the weight spectral sequence. In Section 6, we
introduce the above-described Shimura varieties, their v-adic uniformization,
and carry out the most important global steps in our argument: the comparison
of cohomology of inner forms, and the proof of degeneration at E2 of the
weight spectral sequence in characteristic l, in our special case. We apply this in
Section 6.5 to prove a level-raising result on the group I . Finally, in Section 7, we
combine this with the results of Section 2 to deduce our main result, Theorem 7.1,
which is a level-raising result for conjugate self-dual automorphic representations
on GLn .

1.1. Notation. If F is a number field, then we write G F for its absolute Galois
group. If v is a finite place of F , then we write G Fv for a choice of decomposition
group at v, and qv for the cardinality of the residue field at v.

We fix for every prime l an algebraic closure Ql of Ql . If ρ : G F → GLn(Ql) is
a continuous representation, then the semisimplification of the reduction modulo l
of ρ with respect to some invariant lattice depends only on ρ, up to isomorphism,
and we will write ρ : G F → GLn(Fl) for this reduced representation.

If p is a prime and K is a finite extension of Qp, then there is a bijection

recK : AdmC GLn(K )↔WDn
CWK ,

characterized by a certain equality of ε-factors and L-factors on either side;
see [HT01, Hen02]. Here, we write (for Ω = C or Ql) AdmΩ GLn(K ) for
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the set of isomorphism classes of irreducible admissible representations of this
group over Ω , and WDn

ΩWK for the set of Frobenius-semisimple Weil–Deligne
representations (r, N ) of WK valued in GLn(Ω). We define recT

K (π) = recK (π | ·
|(1−n)/2). This is the normalization of the local Langlands correspondence with
good rationality properties; in particular, for any σ ∈ Aut(C) and any π ∈
AdmC GLn(K ), there is an isomorphism

recT
K (

σπ) ∼= σ recT
K (π).

This can be seen using, for example, the characterization of recK and the
description given in [Tat79, Section 3] of the Galois action on local ε-factors
and L-factors. As a consequence, recT

K gives rise to a well-defined bijection

recT
K : AdmΩ GLn(K )↔WDn

ΩWK .

Suppose instead that K is a finite extension of R. Then there is a bijection

recK : AdmC GLn(K )↔ Repn
CWK .

Here, we write AdmC GLn(K ) for the set of infinitesimal equivalence classes of
irreducible admissible representations of GLn(K ), and Repn

CWK for the set of
continuous representations of WK into GLn(C). We define recT

K (π) = recK (π | ·
|(1−n)/2).

2. Automorphic representations

2.1. GLn. Let E be an imaginary CM field with totally real subfield F , and
let c ∈ Gal(E/F) denote the nontrivial element. We say that an automorphic
representation π of GLn(AE) is RACSDC if it satisfies the following conditions.

• It is conjugate self-dual: π c ∼= π∨.

• It is cuspidal.

• It is regular algebraic. By definition, this means that, for each place v|∞ of
E , the representation recT

Ev (πv) is a direct sum of pairwise distinct algebraic
characters.

If π is a regular algebraic automorphic representation of GLn(AE), and π∞ is
tempered, then, for each embedding τ : E ↪→ C, we are given a representation
rτ : C× → GLn(C), induced by recEv (πv), where v is the infinite place induced
by τ , and the isomorphism E×v ∼= C× induced by τ . This representation has the
form

rτ (z) = ((z/z)aτ,1, . . . , (z/z)aτ,n ) , (2.1)

where aτ,i ∈ (n−1)/2+Z. We will refer to the tuple a = (aτ,1, . . . , aτ,n)τ∈Hom(E,C),
where for each τ we have aτ,1 > aτ,2 > · · · > aτ,n , as the infinity type of π . More
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generally, if π is any automorphic representation of GLn(AE), and the parameters
rτ (z) associated to π are given by formula (2.1) for some real numbers aτ,i ∈ R,
we use the same formula to define the infinity type a of π . We will say that the
infinity type of π is strictly regular if, for each embedding τ : E ↪→ C, we have

aτ,i > aτ,i+1 + 1 (2.2)

for each i .
Suppose that π1, π2 are conjugate self-dual cuspidal automorphic representa-

tions of GLn1(AE), GLn2(AE), respectively, and that π = π1 � π2 is regular
algebraic. Then the representations πi | · |(ni−n)/2 are regular algebraic. We call a
representation π arising in this way an RACSD sum of cuspidal representations.
In this case, define ai = (ai

τ )τ∈Hom(E,C) by the requirement that (ai
τ,1+ (ni − n)/2,

. . . , ai
τ,ni
+ (ni − n)/2) equal the infinity type of πi | · |(ni−n)/2, and define

b = (bτ )τ∈Hom(E,C) by the formula

(bτ,1, . . . , bτ,n) = (a1
τ,1, . . . , a1

τ,n1
, a2

τ,1, . . . , a2
τ,n2
).

Then there is a unique tuple w= (wτ )τ∈Hom(E,C) ∈ SHom(E,C)
n such that, for each τ ∈

Hom(E,C), the infinity type of π is (bτ,wτ (1), . . . , bτ,wτ (n))τ∈Hom(E,C). We will say
that π = π1�π2 satisfies the sign condition if the following condition is satisfied.
Choose for each place v|∞ of F an embedding τ : E ↪→ C inducing v. Then∏

v

sgnwτ(v) = 1. (2.3)

We remark that this condition is always satisfied if, for example, there is an
imaginary CM subfield E ′ ⊂ E such that [E : E ′] = 2 and π arises as a base
change from E ′.

THEOREM 2.1. Suppose that π1, π2 are cuspidal conjugate self-dual auto-
morphic representations of GLni (AE), and that π = π1�π2 is a regular algebraic
automorphic representation of GLn(AE). Then, for each isomorphism ι : Ql

∼= C,
there is a continuous semisimple representation

rι(π) : G E → GLn(Ql),

uniquely characterized by the following local–global compatibility property at all
primes w of E not dividing l:

WD(rι(π)|F-ss
G Ew
) ∼= recT

Ew(ι
−1πw). (2.4)

Proof. Arguing as in the proof of [Gue11, Theorem 2.3], we can find continuous
characters ψi : A×E/E× → C× such that ψψ c = 1 and the restriction of ψi to
(E ⊗E,τ C)× is given by ψi(z) = (z/zc)δi,τ , where δi,τ = 0 if n − ni is even and
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δi,τ = 1/2 if n − ni is odd. Then each πiψi is RACSDC, and the representations
rι(πiψi), characterized by a similar local–global compatibility condition, exist;
see [Car12, Theorem 1.1]. We now simply take

rι(π) = rι(π1ψ1)⊗ rι(ψ−1
1 | · |(n1−n)/2)⊕ rι(π2ψ2)⊗ rι(ψ−1

2 | · |(n2−n)/2).

If π is a regular algebraic representation of GLn(AE) of infinity type a, we also
define a tuple λ = (λτ )τ∈Hom(E,C) = (λτ,1, . . . , λτ,n)τ∈Hom(E,C), which we call the
weight of π , by the formula λτ,i =−aτ,n+1−i+(n−1)/2−(n−i). Then, for each τ :
E ↪→ C, we have λτ,1 > · · · > λτ,n , and the irreducible admissible representation
of GLn(C) corresponding to rτ has the same infinitesimal character as the dual of
the algebraic representation of GLn(C)with highest weight λτ . The representation
π is strictly regular if and only if for each τ we have λτ,1 > · · · > λτ,n .

2.2. Algebraic modular forms. Let E be an imaginary CM field with totally
real subfield F . We suppose that E = E0 · F , where E0 is a quadratic imaginary
extension of Q, and that E/F is everywhere unramified. Let † denote an
involution of the second kind on the matrix algebra Mn(E) corresponding to a
Hermitian form on En . We define reductive groups I over Q and I1 over F by
their functors of points:

I (R) = {g ∈ Mn(E)⊗Q R | gg† = c(g) ∈ R×}
and

I1(R) = {g ∈ Mn(E)⊗F R | gg† = 1}.
We suppose that I is quasi-split at every finite place and that I1(R) is compact.
(This can always be achieved. Indeed, there is an obstruction from the Hasse
principle only if n is even and [F : Q] is odd. However, the assumption
that E/F is everywhere unramified implies that [F : Q] is even, by [Gro03,
Proposition 3.1].) If v = wwc is a place of F split in E and dividing the rational
prime p, then there are isomorphisms

ιw : I (Qp) ∼= Q×p ×
∏
w′|p

GLn(Ew′),

ιw : I1(Fv) ∼= GLn(Ew),

the product being over the primes w′ of E above p with the same restriction to
E0 as w. We observe that I (R) is not compact, but that the group I nevertheless
satisfies the conditions of [Gro99, Proposition 1.4]. In particular, we can define
spaces of automorphic forms on the groups I and I1 with integral coefficients.
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Fix a prime l, and let K be a finite extension of Ql inside Ql with ring of
integers O and residue field k. Let Ul ⊂ I (Ql) be an open compact subgroup,
and suppose that M is a finite O-module on which Ul acts continuously in the
l-adic topology. In this case, we define A(M) to denote the set of locally constant
functions f : I (A∞)→ M such that, for all γ ∈ I (Q), f (γ g) = f (g). We endow
this space with an action of I (Al,∞)×Ul by setting (g · f )(h) = gl f (hg), where
gl denotes the projection to the l-component. If U ⊂ I (Al,∞)×Ul is a subgroup,
we set A(U,M) = A(M)U .

LEMMA 2.2. Let p 6= l be a prime, and suppose that U p is an open compact
subgroup of I (Ap,∞) whose projection to I (Ql) is contained in Ul . Then A(U p,

M) is an admissible representation of I (Qp), in the following sense: for any open
compact subgroup Up ⊂ I (Qp), A(U p,M)Up is a finite O-module.

Proof. Let Up ⊂ I (Qp) be an open compact subgroup. By [Gro99, Proposition
1.4], I (Q) ⊂ I (A∞) is a discrete cocompact subgroup, and the quotient
I (Q)\I (A∞)/U pUp is finite. Let g1, . . . , gs ∈ I (A∞) be representatives. There
is an isomorphism of O-modules

A(U pUp,M) ∼= ⊕s
i=1 MΓi , f 7→ ( f (gi))i=1,...,s,

where Γi = I (Q) ∩ giU pUpg−1
i .

LEMMA 2.3. 1. Let σ be an automorphic representation of I (A) such that
σ∞ is isomorphic to the restriction of an algebraic representation of I (C)
to I (R). Then there exists an automorphic representation σ1 of I1(AF)

satisfying the following.

• For each place p of Q split in E0, σ1,p is isomorphic to the restriction of
σp to the group I1(F ⊗Q Qp) ⊂ I (Qp).

• σ1,∞ is isomorphic to the restriction of σ∞ to I1(R).

2. Let σ1 be an automorphic representation of I1(AF). Then there exists an
automorphic representation σ of I (A) satisfying the following.

• σ∞ is isomorphic to the restriction of an algebraic representation of I (C)
to I (R). The restriction of σ∞ to I1(R) is isomorphic to σ1,∞.

• For each prime p split in E0, the restriction of σp to the group I1(F ⊗Q
Qp) ⊂ I (Qp) is isomorphic to σ1,p. If σ1,p is unramified, then σp is
unramified. If σ1,p has an Iwahori-fixed vector, then σp has an Iwahori-
fixed vector.
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Proof. Let T = ResE0
Q Gm , and let T1 ⊂ T denote the subtorus of elements of

norm 1. Then there is an exact sequence of algebraic groups

1 //T1
//T × ResF

Q I1
// I //1,

where T1 is embedded diagonally. Let A denote the space of automorphic forms
on I , a semisimple admissible representation of I (A). Arguing as in the proof
of [HT01, Theorem VI.2.1], we see that, given an automorphic representation
σ of I (A) appearing in A, there is an element g ∈ I (A) and an irreducible
admissible constituent τ of the pullback of σ to T (A) × I1(AF) such that
τ

g
1
∼= ψ⊗σ1 is automorphic. The representation σ1 then has the desired properties.
Suppose conversely that σ1 is as in the second part of the lemma. Arguing as in

the proof of [HT01, Lemma VI.2.10], we can find an algebraic Hecke character
ψ : E×0 \A×E0

such that the central character ωσ1 of σ1 satisfies the relation ωσ1(z) =
ψ(z−1). If p is a prime split in E0 and σ1,p is unramified or has an Iwahori-fixed
vector, then ωσ1 is unramified at p, and after multiplying ψ by a character of the
form χ ◦NE0/Q, χ a Dirichlet character, we can assume that ψ is unramified at all
such primes.

Now ψ ⊗ σ1 is an automorphic representation of the group T (A) × I1(AF),
and (see the proof of [HT01, Theorem VI.2.9]) it is a subrepresentation of the
pullback to T (A) × I1(AF) of an automorphic representation σ of I (A), which
now satisfies the desired properties.

PROPOSITION 2.4. 1. Let π1, π2 be cuspidal, conjugate self-dual automorphic
representations of GLn1(AE), GLn2(AE), respectively, such that π = π1�π2

is regular algebraic. Suppose that the following conditions are satisfied.

• If πw is ramified, then w is split over F.

• n1n2 is even.

• π = π1 � π2 satisfies the sign condition 2.3.

Then there exists a cuspidal automorphic representation σ of I1(AF) of which
π is the base change in the following sense: at every place of E at which π is
unramified, the correspondence is given by the unramified base change. For
every place v = wwc of F split in E, we have πw ∼= σv◦ιw. The representation
σ∞ is the dual of the algebraic representation of I1(F⊗QR) of highest weight
equal to the weight of π .

2. Suppose conversely that σ is a cuspidal automorphic representation of
I1(AF). Then there exists a partition n = n1 + · · · + nr and discrete
automorphic representations πi of GLni (AE) such that, at finite places,
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π1 � · · · � πr is the base change of σ in the above sense. If we suppose
furthermore that the πi are cuspidal, then π∞ is the base change of σ∞.

Proof. The first part is proved in [CT, Proposition 2.9]. (The proof in [CT,
Proposition 2.9] uses the results of [Mok], which are in turn conditional on
the stabilization of the twisted trace formula. We refer the reader to [CT13,
Introduction] for a more detailed discussion of this conditionality. One could
presumably give a proof of the proposition in our case of interest using the results
of [Lab11] instead of the results of [Mok], but we have chosen not to do this
here.) The second part follows immediately from [Lab11, Corollaire 5.3].

3. Drinfeld’s upper half plane

In this section, let F be a finite extension of Qp, and fix an integer n > 2. We
write $ for a choice of uniformizer of F , and q for the cardinality of the residue
field OF/$ . The Drinfeld p-adic upper half plane over F is a formal scheme
over OF whose rigid generic fiber can be identified with the open subspace of
Pn−1

F obtained by deleting all F-rational hyperplanes. It receives a faithful action
of the group PGLn(F) and uniformizes certain Shimura varieties.

We first recall the Bruhat–Tits building BT of PGLn(F). It is a simplicial
complex with vertices the homothety classes of OF -lattices M ⊂ Fn . A set
{M1, . . . ,Mr } of lattices up to homothety represents a simplex if we can choose
representatives such that $Mr ⊂ M1 ⊂ · · · ⊂ Mr . The maximal simplices have
dimension n−1, and, for each k, PGLn(F) acts transitively on the set of simplices
of dimension k with a marked vertex. We write BT(i) for the set of simplices of
BT of dimension i .

We write ΩOF for the Drinfeld upper half plane over OF ; see [RZ96,
Section 3.71] or [Mus78]. It is a p-adic formal scheme, formally locally of
finite type over SpfOF , which receives a left action of PGLn(F). The irreducible
components of the special fiber of ΩOF are geometrically irreducible, and in
canonical bijection with the vertices in BT(0). Moreover, they are smooth, and the
special fiber is a strict normal crossings divisor. In fact, BT can also be described
as follows: it is the simplicial complex whose vertices are in bijection with the
set of irreducible components of the special fiber ofΩOF . Vertices v1, . . . , vr give
rise to a simplex if and only if the corresponding irreducible components have
nontrivial intersection. If v,w ∈ BT(0), then we write d(v,w) for the distance of
the shortest path joining v and w; BT is connected, and d(v,w) is always finite.

The irreducible component of the special fiber corresponding to the homothety
class of the lattice M can be described as follows: let Y0 = P(M)⊗OF (OF/$).
For each i , let Yi denote the blowing-up of Yi−1 along the strict transforms in Yi−1
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of the codimension i , OF/$ -rational linear subspaces of Y0. Then (as observed
in [Ito05, Section 6]) the desired variety is Yn−1. In particular, we have the
following.

PROPOSITION 3.1. Let s be a geometric point above the closed point of SpecOF .
For each prime l 6= p, the action of Frobenius on the étale cohomology groups
H 2i(Yn−1,s,Zl) is by the scalar q i . These groups are torsion free. For each odd
integer i , H i(Yn−1,s,Zl) is zero.

Proof. This follows from the calculation of the cohomology of the blow-up of a
smooth variety along a smooth center; see [Ito05, Section 3].

For global applications, we will need to introduce a simple enlargement of
ΩOF . We write Msplit for the p-adic formal scheme formally locally of finite
type over OF given by the formula

Msplit = ΩOF ×Q×p /Z
×
p × GLn(F)/GLn(F)0,

where GLn(F)0 ⊂ GLn(F) is the open subgroup consisting of matrices with
determinant a p-adic unit. Here, we identify the sets on the right-hand side with
the corresponding constant OF -formal schemes. We define M =Msplit⊗̂OFOF,
where F denotes the completion of a maximal unramified extension of OF .
The group Q×p × GLn(F) acts on both of these formal schemes on the left. By
definition, GLn(F) acts through its usual action onΩOF , trivially on Q×p /Z×p , and
by left multiplication on GLn(F)/GLn(F)0, and Q×p acts trivially on ΩOF and
GLn(F)/GLn(F)0 and by left multiplication on Q×p /Z×p .

The set of irreducible components in the special fiber of M is in bijection with
the set BT(0) × Z × Z. We define a coloring map κ : BT(0) × Z × Z→ Z/nZ
by sending (M, a, b) to κ(M, a, b) = logq[M : On

F ] + b. We observe that κ is
equivariant for the action of the group Q×p × GLn(F), and its fibers are precisely
the orbits of this group.

If we make some more choices, then we can get an even more concrete
realization of this set. Let B ⊂ U0 = GLn(OF) denote the standard Iwahori
subgroup inside the standard maximal compact subgroup. Let

ζ =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...

0 0 . . . 0 1
$ 0 . . . 0 0

 .
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For i = 0, . . . , n − 1, let Ui = ζ−iU0ζ
i . These maximal compact subgroups

stabilize the n − 1 distinct vertices of the closure of the unique chamber of BT
fixed by B, and their intersection is exactly equal to B. Let x0, . . . , xn−1 denote
these vertices. Then we have κ(xi , 0, 0) = i , and therefore an isomorphism of
Q×p × GLn(F)-sets

BT(0)× Z× Z ∼= Q×p /Z
×
p ×

n−1∐
i=0

GLn(F)/Ui .

For each i = 0, . . . , n − 1 there is then a bijection between the set of nonempty
(i +1)-fold intersections of irreducible components of the special fiber of M and
the set

BT(i)× Z× Z ∼= Q×p /Z
×
p ×

∐
E⊂{0,...,n−1}

GLn(F)/UE .

Here, the disjoint union runs over subsets E of order i + 1, and by definition we
have UE = ∩i∈EUi . Finally, we have the following.

LEMMA 3.2. 1. Let Γ ⊂ GLn(F)0 denote a discrete cocompact subgroup, and
suppose that, for all x ∈ BT(0), the stabilizer ZΓ (x) is trivial. Then, for all
x ∈ BT(0), and for all γ ∈ Γ , γ 6= 1, we have d(x, γ · x) > 2. The quotient
Γ \ΩOF exists, and has a canonical algebraization, which is a projective
algebraic variety, strictly semistable over OF . The irreducible components
of its special fiber are geometrically irreducible and globally smooth.

2. Let Γ ⊂ Q×p ×GLn(F) denote a discrete cocompact subgroup, and suppose
that, for all x ∈ BT(0) × Z × Z, the stabilizer ZΓ (x) is trivial. Then the
quotient Γ \Msplit exists, and has a canonical algebraization, which is a
projective algebraic variety, strictly semistable over OF . The irreducible
components of its special fiber are geometrically irreducible and globally
smooth.

Proof. For the first part, we note that, if d(x, y) = 1 then there exists a chamber in
BT whose closure contains x, y. Then x, y are represented by OF -lattices Mx ⊂
My . If γ ∈ Γ and γ x = y, then we must therefore have x = y, and hence γ = 1.
The formal schemeΩOF has a covering by Zariski open subsets, formally of finite
type over OF , which are in bijective correspondence with the set BT(0). Two
Zariski opens intersect if and only if the corresponding vertices are connected
by an edge. Thus Γ acts discontinuously with respect to this covering, and the
quotient formal scheme can be obtained by simply gluing these Zariski opens.
The ample line bundle which defines the algebraization is the relative dualizing
sheaf over SpfOF ; see [Mus78, Theorem 4.1].
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For the second part, let Γ 0 = Γ ∩ (Z×p × GLn(F)0). The quotient Γ \Msplit is
a finite union of quotients of the form Γ 0\ΩOF .

4. A level-raising formalism in banal characteristic

Let p 6= l be distinct prime numbers. Let K be a finite extension of Ql inside
Ql with ring of integers O and residue field k, and let F be a finite extension of
Qp with ring of integers OF and uniformizer $ . We write q for the cardinality
of the residue field OF/$ . We fix throughout a choice of square root of q in K .
Throughout this section we make the following assumption.

• l is a banal characteristic for GLn(F). By definition, this means that l is coprime
to the pro-order of GLn(F).

In this section, we show how one can prove level-raising results for GLn(F)-
modules under the assumption that suitable cohomology groups are torsion free.
Let G = GLn(F). Let T ⊂ P ⊂ G denote the standard maximal torus and Borel
subgroup, and R ⊂ Φ+ ⊂ Φ the corresponding subsets of simple roots, positive
roots, and roots of GLn . Let N ⊂ P denote the unipotent radical; then P = T N .
Let T0 ⊂ T denote the unique maximal compact subgroup, and B ⊂ G for the
Iwahori subgroup. In this section, all admissible representations of G will be
considered as being defined over Ql . We fix a choice of isomorphism ι : Ql

∼= C.
If χ : T → Ql

×
is a continuous character, we define

IndG
P χ = { f : G → Ql | f (bg) = χ(b) f (g)∀b ∈ P},

the unnormalized induction. The normalized induction is defined as

n-IndG
P χ = IndG

P δ
1/2
P χ,

where δP : P → Ql
×

is the modulus character sending tu to |tn−1
1 tn−3

2 · · · t1−n
n |,

and the square root is the one defined by ι. In particular, n-IndG
P δ
−1/2
P = IndG

P 1 =
C∞(G/P)may be identified with the space of locally constant functions G/P →
Ql . If π is an admissible representation of G, then we define the normalized
restriction

r G
P π = δ−1/2

P ⊗ πN ,

where πN , the module of N -coinvariants, denotes the usual un-normalized Jacquet
module of π . Then r P

Gπ is an admissible representation of T , and the functor r G
P is

left adjoint to n-IndG
P . If π is an admissible representation of G, and α ∈ Ql

×
, then

we write π(α) = π ⊗ (det ◦ λα), where λα is the unramified character satisfying
λα($) = α.
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We describe the decomposition of n-IndG
P δ
−1/2
P = C∞(G/P,Ql). Let I ⊂ R.

We write PI for the group generated by P and the subgroups U−α for α ∈ I .
Thus P∅ = P and PR = G. For each I ⊂ J there is an injection C∞(G/PJ ,

Ql) ↪→ C∞(G/PI ,Ql). We define

πI = C∞(G/PI )/
∑
I(J

C∞(G/PJ ).

PROPOSITION 4.1. The πI are irreducible and pairwise nonisomorphic, and they
exhaust the composition factors of n-IndG

P δ
−1/2
P .

Proof. See [BW00, Chapter X]. A convenient reference for this and for some
facts below is [Orl05].

The πI may be described in terms of the Zelevinsky classification [Zel80] as
follows. The irreducible constituents π(

−→
Γ ) of n-IndG

P δ
−1/2
P are in bijection with

the orientations
−→
Γ of the graph Γ with vertices corresponding to the characters

| · |(1−n)/2, . . . , | · |(n−1)/2, and edges joining two characters whose quotient is | · |±1.
Given i = 1, . . . , n− 1, let αi : T → F× denote the homomorphism which sends
an element t = diag(t1, . . . , tn) to ti/ti+1. Then R = {α1, . . . , αn−1}. Given an
orientation

−→
Γ , we write I (

−→
Γ ) ⊂ R for the subset of roots αi such that the edge

connecting | · |(1−n)/2+i−1 and | · |(1−n)/2+i starts at the former and ends at the latter.

PROPOSITION 4.2. We have πI (
−→
Γ )
∼= π(

−→
Γ ). In particular, π∅ = Stn is the

Steinberg representation, and πR is the trivial representation of G.

We now introduce part of the theory of the Bernstein center. If π is any
admissible representation of G over Ql , then we can endow the Iwahori invariants
π B with an action of the algebra Ql[T/T0] ∼= Ql[X1, X−1

1 , . . . , Xn, X−1
n ] as

follows. Let X+ ⊂ T/T0 denote the submonoid consisting of those elements

($ a1, . . . ,$ an )T0 ∈ T/T0,

where a1 > a2 > · · · > an are integers. We let an element xT0 act on π B by
the Hecke operator [Bx B]. This induces an action of the algebra Ql[X+], which
extends uniquely to an action of the algebra Ql[T/T0]. We write ti = ei(X1,

. . . , Xn) ∈ Ql[T/T0]W , where ei is the symmetric polynomial of degree i in n
variables. As the notation indicates, these elements are fixed under the natural
action of the Weyl group on Ql[T/T0].
PROPOSITION 4.3. 1. For any admissible representation V of G over Ql , there

is a functorial isomorphism V B ∼= (r G
P V )T0 of Ql[T/T0]-modules.
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2. If π is an irreducible admissible representation of G over Ql , and π B 6= 0,
then π is a subquotient of n-IndG

P χ for some unramified character χ = χ1⊗
· · · ⊗ χn . The operator ti has the unique eigenvalue ei(χ1($), . . . , χn($))

on π B .

We introduce reduction modulo l; see [Vig94, Section 1.5]. Let V be an
admissible G-module over Ql of finite length. We say that V admits an integral
structure if there exists a G-invariant Zl-latticeΛ ⊂ V such thatΛ⊗Zl

Ql
∼= V . If

V admits an integral structure, then the reduction modulo the maximal ideal of Zl

of Λ is a finite-length admissible representation of G over Fl . Its Jordan–Hölder
factors are independent of the choice of integral structure.

If π is an irreducible admissible representation of G over Ql , then it admits
an integral structure if and only its cuspidal support does. In particular, if π
is a subquotient of a principal series representation n-IndG

P χ , then π admits an
integral structure if and only if χ takes values in Z×l ⊂ Q×l .

PROPOSITION 4.4. 1. Each representation πI admits an integral structure,
and its reduction modulo l is irreducible. We write πI,Fl

for this reduced
representation.

2. Let π = n-IndG
Q Sta(α) ⊗ Stb(β) be an irreducible representation of G over

Ql admitting an integral structure, where a + b = n, and Q is the standard
parabolic subgroup corresponding to this partition. Then α, β ∈ Zl . Suppose
that β ≡ qaα mod mZl

. Then the reduction modulo l of π has exactly two
Jordan–Hölder factors, which are both absolutely irreducible. The first is the
reduction modulo l of π∅(α). The second is the reduction modulo l of πI (α),
where I ⊂ R is such that PR\I = Q.

Proof. For the first part, the existence of the integral structure is immediate
from the remarks above. The irreducibility of the representations πI,Fl

in banal
characteristic seems to have first been noted by Lazarus [Laz00, Theorem 4.7.2].
Here, we refer again to the work of Orlik [Orl05]. (The essential point is that, in
banal characteristic, the characters | · |(1−n)/2, . . . , | · |(n−1)/2 remain distinct even
after reduction modulo l.) The second part of the proposition follows from the
corresponding fact in characteristic zero, see [HT01, Lemma I.3.2], by reduction
modulo l and the first part of proposition.

Suppose that M is a smooth O[G]-module. We define cohomology groups
H ∗(M) as follows. Let U0 = GLn(OF) denote the standard maximal compact
subgroup, and let U1, . . . ,Un−1 denote the conjugates of U0 containing B, as
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defined in the previous section. Similarly, if E ⊂ {0, . . . , n − 1} is a subset, then
we write UE = ∩i∈EUi . We define a complex C•(M) by the formula

C i(M) =
⊕

E⊂{0,...,n−1}
MUE ,

the direct sum being over subsets E of cardinality i + 1. The differential di :
C i(M) → C i+1(M) is given by the sum of the restriction maps rE,E ′ : MUE →
MUE ′ for E ⊂ E ′, each multiplied by the sign ε(E, E ′), where, if E ′ = {i1, . . . ,

ir }, i1 < · · · < ir , and E = E ′ \ {is}, then

ε(E, E ′) = (−1)s . (4.1)

We then define H ∗(M) to be the cohomology of this complex.

PROPOSITION 4.5. 1. Suppose that M = π is an irreducible admissible
representation of G over Ql . Then H ∗(M) is nonzero if and only if π is
an unramified twist of one of the representations πI , I ⊂ R.

2. If M = πI (α) for some α ∈ Ql , then H i(M) is nonzero if and only if i =
#(R \ I ).

3. If M = πI,Fl
(α) for some α ∈ Fl , then H i(M) is nonzero if and only if

i = #(R \ I ).

Proof. If M = π is an irreducible admissible representation and H ∗(M) 6= 0,
then π B 6= 0. In particular, π is a subquotient of an unramified principal series
representation, and its central character is unramified. After twisting, we can
suppose that the center of G acts trivially on π . Then there is a canonical
isomorphism H ∗(M) ∼= H ∗e (PGLn(F),M), these latter groups taken in the
sense of [BW00, Ch. X, Section 5]. The first and second parts therefore follow
from [BW00, Ch. X, Theorem 4.12]. The third part follows in a similar manner
from [Orl05, Theorem 1].

We now come to the main result of this section. Suppose that M, N are O-
flat admissible O[G]-modules, in the sense that, for each open compact subgroup
U ⊂ G, MU and N U are finite free O-modules, and these submodules exhaust M
and N . Suppose further that M⊗OQl and N⊗OQl are semisimple, and that all of
their irreducible constituents are generic, and that there is a perfect G-equivariant
pairing M × N → O.

THEOREM 4.6. With notation as above, suppose that M B 6= 0, and that, if π ⊂
M⊗OQl is an irreducible admissible representation of G satisfying π B 6= 0, then
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recT
F(π) has at most two irreducible constituents. Suppose that H n−2(N⊗Ok) and

H n−2(M ⊗O k) are both zero. Finally, suppose that there exists α ∈ F×l such that,
for any maximal ideal (t1 − α1, . . . , tn − αn) ⊂ Ql[T/T0]W in the support of M B ,
we have αi ≡ αei(q (n−1)/2, . . . , q (1−n)/2) mod mZl

for each i = 1, . . . , n. (Note
that we necessarily have αi ∈ Zl .) Then there exists α ∈ Z×l lifting α such that
Stn(α) ⊂ M ⊗O Ql .

Proof. After twisting by an unramified character, we can assume that α = 1.
Decompose N ⊗O k = N0 ⊕ N1, where N0 is generated by N B ⊗O k and N B

1 =
0. (This is possible since the representations of G with nonzero Iwahori-fixed
vectors form a block in the category of admissible representations of G over Fl .)
Then the irreducible constituents of N0 ⊗k Fl are of the form π∅ or π{α} for some
α ∈ R, by Proposition 4.4. If π is an irreducible constituent of N0 ⊗k Fl , then the
group H i(π) can be nonzero only if i = n− 2 or i = n− 1, by Proposition 4.5. It
follows by dévissage that the same statement holds for the groups H i(N ′), where
N ′ is any Fl[G]-subquotient of N0 ⊗k Fl .

If there is an embedding π{α} ↪→ N ⊗O Fl , then π{α} ↪→ N0⊗k Fl , and we have
an exact sequence

0 //π{α} //N0 ⊗k Fl
//N ′′ //0.

We have H n−2(π{α}) 6= 0 by Proposition 4.5. It follows from the long exact
sequence in cohomology that H n−2(N0) 6= 0; this contradicts our assumption that
H n−2(N ⊗O k) = 0. It follows that there must be an embedding π∅ ↪→ N ⊗O Fl .
By duality, there is a surjection M ⊗O Fl � π∅, and hence a short exact sequence

0 //M ′ //M ⊗O Fl
//π∅ //0,

from which it follows that H n−1(M ⊗O Fl) 6= 0. Now, using the long exact
sequence in cohomology associated to the short exact sequence

0 //M //M //M ⊗O k //0,

together with our assumption that H n−2(M ⊗O k) = 0, we deduce that
H n−1(M ⊗O Ql) 6= 0. It then follows from Proposition 4.5 that M contains
a twist of the Steinberg representation. This completes the proof.

If π is an irreducible admissible representation of G over Ql which admits an
integral structure, and π B 6= 0, then we will say that π satisfies the level-raising
congruence if there exists α ∈ F×l such that, for each i = 1, . . . , n, the eigenvalue
αi of ti on π B satisfies the congruence

αi ≡ αei(q (n−1)/2, . . . , q (1−n)/2) mod mZl
. (4.2)
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5. The weight spectral sequence

Let OF be a complete discrete valuation ring, and let S = SpecOF . Write s
for the closed point of S and η for the generic point. Let F = FracOF , and let F
denote a fixed algebraic closure. We write s, η for the induced geometric points
of S above s and η, respectively. Suppose that f : X → S is a proper, strictly
semistable (in the sense of [Sai03, Section 1.1]) morphism of relative dimension
n. Then Xs is a strict normal crossings divisor on X ; write X1, . . . , Xh for its
irreducible components. We suppose moreover that each X i is globally smooth
over κ(s). For E ⊂ {1, . . . , h}, we write X E for the intersection ∩i∈E X E , and
X (m) = ∐#E=m+1 X E (disjoint union). Let K be a finite extension of Ql with ring
of integers O, uniformizer λ, and residue field k, where l is coprime to the residue
characteristic of OF . Let Λ = K , O, or k, and let V be a local system of flat Λ-
modules on X . The weight spectral sequence of Rapoport and Zink is a spectral
sequence

E p,q
1 =

⊕
i>max(0,−p)

H q−2i(X (p+2i)
s , V (−i))⇒ H p+q(X K , V ). (5.1)

It is equivariant for the natural action of G F on both sides, and the differentials
commute with the action of the group G F . Note that the groups E p,q

1 vanish for
q < 0 and q > 2n. Let us briefly recall the construction of this spectral sequence,
following Saito [Sai03]. Consider the following diagram:

Xs

��

i // XOF

��

Xη
j

oo

��
Xs

i // X Xη.j
oo

The complex RΨ V = i
∗
R j∗V in Db

c (Xs, V ) of nearby cycles receives an action
of the inertia group IF ⊂ G F = Gal(F/F). Let T ∈ IF denote an element that
maps to a generator of Zl(1) under the canonical homomorphism tl : IF → Zl(1).
Let ν denote the endomorphism of RΨ V induced by the element T − 1. We then
have the following (see [Sai03, Section 2]).

PROPOSITION 5.1. 1. RΨ V lies in the abelian subcategory Perv(Xs,Λ)[−n]
of −n-shifted perverse sheaves with Λ-coefficients.

2. Let M• denote the increasing monodromy filtration of the nilpotent endo-
morphism ν of RΨΛ. For each positive integer p > 0, let ap : X (p)

s → Xs
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denote the canonical map. Then, for each integer r > 0, there is a canonical
isomorphism ⊕

p−q=r

ap+q,∗V (−p)[−(p + q)] ∼= GrM
r RΨ V,

compatible with the action of G F on either side.

The weight spectral sequence is now the spectral sequence associated to
the filtered object RΨ V . Note that [Sai03] treats only the case of constant
coefficients, but the case of twisted coefficients can be reduced to this one by
working étale locally on X .

We compute the first row of the spectral sequence of the pair (X, V ),
using [Sai03, Proposition 2.10]. By definition, we have

E p,0
1 = H 0(X (p)

s , V ) ∼=
⊕

#E=p+1

H 0(X E,s, V ),

and the differential
d p,0

1 : E p,0
1 → E p+1,0

1

is the sum of the canonical pullback maps i∗E,E ′ : H 0(X E,s, V )→ H 0(X E ′,s, V ),
each multiplied by the sign ε(E, E ′) defined in (4.1). We define a simplicial
complex K as follows: the vertices of K are in bijection with the X i , and the
set {X i1, . . . , X ir } corresponds to a simplex σE if and only if the intersection X E

is nonempty, E = {i1, . . . , ir }. We define a coefficient system V on K by the
assignment σE 7→ H 0(X E,s, V ). Let C•(K,V) denote the complex calculating
the simplicial cohomology of K with coefficients in V . Thus, by definition, we
have

Cr (K,V) =
⊕

E⊂{1,...,h}
H 0(X E,s, V ),

the sum being over subsets E of cardinality r + 1. The differential dr = Cr (K,
V)→ Cr+1(K,V) is given by the direct sum of the restriction maps

resE,E ′ : H 0(X E,s, V )→ H 0(X E ′,s, V ),

each multiplied by the sign ε(E, E ′).

PROPOSITION 5.2. There is a canonical isomorphism of complexes E•,01
∼=

C•(K,V).

Proof. In the case when V = Λ, this follows immediately from [Sai03,
Proposition 2.10]. Again, the case of general V can be reduced to this one
by working étale locally.
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6. Shimura varieties and uniformization

Fix an algebraic closure Q of Q, and let E be a CM imaginary field with totally
real subfield F . We fix a rational prime p, and suppose that p is totally inert in F .
We suppose that the unique prime v of F above p is split in E as v = wwc. We
let d denote the degree of F over Q. We fix embeddings φ∞, φp of Q into C,Qp,
respectively. The composite φ∞ ◦ φ−1

p induces a bijection of sets

Hom(E,C)↔ Hom(E,Qp).

Let n > 2 be an integer, and let D be a central division algebra over E of
dimension n2, whose invariants at the places w and wc are given respectively by
1/n and −1/n. We suppose that, at every other place of F , D is split. Let ∗ be a
positive involution on D. Let V = D, viewed as a D-module, and letψ : V×V →
Q be an alternating pairing satisfying the condition ψ(dv,w) = ψ(v, d∗w) for
all d ∈ D, v,w ∈ V . Fix a CM-type Φ ⊂ Hom(E,C). Then we can choose an
isomorphism D⊗QR ∼=∏τ∈Φ D⊗E,τ C ∼=∏τ∈Φ Mn(C), such that ∗ corresponds
to the operation X 7→ t X .

Similarly, we may decompose V ⊗QR =
∏

τ∈Φ V ⊗E,τ C. We can find for each
τ ∈ Φ a complex vector space Wτ and an isomorphism V ⊗E,τ C = Cn ⊗C Wτ of
Mn(C)-modules, with Mn(C) acting on the first factor. The form ψτ then admits
a decomposition

ψτ (z1 ⊗ w1, z2 ⊗ w2) = trC/R(t z1 · z2hτ (w1, w2)),

where hτ is a skew-hermitian form on Wτ . We can find a basis {e1, . . . , en} of Wτ

such that hτ is given by the matrix

diag(−i, . . . ,−i︸ ︷︷ ︸
rτ

, i, . . . , i︸ ︷︷ ︸
rτc

),

where rτ + rτ c = n. We define algebraic groups over Q by their functors of
R-points:

G(R) = {g ∈ GLD(V ⊗ R) | ψ(gv, gw) = c(g)ψ(v,w), c(g) ∈ R×}.
G1(R) = {g ∈ GLD(V ⊗ R) | ψ(v,w) = ψ(v,w)}.

The choices above give rise to an embedding GR ↪→ ∏
τ∈Φ GU (rτ , rτ c). We

write h : ResC/R Gm → GR for the homomorphism which corresponds under
this identification to the map

h : z ∈ C× 7→ (diag(z, . . . , z︸ ︷︷ ︸
rτ

), diag(z, . . . , z︸ ︷︷ ︸
rτc

))τ∈Φ .

Let X denote the G(R)-conjugacy class of h inside the set of homomorphisms
ResC/R Gm → GR.
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We now suppose that Φ corresponds under the identification Hom(E,C) ↔
Hom(E,Qp) to the set of embeddings inducing the p-adic place w of E . Write
τ1, . . . , τd for the elements of Φ; we suppose that rτ1 = 1 and rτi = 0, i = 2,
. . . , d . We will also assume that the group G is quasi-split at every finite place
not dividing p. PEL data (D, E, ∗, F, V, ψ) satisfying these assumptions exist
provided that [F : Q] is even, which we always assume in the applications below;
see [HT01, Lemma I.7.1].

PROPOSITION 6.1. The pair (G, X) is a Shimura datum. For U ⊂ G(A∞) a
neat open compact subgroup, the Shimura varieties S(G,U ) with S(G,U )(C) =
G(Q)\G(A f )× X/U are smooth projective algebraic varieties over C, and they
admit canonical models over the reflex field τ1(F) ⊂ C.

The varieties S(G,U ) admit p-adic uniformizations. Let ν = φpφ
−1
∞ denote

the induced embedding of τ1(F) into Qp. According to [RZ96, Section 6], there
exists an inner form I of G over Q of the type considered in Section 2.2, and
isomorphisms I (Ap,∞) ∼= G(Ap,∞), I (Qp) ∼= Q×p × GLn(Fv), all satisfying the
following. Let F denote the completion of the maximal unramified extension of
Fv. The group I (Q) acts onΩOFv

⊗̂OFv
OF via the scalar extension of its action on

ΩOFv
through the map I (Q) ⊂ I (Qp)→ PGLn(Fv). It also acts on G(A∞)/Up,

where Up ⊂ G(Qp) is the unique maximal compact subgroup, as follows. There is
an isomorphism G(A∞)/Up = G(Ap,∞)×G(Qp)/Up

∼= I (Ap,∞)×G(Qp)/Up.
I (Q) acts diagonally under this identification via the natural action on I (Ap,∞),
and as follows on G(Qp)/Up. The choice of place w of E induces a canonical
isomorphism G(Qp) ∼= Q×p × D×w . Let Π ∈ D×w denote a uniformizer. Then an
element (c, a) ∈ I (Qp) acts by the formula (see [RZ96, Lemma 6.45])

(c, a) · (c′, a′) mod Up = (cc′,Π valFv det aa′) mod Up,

where valFv is normalized so that valFv (F
×
v ) = Z. The following theorem now

follows from [RZ96, Corollary 6.51]. In what follows, we say that an open
compact subgroup of G(Ap,∞) ∼= I (Ap,∞) is sufficiently small if there exists
a prime q 6= p such that the projection of U to G(Qq) contains no nontrivial
elements of finite order.

THEOREM 6.2. With notation as above, for each sufficiently small open compact
subgroup U p ⊂ G(Ap,∞), there is an integral model of S(G,U pUp) ⊗τ1(F),ν Fv
over OFv , and a canonical isomorphism of formal schemes over SpfOF

I (Q)\ [M× G(Ap,∞)/U p
] ∼= (S(G,U pUp)⊗OFv

OF
)̂
.

This isomorphism is equivariant with respect to the action of the prime-to-p
Hecke algebra H(G(Ap,∞)//U p) on either side.
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From now on, we shall write S(G,U pUp) to mean this integral model over OFv .
We will only consider open compact subgroups U = U pUp, with Up maximal
compact, so that this will always be defined. As is well known, the left-hand
side in the above equation can be rewritten as a finite union of quotients of
ΩOFv
⊗̂OFv

OF. Indeed, the double quotient I (Q)\G(Ap,∞)/U p is finite. Let g1,

. . . , gs be representatives, and let Γi = I (Q) ∩ (giU pg−1
i × Ũp), the intersection

taken inside I (A∞). Here, Ũp ⊂ I (Qp) = Q×p × GLn(Fv) is the subgroup
Z×p × (valFv ◦ det)−1(0). Each Γi ⊂ Q×p × GLn(Fv) is a discrete cocompact
subgroup, and there is an isomorphism (see Lemma 3.2):

(S(G,U )⊗OFv
OF)̂ ∼=

s∐
i=1

Γi\M.

6.1. Automorphic local systems. From now on, we consider only sufficiently
small open compact subgroups U = U pUp as in Theorem 6.2. We now
introduce some local systems on the varieties S(G,U ) corresponding to
algebraic representations of G. Corresponding to the infinity type Φ, there
is an isomorphism

G(C) ∼= C× ×
∏
τ∈Φ

GLn(C).

We write T ⊂ G ⊗Q C for the product of the diagonal maximal tori:

T (C) ∼= C× ×
∏
τ∈Φ

C× × · · · × C×︸ ︷︷ ︸
n

.

Then there is a canonical isomorphism X ∗(T ) ∼= Z×(Zn)Φ , and we write X ∗(T )+
for the subset of dominant weights µ = (c, (µτ )τ∈Φ), namely those satisfying the
condition

µτ,1 > µτ,2 > · · · > µτ,n
for each embedding τ : E ↪→ C in Φ. If l is a rational prime, we say that µ is
l-small if, for each τ ∈ Φ, we have

0 6 µτ,i − µτ, j < l (6.1)

for all 0 6 i < j 6 n. If l is unramified in E and µ is l-small, we associate to µ

an l-adic local system on S(G,U ) as follows; see [HT01, Section III.2], [Har13,
Section 7.1]. Fix a choice of isomorphism ι : Ql

∼= C, and let K be a finite
extension of Ql in Ql with ring of integers O, maximal ideal λ, and residue field
k. Let Ul ⊂ G(Ql) be a hyperspecial maximal compact subgroup. We suppose
that the algebraic representation of G ⊗Q Ql of highest weight ι−1µ can be
defined over K . Let Wµ,K denote this representation. There is, up to homothety,
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a unique Ul-invariant O-lattice of Wµ,K . Choose one, and write it as Wµ,O. It is
unique since, by the l-small hypothesis, the reduced lattice Wµ,k = Wµ,O ⊗O k
is an irreducible representation of Ul , and up to isomorphism does not depend on
the choice of invariant lattice.

Given an integer m > 1, let U (m) = U p(m)Up ⊂ U denote a normal open
compact subgroup which acts trivially on Wµ,O/λm = Wµ,O ⊗O O/λm . Then U
acts on the constant sheaf Wµ,O/λm on S(G,U (m)) in a way covering its action
on S(G,U ), and the quotient defines an étale local system on S(G,U ), which we
write as Vµ,O/λm . The sections of Vµ,O/λm over an étale open T → S(G,U ) can
be identified with the set of functions f : π0(S(G,U (m))×S(G,U ) T )→ Wµ such
that, for all σ ∈ U,C ∈ π0(S(G,U (m))×S(G,U )T ), we have the relation f (Cσ) =
σ−1 f (C). We then take Vµ,O = lim←−m

Vµ,O/λm and Vµ,K = Vµ,O ⊗O K . These
local systems are isomorphic to the local systems étV [µ] constructed in [LS12,
Section 4.3] using geometric means. A proof of this comparison for local systems
with Ql-coefficients is given in [HT01, Section III.2]. The same argument works
in the current context when the weight is l-small.

6.2. A split descent. The scheme S(G,U )⊗OFv
OF has another descent S(G,

U )split to OFv whose p-adic formal completion is given by

S(G,U )split = I (Q)\ [Msplit × G(Ap,∞)/U p
] ∼=∐

i

Γi\Msplit.

This is not the descent defined by S(G,U ). However, the local systems Vµ,Λ,
where Λ = K , O or O/λm , also admit descents to S(G,U )split, using exactly the
same recipe as before. We write V split

µ,Λ for the local systems defined this way. Our
reason for introducing S(G,U )split is that we will be able to use Lemma 6.3 to
prove the degeneration at E2 of the weight spectral sequence for S(G,U )split with
coefficients in V split

µ,k . Since S(G,U )split and S(G,U ) become isomorphic after
extension of scalars to the maximal unramified extension, this will allow us to
deduce consequences for the cohomology of S(G,U ).

LEMMA 6.3. The pullback of V split
µ,k to any irreducible (hence geometrically

irreducible) component Y of the special fiber of S(G,U )split is a constant sheaf.
If Y1, . . . , Ys are irreducible components of the special fiber of S(G,U )split,
then the action of the Frobenius element is by the scalar q i/2

v on the group
H i((Y1 ∩ · · · ∩ Ys)s, V split

µ,k ). (We recall that this group is zero if i is odd.)

Proof. Let Y ⊂ S(G,U (1))split denote an irreducible component of the special
fiber of this scheme. Let π : S(G,U (1))split → S(G,U )split denote the natural
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projection. Then the restriction π |Y induces an isomorphism from Y to its
image in S(G,U )split. Pulling back V split

µ,k by the inverse of this isomorphism now
gives the first assertion. The second assertion now follows from the first and
Proposition 3.1.

6.3. Hecke actions and weight spectral sequence. We now compute the
complex of abelian groups C•(K,V) of Proposition 5.2 for the local system Vµ,k

on the Shimura variety S(G,U ) in terms of the p-adic uniformization

I (Q)\ [M× G(Ap,∞)/U p
] ∼= (S(G,U )⊗OFv

OF)̂.

Since U is sufficiently small, the irreducible components of the special fiber are
in bijection with the set

I (Q)\ [BT(0)×Q×p /Z
×
p × GLn(Fv)/GLn(Fv)0 × I (Ap,∞)/U p

]
∼=

n−1∐
i=0

I (Q)\I (A∞)/Z×p UiU p,

where the subgroup Ui ⊂ GLn(Fv) is as in Section 3. For each i = 0, . . . , n − 1,
there is now a bijection

π0(S(G,U )
(i)
s )
∼=

∐
E⊂{0,...,n−1}

I (Q)\I (A∞)/Z×p UEU p,

the union running over subsets E of cardinality i + 1. If x ∈ I (Q)\I (A∞)/
Z×p UEU p, then the images of x under the natural maps

I (Q)\I (A∞)/Z×p UEU p → I (Q)\I (A∞)/Z×p UE\{i}U p,

i ∈ E , correspond exactly to those i-fold intersections of irreducible components
which contain the (i + 1)-fold intersection corresponding to x .

In order to write down the weight spectral sequence for S(G,U ), we must first
choose a partial ordering of the set of irreducible components of the special fiber
which restricts to a total ordering on all subsets of irreducible components which
have nontrivial intersection. We choose the partial ordering on Z/nZ given by
0 6 · · · 6 n − 1, and pull this back to the set

I (Q)\ [BT(0)×Q×p /Z
×
p × GLn(Fv)/GLn(Fv)0 × I (Ap,∞)/U p

]
via the function κ defined in Section 3. Let E p,q

1 ⇒ H p+q(S(G,U )η, Vµ,k)

denote the weight spectral sequence of Section 5. It follows from Lemma 6.3
and Proposition 3.1 that the groups E p,q

1 are zero if q is odd, and if q = 2k is even
then the groups E p,2k

1 are nonzero only if −k 6 p 6 n − 1− k.
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PROPOSITION 6.4. 1. For each i = 0, . . . , n − 1, there is a canonical
isomorphism

E i,0
1
∼=

⊕
E⊂{0,...,n−1}

A(Z×p U pUE ,Wµ,k),

the direct sum running over the set of all subsets E of order i + 1.

2. There is a canonical isomorphism of complexes

E•,01
∼= C•(A(Z×p U p,Wµ,k)),

and hence, for each i = 0, . . . , n − 1,

E i,0
2
∼= H i(A(Z×p U p,Wµ,k)).

Proof. By definition, we have E i,0
1 = H 0(S(G,U )(i)s , Vµ,k), and this space can be

identified with the set of all functions f : π0(S(G,U (1))
(i)
s ) → Wµ,k satisfying

the relation f (Cσ) = σ−1 f (C) for all C ∈ π0(S(G,U (1))
(i)
s ), σ ∈ U . We have

identified the set π0(S(G,U (1))
(i)
s ) with

∐
E I (Q)\I (A∞)/Z×p UEU p, compatibly

as U varies. The isomorphism of the first part of the proposition now follows from
the very definition of the spaces A(Z×p U pUE ,Wµ,k).

It remains to show that the differentials in the two complexes correspond under
the isomorphism of the first part. This follows after noting that the restriction
maps of sections correspond under this isomorphism to the natural inclusions
A(Z×p UEU p,Wµ,k) → A(Z×p UE ′U p,Wµ,k), and that the signs that must be
inserted in either complex agree because of the choices we have made.

6.4. Degeneration.

PROPOSITION 6.5. Let r = 2s + 1. With notation as above, the differentials

d p,q
r : E p,q

r → E p+r,q+1−r
r

are all zero as long as qs
v 6≡ 1 modulo l.

Proof. We recall that the differentials in the weight spectral sequence are Galois
equivariant. The proposition would therefore follow if the action of Frobenius on
E p,q

1 was given by the scalar qq/2
v . (We recall that these groups are zero if q is odd.)

This is not the case. However, this is the case for the weight spectral sequence of
the pair (S(G,U )split, V split

µ,k ), by Lemma 6.3. The weight spectral sequence of a
pair (X, V ), where X is a strictly semistable scheme over OFv and V is a local
system on X , viewed as a spectral sequence of abelian groups (forgetting the
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Galois action), depends only on (X ⊗OFv
OF, V ), that is, the pullback of X to the

maximal unramified extension of OFv . Since the pairs (S(G,U )split, V split
µ,k ) and

(S(G,U ), Vµ,k) become canonically isomorphic over OF, we are done.

COROLLARY 6.6. Suppose that l is a banal characteristic for GLn(Fv). Then
the weight spectral sequence for the pair (S(G,U ), Vµ,k) degenerates at E2, and
there is for each i > 0 an injection, equivariant for the prime-to-p Hecke algebra
H(G(Ap,∞)//U p):

H i(A(Z×p U p,Wµ,k)) ↪→ H i(S(G,UpU p)Fv , Vµ,k).

Proof. When l is a banal characteristic for GLn(Fv), none of the numbers qv, q2
v ,

. . . , qn−1
v are congruent to 1 modulo l. Since the groups E p,q

r can be nonzero only
if 0 6 p 6 2(n− 1), it follows from Proposition 6.5 that all the differentials d p,q

r ,
r > 2, in the weight spectral sequence are 0. Since the weight spectral sequence is
the spectral sequence associated to a filtered complex, we have injections E0,q

∞ ↪→
H q(S(G,UpU p)Fv , Vµ,k) for each q > 0. Combining these observations with the
isomorphisms of Proposition 6.4, we obtain for each q > 0 an injection

H q(A(Z×p U p,Wµ,k)) ∼= E0,q
2
∼= E0,q

∞ ↪→ H q(S(G,UpU p)Fv , Vµ,k).

The Hecke equivariance is an easy consequence of the construction. This
completes the proof.

6.5. Raising the level. We now suppose in addition that E = F ·E0, where E0

is a quadratic imaginary extension of Q, and that E/F is everywhere unramified.
We now change notation slightly, and write v0 for the place of F above the rational
prime p, and w0 for one of the places of E above it. Let l 6= p be another prime,
and fix an isomorphism ι : Ql

∼= C. We assume that l is unramified in E .
Let µ be a choice of l-small dominant weight, and let U = ∏q Uq ⊂ I (A∞)

denote a open compact subgroup. Then there is defined a finite free O-module
Wµ,O on which Ul acts, and a space of automorphic forms A(U,Wµ,O). It is a
finite free O-module. We recall that this space has the following interpretation.
Let A denote the space of automorphic forms on I , a semisimple admissible
representation of I (A). Let Wµ,C denote the representation of I (R) ⊂ I (C) ∼=
C× × ∏τ∈Φ GLn(C) which is the restriction of the algebraic representation of
highest weight µ. Then there is an isomorphism

A(U,Wµ,O)⊗O,ι C ∼= HomI (R)(W∨
µ,C,A).

If T is a finite set of rational primes containing l, and such that Uq is a hyperspecial
maximal compact subgroup for all q 6∈ T , let Tuniv

T = O[{T v
1 , . . . , T v

n , (T
v

n )
−1}]
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denote the polynomial ring in infinitely many indeterminates corresponding to the
unramified Hecke operators at places v of F which split in E and are not contained
in T . Then Tuniv

T acts on A(U,Wµ,O) by O-algebra endomorphisms, and on the
spaces H i(S(G,U )E , Vµ,k), via the fixed isomorphism I (Ap,∞) ∼= G(Ap,∞). If σ
is an automorphic representation of I (A) such that (σ∞)U 6= 0 and σ∞ ∼= W∨

µ,C,
then we can associate to it a maximal ideal mσ ⊂ Tuniv

T by assigning to each
Hecke operator the reduction modulo l of its eigenvalue on ι−1(σ∞)U ⊂ A(U,
Wµ,O)⊗O Ql . If σ ′ is another automorphic representation of I (A), we say that σ ′

contributes to A(U,Wµ,O)mσ
if σ ′∞ ∼= W∨

µ,C, (σ ′∞)U 6= 0, and the intersection of
(ι−1σ ′∞)U and A(U,Wµ,O)mσ

inside A(U,Wµ,O)⊗O Ql is nontrivial.
There is an isomorphism ιw0 : I (Qp) ∼= Q×p × GLn(Ew0), and, if σp is an

irreducible admissible representation of I (Qp), then (σp ◦ ιw0)|GLn(Ew0 )
remains

irreducible. We assume that ιw0(Up) = Z×p × B, where B ⊂ GLn(Ew0) is the
standard Iwahori subgroup. We write U ′p ⊂ G(Qp) for the unique maximal
compact subgroup.

THEOREM 6.7. Suppose that σ is as above, and let mσ ⊂ Tuniv
T denote the

associated maximal ideal. Suppose that the following hypotheses hold.

1. The group U p is a sufficiently small open compact subgroup of I (Ap,∞).

2. If σ ′ is another automorphic representation which contributes to A(U,
Wµ,O)mσ

, then (σ ′p ◦ ιw0)|GLn(Ew0 )
is a subquotient of a parabolic induction

n-IndG
Q Sta(α)⊗ Stb(β) for some a + b = n.

3. ι−1σ1,w0 satisfies the level-raising congruence (4.2).

4. µ is l-small (6.1) and l is a banal characteristic for GLn(Ew0).

5. The groups H n−2(S(G,U pU ′p)Fv , V ∨µ,k) and H n−2(S(G,U pU ′p)Fv , Vµ,k) are
zero.

Then we can raise the level: there exists another irreducible constituent σ ′

contributing to A(U,Wµ,O)mσ
, and such that σ ′ is an unramified twist of the

Steinberg representation.

We remark that [LS12, Theorem 8.12] implies that hypothesis 5 above is
satisfied provided that Ul is a hyperspecial maximal compact subgroup, µ is
strictly regular, and the following inequalities hold:

2n+
∑
τ∈Φ

n∑
j=1

(2dµτ,1/2e−µτ,n+1− j)6 l and 2n+
∑
τ∈Φ

n∑
j=1

(µτ, j−2bµτ,n/2c)6 l.
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By adding some further local hypotheses at a prime q 6= p, we could also appeal
to the main result of [Shi].

Proof. Combining hypothesis 5 and Corollary 6.6, we see that the groups
H i(A(U pZ×p ,W∨

µ,k)) and H i(A(U pZ×p ,Wµ,k)) vanish when i = n − 2. On the
other hand, there is a perfect pairing

A(U pZ×p ,W∨
µ,O)×A(U pZ×p ,Wµ,O)→ O.

Indeed, given an open compact subgroup V ⊂ B and f1 ∈ A(U pZ×p V,W∨
µ,O),

f2 ∈ A(U pZ×p V,Wµ,O), we define 〈 f1, f2〉 by the formula

〈 f1, f2〉 = 1
[B : V ]

∑
x∈I (Q)\I (A∞)/U pZ×p V

( f1(x), f2(x)).

This pairing is independent of the choice of V , and for every such V restricts
to a perfect pairing A(U pZ×p V,W∨

µ,O) × A(U pZ×p V,Wµ,O) → O. For any
g ∈ GLn(Ew0), we have the formula 〈g f1, g f2〉 = 〈 f1, f2〉. The action of Tuniv

T on
A(U pZ×p ,Wµ,O) gives a canonical direct sum decomposition of O[GLn(Ew0)]-
modules:

A(U pZ×p ,Wµ,O) = A(U pZ×p ,Wµ,O)mσ
⊕ C,

for some C . The hypotheses of Theorem 4.6 are now satisfied with M =
A(U pZ×p ,Wµ,O)mσ

and N taken to be the annihilator of C under the pairing 〈·, ·〉.
The result follows from this.

7. Consequences for GLn

In this section, we deduce our main theorem. We suppose that E is an imaginary
CM field of the form E = E0 · F , where F is a totally real number field and E0

is an imaginary quadratic field. We suppose that E/F is everywhere unramified.
Suppose that there exists a prime p which is totally inert in F and split in E0. Let
v0 = w0w

c
0 denote the unique place of F above p. Let n > 3 be an integer, and

l 6= p a prime. We fix an isomorphism ι : Ql
∼= C.

Let n1, n2 be positive integers with n = n1 + n2. Suppose that π1, π2 are
conjugate self-dual cuspidal automorphic representations of GLn(AE) such that
π = π1�π2 is regular algebraic. We recall that in Theorem 2.1 we have associated
to π a continuous semisimple representation rι(π) : G E → GLn(Ql).

THEOREM 7.1. With π as above, suppose that ι−1πw0 satisfies the level-raising
congruence (4.2). Suppose further that the following hold.
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1. If tl ∈ G Ew0
is a generator of the l-part of the tame inertia group at w0, then

rι(π)(tl) is a unipotent matrix with exactly two Jordan blocks.

2. l is a banal characteristic for GLn(Ew0).

3. The weight λ = (λτ )τ :E↪→C of π satisfies the following.

• For each τ , and for each 0 6 i < j 6 n, we have 0 < λτ,i − λτ, j < l.

• There exists an isomorphism ιp : Qp
∼= C such that the following

inequalities hold:

2n +
∑
τ :E↪→C

n∑
j=1

(λτ, j − 2bλτ,n/2c) 6 l,

2n +
∑
τ :E↪→C

n∑
j=1

(2dλτ,1/2e − λτ,n+1− j) 6 l,

the first sum in each case being over embeddings τ such that the place of
E0 induced by ι−1

p τ is the same as the restriction of the place w0 to E0.

4. If π is ramified at a place w of E, then w is split over F.

5. π is unramified at the primes of E dividing l, and the prime l is unramified
in E and split in E0.

6. π = π1 � π2 satisfies the sign condition (2.3), n1 6= n2, and n1n2 is even.

Then there exists an RACSDC automorphic representation Π of GLn(AE) of
weight λ such that rι(π) ∼= rι(Π) and Πw0 is an unramified twist of the Steinberg
representation. If the places of F above l are split in E, and π is ι-ordinary in
the sense of [Ger, Definition 5.1.2], then we can even assume that Π is also
ι-ordinary.

Proof. Let I1 denote the definite unitary group associated to the extension E/F in
Section 2.2. By Proposition 2.4, there exists an automorphic representation σ1 of
I1(AF) such that π is the base change of σ1. Let I denote the corresponding
unitary similitude group. By Lemma 2.3, σ1 extends to an automorphic
representation σ of I (A). We apply Theorem 6.7 to σ . Let U p = ∏

q 6=p Uq

be a sufficiently small open compact subgroup of I (Ap,∞) with σU 6= 0,
where U = U pUp and Up ⊂ I (Qp) corresponds under the isomorphism
ιw0 : I (Qp) ∼= Q×p × GLn(Ew0) to the product Z×p × B, where B ⊂ GLn(Ew0)

is the standard Iwahori subgroup. Suppose in addition that Ul is a hyperspecial
maximal compact subgroup.
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In the notation of Theorem 6.7, let µ be the weight such that σ contributes to the
spaceA(U,Wµ,O). If σ ′ is an automorphic representation which contributes to the
space A(U,Wµ,O)mσ

, then let σ ′1 and π ′ be the automorphic representations of the
groups I1(AF) and GLn(AE) associated to σ ′ by Lemma 2.3 and Proposition 2.4.
Then rι(π ′)|G Ew0

∼= rι(π)|G Ew0
, and hence the former representation maps tl to a

unipotent matrix with exactly two Jordan blocks. If σ ′ is such a representation,
then the representation σ ′w0

◦ ιw0 of GLn(Ew0) has an Iwahori-fixed vector, and it
is therefore isomorphic to Stn1(α1)� · · ·�Stns (αs) for some constants α1, . . . , αs

and integers with n1 + · · · + ns = n. The nilpotent operator N in the associated
Weil–Deligne representation then has a Jordan decomposition corresponding to
this partition of n. By hypothesis, the conjugacy class of N specializes to the
conjugacy class of a nilpotent matrix with exactly two Jordan blocks. This implies
that s 6 2, and hence the second hypothesis of Theorem 6.7 is satisfied. Let σ ′

be the representation whose existence is guaranteed by that theorem. Applying
Proposition 2.4 and Lemma 2.3 to σ ′, we obtain a representationΠ satisfying the
conclusion of the present theorem. It must be cuspidal, sinceΠw0 is an unramified
twist of the Steinberg representation.

To obtain the last sentence of the theorem, we can enlarge the Hecke algebra
Tuniv

T appearing in the proof of Theorem 6.7 to contain the analogs of the Ul

operators at the places dividing l, and further localize at a maximal ideal not
containing them. We omit the details.

7.1. Proof of Theorem 1.1. We now give the proof of the theorem in the
introduction. We first note the following.

PROPOSITION 7.2. Let E be an imaginary CM field with totally real subfield
F, and let π be an RACSDC automorphic representation of GLn(AE). Suppose
that w0 is a place of E and that πw0 is an unramified twist of the Steinberg
representation. Let L denote the set of rational primes l such that, for all
isomorphisms ι : Ql

∼= C, the residual representation rι(π) is irreducible, and,
if tl denotes a generator of the pro-l part of the tame inertia group at w0, then
rι(π)(tl) is a regular unipotent element. Then L has Dirichlet density 1.

Proof. We sketch the proof, by exhibiting for every δ ∈ (0, 1) a set Lδ ⊂ L of
lower density at least 1 − δ. Replacing E by a soluble extension, we can assume
without loss of generality that, for any prime w at which π is ramified, w is split
over F .

Suppose that E1, . . . , Es are quadratic imaginary fields such that, for each
i , Ei is disjoint over Q from the compositum of the fields E j , j 6= i . Let E0

denote the compositum of the fields E, E1, . . . , Es . Let F0 denote the totally real
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subfield of E0. If a prime l splits in any Ei , then the primes of F0 above l all
split in E0. Let Π denote the base change of π to E0. By [TY07, Corollary B]
and [BLGGT14, Proposition 5.2.2], there exists a set M of rational primes l of
Dirichlet density 1 such that, for all l ∈M and all isomorphisms ι : Ql

∼= C, the
residual representation rι(Π)|G E0(ζl )

is irreducible and l > 2(n + 1). This implies
a fortiori that rι(π) is irreducible. After casting out finitely many elements of M,
we can suppose further that, for all l ∈ M, E0 and Π are unramified above l,
and, if λ denotes the weight ofΠ , then, for all embeddings τ : E0 ↪→ C, we have
λτ,1 − λτ,n 6 l − n − 1 (this means that the Hodge–Tate weights of rι(Π) lie in
the Fontaine–Lafaille range).

Choose a place x0 of E0 abovew0. It follows from [BLGGT14, Theorem 4.4.1]
that, if l ∈M is a prime split in one of E1, . . . , Es , ι : Ql

∼= C is an isomorphism,
and rι(π)(tl) is not a regular unipotent element, then we can find an RACSDC
automorphic representation Π ′ of GLn(AE0) satisfying the following.

• rι(Π) ∼= rι(Π ′).

• If w is a place of E0 and Uw ⊂ GLn(E0,w) is an open compact subgroup such
that ΠUw

w 6= 0, then (Π ′w)
Uw 6= 0.

• Π ′ has weight λ.

• There exists an open compact subgroup Ux0 of GLn(E0,x0) strictly containing
the Iwahori subgroup, such that (Π ′x0

)Ux0 6= 0.

We claim that there can be only finitely many such primes. Indeed, if there are
infinitely many, then, by the pigeonhole principle, there exists an automorphic
representation Π ′ of GLAE0

satisfying the last three points, and infinitely many
primes l1, l2, . . . ∈M with isomorphisms ιi : Qli

∼= C such that rιi (Π) ∼= rιi (Π ′).
As Π∞, (Π ′)∞ are defined over number fields; this implies that we must have
Π ∼= Π ′, which is a contradiction (see [BG06, Lemma 5.1.7]).

LetLs denote the set of primes l ∈Mwhich are split in one of E1, . . . , Es . This
set has Dirichlet density 1 − 2−s . The above argument shows that, after casting
out finitely many elements, we have Ls ⊂ L. This concludes the proof.

Proof of Theorem 1.1. We take up the notation of the introduction. Thus E/F
is a CM imaginary extension of a totally real field, and π1, π2 are RACSDC
automorphic representations of GLn1(AE),GLn2(AE), respectively. Let L denote
the intersection of the sets L1,L2 of primes associated to the representations π1,

π2 by Proposition 7.2. After removing finitely many elements from L, we can
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assume that, for all l ∈ L and all isomorphisms ι : Ql
∼= C, π = π1 � π2 is

unramified at every prime of E above l, l is unramified in E , the order of qw0 in
F×l is greater than 2n, and the weight λ of π satisfies the inequalities

([E : Q] + 2)n +
∑
τ :E↪→C

n∑
j=1

(λτ, j − λτ,n) 6 l/2.

Fix a prime l ∈ L and an isomorphism ι : Ql
∼= C.

There exist α, β ∈ Z×l such that the Frobenius eigenvalues of rι(π1) and rι(π2)

are given, respectively, by

α, qw0α, . . . , qn1−1
w0

and β, qw0β, . . . , qn2−1
w0

.

Let γ denote the image of β/(αqn1
w0
) in F×l , and let m > 1 denote the order of γ in

this group. By the Grunwald–Wang theorem, there exists a cyclic extension K of
E of degree m such that w0 is inert in K and wc

0 splits in K , and K is unramified
above the primes of E dividing l. Let ϕ : G E → F×l be the character factoring
through Gal(K/E) such that ϕ(Frobw0) = γ , and let ψ be the Teichmüller lift
of ϕ/ϕc. Then ψψ c = 1, and ι−1(π1 � (π2 ⊗ ιψ))w0 satisfies the level-raising
congruence.

Let E0 be a quadratic imaginary extension of Q in which p is inert, and which
is split at l and every prime q 6= p of Q below a place of E at which π1 �
(π2 ⊗ ιψ) or the extension E/F is ramified. Let E1 = E · E0. The hypotheses of
Theorem 7.1 now apply to the base change of π1�(π2⊗ιψ) to E1. This completes
the proof.
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thesis, L’Université Paris XI Orsay, March 2000.

[LS12] K.-W. Lan and J. Suh, ‘Vanishing theorems for torsion automorphic sheaves on
compact PEL-type shimura varieties’, Duke Math. J. 161 (6) (2012), 1113–1170.

[Mus78] G. A. Mustafin, ‘Non-Archimedean uniformization’, Mat. Sb. (N.S.) 105 (147, 2)
(1978), 207–237, 287.

[Orl05] S. Orlik, ‘On extensions of generalized steinberg representations’, J. Algebra 293 (2)
(2005), 611–630.

[Rib84] K. A. Ribet, ‘Congruence relations between modular forms’, in: Proceedings of the
International Congress of Mathematicians, vol. 1, 2 (Warsaw, 1983) (PWN, Warsaw,
1984), 503–514.

https://doi.org/10.1017/fms.2014.14 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.14


Raising the level 35

[RZ96] M. Rapoport and Th. Zink, Period spaces for p-divisible groups, Annals of
Mathematics Studies, 141 (Princeton University Press, Princeton, NJ, 1996).

[Sai03] Takeshi Saito, ‘Weight spectral sequences and independence of l’, J. Inst. Math.
Jussieu 2 (4) (2003), 583–634.

[Shi] S. W. Shin, ‘Supercuspidal part of the mod l cohomology of GU(1, n − 1)-Shimura
varieties’, J. Reine Angew Math. (to appear).

[Tat79] J. Tate, ‘Number theoretic background’, in: Automorphic forms, representations and
L-functions, Proc. Sympos. Pure Math. (Oregon State University, Corvallis, OR,
1977), Part 2, Proc. Sympos. Pure Math. XXXIII (Amer. Math. Soc., Providence,
RI, 1979), 3–26.

[Tay08] R. Taylor, ‘Automorphy for some l-adic lifts of automorphic mod l Galois
representations II’, Publ. Math. Inst. Hautes Études Sci. 108 (2008), 183–239.

[Tho] J. A. Thorne, ‘Automorphy lifting theorems for residually reducible l-adic Galois
representations’, J. AMS, Preprint.

[TY07] R. Taylor and T. Yoshida, ‘Compatibility of local and global Langlands
correspondences’, J. Amer. Math. Soc. 20 (2) (2007), 467–493.
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