Proceedings of the Edinburgh Mathematical Society (2000) 43, 177-183 ©

SUBGROUPS OF FINITE INDEX IN GROUPS WITH FINITE COMPLETE REWRITING SYSTEMS

S. J. PRIDE AND JING WANG

Department of Mathematics, University of Glasgow, Glasgow G12 8QW, UK

(Received 20 July 1998)

Abstract We show that if a group G has a finite complete rewriting system, and if H is a subgroup of G with |G:H| = n, then $H * F_{n-1}$ also has a finite complete rewriting system (where F_{n-1} is the free group of rank n-1).

Keywords: complete rewriting system; directed 2-complex; subgroup

AMS 1991 Mathematics subject classification: Primary 20F10 Secondary 57M07; 68Q42

1. Introduction

Groves and Smith [4,5] have proved that if a group G has a subgroup of finite index with a finite complete rewriting system, then G also has such a system. However, the converse of this result still remains open: [5, Question 2], [1, p. 41]. We will prove the following result.

Theorem 1.1. Let H be a subgroup of finite index n in a group G. If G has a finite complete rewriting system, then so does the free product $H * F_{n-1}$, where F_{n-1} is the free group of rank n-1.

Remark 1.2. Theorem 1.1 provides a link with another open question [7] as follows. Let A and B be finitely presented groups (or monoids). If the free product A*B has a finite complete rewriting system, do A and B also have finite complete rewriting systems? (We remark that we have obtained a sufficient condition for this to be true in [10, Theorem D]; however, this condition is not applicable in the setting of Theorem 1.1.)

A finitely presented group G can be represented geometrically as the fundamental group of a finite 2-complex \mathcal{K} with a single 0-cell. A subgroup H of finite index n is then represented by an n-fold covering $\tilde{\mathcal{K}}$ of \mathcal{K} . If \mathcal{K}' is the 2-complex obtained from $\tilde{\mathcal{K}}$ by identifying all 0-cells to a point, then $\pi_1(\mathcal{K}') \cong H * F_{n-1}$. Geometric properties of \mathcal{K} can be lifted to $\tilde{\mathcal{K}}$ and \mathcal{K}' . This provides a geometric link between G and $H * F_{n-1}$. Such ideas have been exploited in [2,3,9] for example. However, for Theorem 1.1, we need to view G as a monoid rather than a group (rewriting systems are a monoid concept). We thus need to work with *directed* 2-complexes. We obtain some results concerning these in $\S 2$, and complete the proof of Theorem 1.1 in $\S 3$.

The referee has kindly pointed out that another approach to our work is provided by [6].

2. Directed 2-complexes

Let $\Gamma = (V, E, \iota, \tau)$ be a directed graph, where V is the set of vertices, E the set of edges, ι the initial function, τ the terminal function. We let $P(\Gamma)$ denote the set of all paths in Γ , and let

$$\mathcal{P}^{(2)}(\Gamma) := \{ (p,q) : p,q \in \mathcal{P}(\Gamma), \ \iota(p) = \iota(q), \ \tau(p) = \tau(q) \}.$$

A rewriting system R on Γ is a subset of $P^{(2)}(\Gamma)$. Its elements are referred to as rewriting rules and they are written, sometimes, in the form $r: r_{+1} = r_{-1}$ for $(r_{+1}, r_{-1}) \in R$. The single-step reduction relation \longrightarrow_R is the following relation on $P(\Gamma): p \longrightarrow_R q$ if and only if $p = p_1 r_{+1} p_2$ and $q = p_1 r_{-1} p_2$ for some $(r_{+1}, r_{-1}) \in R$ and $p_1, p_2 \in P(\Gamma)$. Its reflexive, transitive closure is denoted by \longrightarrow_R^* , and its reflexive, symmetric and transitive closure is denoted by \longleftrightarrow_R^* . For any $p \in P(\Gamma)$, let $[p]_R$ denote the equivalence class $\{q \in P(\Gamma): q \longleftrightarrow_R^* p\}$. The empty path at v will be denoted by \emptyset_v for any $v \in V$.

It is clear that if $p \leftrightarrow R^* p'$ and $q \leftrightarrow R^* q'$, then $pq \leftrightarrow R^* p'q'$, provided $\tau(p) = \iota(q)$. This enables us to define a partial multiplication of equivalence classes by

$$[p]_R[q]_R = [pq]_R \quad (\text{if } \tau(p) = \iota(q)).$$

In particular, if we fix a vertex v and consider the set $\{[p]_R : p \in P(\Gamma), \iota(p) = \tau(p) = v\}$, then we have a multiplication on this set, and it is a monoid (with identity $[\emptyset_v]$) under this multiplication. We call the pair $[\Gamma; R]$, a *directed 2-complex* \mathcal{K} , and call the above monoid the *fundamental monoid* of \mathcal{K} at v, denoting it by $\pi_1^+(\mathcal{K}, v)$.

We say that R is *Noetherian* if there is no infinite reduction sequence

$$p_1 \longrightarrow_R p_2 \longrightarrow_R p_3 \longrightarrow_R \cdots$$
.

We say that R is locally confluent if, whenever $p \longrightarrow_R q_1$ and $p \longrightarrow_R q_2$, there is a $q \in P(\Gamma)$ with $q_1 \longrightarrow_R^* q$ and $q_2 \longrightarrow_R^* q$. Also, R is called *confluent* if, whenever $p \longrightarrow_R^* q_1$ and $p \longrightarrow_R^* q_2$, there is a $q \in P(\Gamma)$ with $q_1 \longrightarrow_R^* q$ and $q_2 \longrightarrow_R^* q$. If R is both Noetherian and confluent, we say that R is *complete*. It is easy to prove (by Noetherian induction) that if R is Noetherian and locally confluent, then R is complete.

A monoid presentation $\mathcal{P} = [X; R]$ can be considered as a directed 2-complex $\mathcal{K} = [\Gamma; R]$, where Γ is a graph with one vertex o and an edge x ($\iota(x) = \tau(x) = o$) for each $x \in X$, and a word on X is considered as a path in Γ . It is clear that the monoid presented by \mathcal{P} is isomorphic to the fundamental monoid of \mathcal{K} at o. Then R is a complete rewriting system on X if and only if R is a complete rewriting system on Γ .

For any $v \in V$, we let $\operatorname{Star}(v) := \{e \in E : \iota(e) = v\}$.

Let Γ' be another directed graph with vertex set V' and edge set E'. A mapping

 $\phi: \Gamma \longrightarrow \Gamma'$

is a function from $V \cup E$ to $V' \cup E'$ with $\phi(V) \subseteq V'$, $\phi(E) \subseteq E'$ and such that

$$\phi(\iota(e)) = \iota(\phi(e)), \qquad \phi(\tau(e)) = \tau(\phi(e)),$$

for all $e \in E$. Clearly, $\phi(\text{Star}(v)) \subseteq \text{Star}(\phi(v))$ for any $v \in V$. We say that ϕ is *locally bijective* if

$$\phi|_{\operatorname{Star}(v)} : \operatorname{Star}(v) \longrightarrow \operatorname{Star}(\phi(v))$$

is bijective for every $v \in V$.

It is easy to prove the following lemma.

Lemma 2.1. Let $\phi : \Gamma \longrightarrow \Gamma'$ be a locally bijective mapping of directed graphs. For any path p' in Γ' , if $\iota(p') = \phi(v)$ for some vertex v in Γ , then there is a unique path p in Γ such that $\iota(p) = v$ and $\phi(p) = p'$.

We call p the *lift* of p' at v.

Let $\mathcal{K} = [\Gamma; R]$, $\mathcal{K}' = [\Gamma'; R']$ be directed 2-complexes. A mapping from \mathcal{K} to \mathcal{K}' is a mapping ϕ of directed graphs from Γ to Γ' such that $(\phi(r_{+1}), \phi(r_{-1})) \in R'$ for each $r \in R$. It is clear that if $p \longleftrightarrow_R^* q$ then $\phi(p) \longleftrightarrow_{R'}^* \phi(q)$. Thus, we get an induced homomorphism

 $\phi_*: \pi_1^+(\mathcal{K}, v) \longrightarrow \pi_1^+(\mathcal{K}', \phi(v)), \qquad \phi_*([p]_R) = [\phi(p)]_{R'}.$

A mapping ϕ from \mathcal{K} to \mathcal{K}' will be called *locally bijective* if the underlying mapping of directed graphs is locally bijective and if $\phi^{-1}(R') = R$ (that is, if $r' = (r'_{+1}, r'_{-1}) \in R'$ and r_{+1}, r_{-1} are the unique lifts of r'_{+1}, r'_{-1} at some vertex v of \mathcal{K} , then $\tau(r_{+1}) = \tau(r_{-1})$ and $(r_{+1}, r_{-1}) \in R$).

Lemma 2.2. Let $\phi : \mathcal{K} \longrightarrow \mathcal{K}'$ be locally bijective, and let p, q be paths in \mathcal{K} with $\iota(p) = \iota(q)$. Then $\phi(p) \longrightarrow_{R'}^* \phi(q)$ if and only if $p \longrightarrow_R^* q$, and $\phi(p) \longleftrightarrow_{R'}^* \phi(q)$ if and only if $p \longleftrightarrow_R^* q$. In particular, for any vertex v of \mathcal{K} the induced homomorphism

$$\phi_*: \pi_1^+(\mathcal{K}, v) \longrightarrow \pi_1^+(\mathcal{K}', \phi(v))$$

is injective.

Proof. Similar to (1.2) of [9].

Lemma 2.3. Let $\phi : \mathcal{K} \longrightarrow \mathcal{K}'$ be locally bijective. Suppose R' is a complete rewriting system on Γ' . Then R is a complete rewriting system on Γ .

Proof. There can be no infinite reduction sequence in \mathcal{K} , for otherwise, applying ϕ would give an infinite reduction sequence in \mathcal{K}' . Thus R is Noetherian.

To show confluence of R, suppose that $p \longrightarrow_{R}^{*} q_{1}$ and $p \longrightarrow_{R}^{*} q_{2}$. Then $\phi(p) \longrightarrow_{R'}^{*} \phi(q_{1})$ and $\phi(p) \longrightarrow_{R'}^{*} \phi(q_{2})$. Since R' is confluent, there exists a path q' in \mathcal{K}' such that $\phi(q_{1}) \longrightarrow_{R'}^{*} q'$ and $\phi(q_{2}) \longrightarrow_{R'}^{*} q'$. Let q be the lift of q' at $\iota(q_{1})$ (note that $\iota(q') = \iota(\phi(q_{1})) = \phi(\iota(q_{1}))$). Then $\phi(q_{1}) \longrightarrow_{R'}^{*} \phi(q)$ and $\phi(q_{2}) \longrightarrow_{R'}^{*} \phi(q)$. So $q_{1} \longrightarrow_{R}^{*} q$ and $q_{2} \longrightarrow_{R}^{*} q$ (by Lemma 2.2).

Lemma 2.4. Let Γ be a directed graph and let o be a vertex of Γ . Suppose that there is a path in Γ from o to v for every vertex v in Γ . Then there exists a subgraph T of Γ such that $V(T) = V(\Gamma)$, and there is a unique path in T from o to v for every $v \in V(\Gamma)$.

We will call T a maximal tree of Γ at o.

Proof. Use Zorn's lemma.

Let $\mathcal{K} = [\Gamma; R]$ be a directed 2-complex. Let T be a maximal tree of Γ at o, and, for each vertex v, let γ_v be the unique path in T from o to v. Let us say that T is complemented in \mathcal{K} if, for each vertex v, there is a path γ'_v in Γ from v to o such that $\gamma_v \gamma'_v \longleftrightarrow^*_R \emptyset_o$ and $\gamma'_v \gamma_v \longleftrightarrow^*_R \emptyset_v$.

Every path p in Γ can be considered as a word on the edge set E.

Proposition 2.5. If \mathcal{K} has a complemented maximal tree T at o, then

$$\mathcal{P}_{\mathcal{K},T} = [E; R \cup \{(e, \emptyset) : e \in E \cap T\}]$$

is a monoid presentation for $\pi_1^+(\mathcal{K}, o)$, where \emptyset denotes the empty word on E.

Proof. For any closed path $p = e_1 e_2 \cdots e_l$ in Γ at o, we have

$$\begin{split} [p]_{R} &= [\emptyset_{o}e_{1}\gamma'_{\tau(e_{1})}\gamma_{\tau(e_{1})}e_{2}\gamma'_{\tau(e_{2})}\gamma_{\tau(e_{2})}\cdots\gamma'_{\tau(e_{l-1})}\gamma_{\tau(e_{l-1})}e_{l}\emptyset_{o}]_{R} \\ &= [\gamma_{\iota(e_{1})}e_{1}\gamma'_{\tau(e_{1})}]_{R}[\gamma_{\iota(e_{2})}e_{2}\gamma'_{\tau(e_{2})}]_{R}\cdots[\gamma_{\iota(e_{l})}e_{l}\gamma'_{\tau(e_{l})}]_{R}. \end{split}$$

Thus, $\pi_1^+(\mathcal{K}, o)$ can be generated by $[\gamma_{\iota(e)} e \gamma'_{\tau(e)}]_R$ $(e \in E)$. If $e \in T$, then $\gamma_{\iota(e)} e = \gamma_{\tau(e)}$ (by uniqueness), so $[\gamma_{\iota(e)} e \gamma'_{\tau(e)}]_R = [\gamma_{\tau(e)} \gamma'_{\tau(e)}]_R = 1$.

Let M be the monoid defined by $\mathcal{P}_{\mathcal{K},T}$. Let ϕ_1 be the homomorphism from the free monoid on E to $\pi_1^+(\mathcal{K}, o)$, defined by

$$e \longmapsto [\gamma_{\iota(e)} e \gamma'_{\tau(e)}]_R \quad (e \in E).$$

If $e \in T$, then $\phi_1(e) = 1 = \phi_1(\emptyset)$. Also, if $r \in R$ with $r_{+1} = e_1 e_2 \cdots e_m$, $r_{-1} = e'_1 e'_2 \cdots e'_l$ $(e_i, e'_i \in E)$ say, then

$$\phi_1(r_{+1}) = [\gamma_{\iota(e_1)}e_1\gamma'_{\tau(e_1)}\gamma_{\iota(e_2)}e_2\gamma'_{\tau(e_2)}\cdots\gamma_{\iota(e_m)}e_m\gamma'_{\tau(e_m)}]_R = [\gamma_{\iota(r_{+1})}r_{+1}\gamma'_{\tau(r_{+1})}]_R$$

Similarly, $\phi_1(r_{-1}) = [\gamma_{\iota(r_{-1})}r_{-1}\gamma'_{\tau(r_{-1})}]_R$. So $\phi_1(r_{+1}) = \phi_1(r_{-1})$. Thus we have an induced homomorphism

$$\phi_{1*}: M \longrightarrow \pi_1^+(\mathcal{K}, o), \qquad [e]_{R'} \longmapsto [\gamma_{\iota(e)} e \gamma'_{\tau(e)}]_R,$$

where $R' = R \cup \{(e, \emptyset) : e \in E \cap T\}$.

Now regard $\mathcal{P}_{\mathcal{K},T}$ as a directed 2-complex with one vertex *c*, and consider the following mapping of directed 2-complexes

 $\phi_2: \mathcal{K} \longrightarrow \mathcal{P}_{\mathcal{K},T}, \quad v \longmapsto c, \quad e \longmapsto e \quad (v \in V, \ e \in E).$

We have an induced homomorphism

$$\phi_{2*}: \pi_1^+(\mathcal{K}, o) \longrightarrow M, \qquad \phi_{2*}([p]_R) = [\phi_2(p)]_{R'} = [p]_{R'}.$$

Since $[\gamma_v]_{R'} = 1$ and $[\gamma_v \gamma'_v]_R = 1$, we have $[\gamma'_v]_{R'} = [\gamma_v]_{R'} [\gamma'_v]_{R'} = [\gamma_v \gamma'_v]_{R'} = 1$ for any $v \in V$. Thus,

$$\begin{split} \phi_{2*}\phi_{1*}([e]_{R'}) &= \phi_{2*}([\gamma_{\iota(e)}e\gamma'_{\tau(e)}]_R) = [\gamma_{\iota(e)}e\gamma'_{\tau(e)}]_{R'} = [e]_{R'}, \\ \phi_{1*}\phi_{2*}([\gamma_{\iota(e)}e\gamma'_{\tau(e)}]_R = \phi_{1*}([e]_{R'}) = [\gamma_{\iota(e)}e\gamma'_{\tau(e)}]_R. \end{split}$$

So $M \cong \pi_1^+(\mathcal{K}, o)$.

Let $\mathcal{K}^{\text{cone}}$ be the directed 2-complex obtained from \mathcal{K} by adjoining a new vertex a, adjoining edges y_v, y_v^{-1} ($v \in V$) with $\iota(y_v) = \tau(y_v^{-1}) = a, \tau(y_v) = \iota(y_v^{-1}) = v$, and adjoining additional rewriting rules $(y_v y_v^{-1}, \emptyset_a), (y_v^{-1} y_v, \emptyset_v)$.

Proposition 2.6. If \mathcal{K} has a complemented maximal tree T at o, then

$$\pi_1^+(\mathcal{K}^{\text{cone}}, o) \cong \pi_1^+(\mathcal{K}, o) * F_{n-1},$$

where n = |V|, F_{n-1} is the free group of rank n-1. Also, $\mathcal{P} = [E; R]$ is a monoid presentation of $\pi_1^+(\mathcal{K}^{\text{cone}}, o)$.

Proof. Let $\mathcal{K}^{\text{cone}} = [\Gamma'; R']$, where $\Gamma' = (V', E', \iota, \tau)$. Then $V' = V \cup \{a\}$, $E' = E \cup \{y_v, y_v^{-1} : v \in V\}$ and $R' = R \cup \{(y_v y_v^{-1}, \emptyset_a), (y_v^{-1} y_v, \emptyset_v) : v \in V\}$. It is clear that $\mathcal{K}^{\text{cone}}$ has a complemented maximal tree $T_1 = T \cup \{y_o^{-1}\} \cup \{a\}$ at o. By Proposition 2.5, $\pi_1^+(\mathcal{K}, o)$ has a monoid presentation $\mathcal{P}_{\mathcal{K},T}$, and $\pi_1^+(\mathcal{K}^{\text{cone}}, o)$ has a monoid presentation

$$[E \cup \{y_v, y_v^{-1} : v \in V\}; \ R \cup \{(y_v y_v^{-1}, \emptyset), (y_v^{-1} y_v, \emptyset) : v \in V\} \cup \{(e, \emptyset), (y_o^{-1}, \emptyset) : e \in E \cap T\}].$$

It is clear that the monoid defined by

$$[y_v, y_v^{-1} \ (v \in V); \ (y_v y_v^{-1}, \emptyset), (y_v^{-1} y_v, \emptyset), (y_o^{-1}, \emptyset) \ (v \in V)]$$

is the free group F_{n-1} of rank n-1. Thus, $\pi_1^+(\mathcal{K}^{\text{cone}}, o) \cong \pi_1^+(\mathcal{K}, o) * F_{n-1}$.

It is clear that $\mathcal{K}^{\text{cone}}$ also has a complemented maximal tree $T_2 = \{y_v : v \in V\} \cup V \cup \{a\}$ at a. So, by Proposition 2.5, $\pi_1^+(\mathcal{K}^{\text{cone}}, a)$ has a monoid presentation

$$[E \cup \{y_v, y_v^{-1} : v \in V\}; \ R \cup \{(y_v y_v^{-1}, \emptyset), (y_v^{-1} y_v, \emptyset) : v \in V\} \cup \{(y_v, \emptyset) : v \in V\}].$$

The above presentation is Tietze equivalent [8] to the presentation [E; R]. It is easy to check that the mapping

$$\pi_1^+(\mathcal{K}^{\operatorname{cone}},a) \longrightarrow \pi_1^+(\mathcal{K}^{\operatorname{cone}},o), \qquad [p]_{R'} \longmapsto [y_o^{-1}py_o]_{R'}$$

is an isomorphism. Thus $\mathcal{P} = [E; R]$ is a monoid presentation of $\pi_1^+(\mathcal{K}^{\text{cone}}, o)$.

Proposition 2.7. Let $\mathcal{K} = [\Gamma; R]$ be a finite directed 2-complex and let n = |V|. If R is complete on Γ and \mathcal{K} has a complemented maximal tree T at o, then $\pi_1^+(\mathcal{K}, o) * F_{n-1}$ can be presented by a finite complete rewriting system.

Proof. By Proposition 2.6, $\pi_1^+(\mathcal{K}, o) * F_{n-1}$ has a monoid presentation $\mathcal{P} = [E; R]$. We just need to show that R is a complete rewriting system on E.

Any word w on E can be written as $w = p_1 p_2 \cdots p_k$, where $p_i \in P(\Gamma)$ and $\tau(p_i) \neq \iota(p_{i+1})$. It is clear that $w \longrightarrow_R w'$ in \mathcal{P} for some word w' on E if and only if $w' = p_1 \cdots p_{i-1} q_i p_{i+1} \cdots p_k$ and $p_i \longrightarrow_R q_i$ in \mathcal{K} . Since R is complete on Γ , it is easy to prove that R is Noetherian and locally confluent on E. So R is a finite complete rewriting system on E.

3. Proof of Theorem 1.1

To complete the proof of Theorem 1.1, let G have a finite complete monoid presentation, which we can regard as a directed 2-complex $\mathcal{K}_1 = [\Gamma_1; R_1]$, where Γ_1 has a single vertex c and a finite edge set X, and where R_1 is a finite complete rewriting system on Γ_1 . We will construct a finite directed 2-complex $\mathcal{K} = [\Gamma; R]$ satisfying the conditions of Proposition 2.7, with $\pi_1^+(\mathcal{K}, o) \cong H$. The construction is an adaptation of the standard method of constructing covering complexes of (undirected) 2-complexes.

Take Γ to have vertex set $V = \{Hg : g \in G\}$ (right cosets), edge set $\{(Hg, x): g \in G, x \in X\}$ with $\iota((Hg, x)) = Hg, \tau((Hg, x)) = Hg[x]_{R_1}$, and $R = \{r^{(v)} : v \in V, r \in R_1\}$, where, for any $v = Hg \in V, r \in R_1$, with $r_{+1} = x_1x_2\cdots x_k, r_{-1} = x'_1x'_2\cdots x'_l$ say, let

$$r_{+1}^{(v)} = (Hg, x_1)(Hg[x_1]_{R_1}, x_2) \cdots (Hg[x_1x_2\cdots x_{k-1}]_{R_1}, x_k),$$

$$r_{-1}^{(v)} = (Hg, x_1')(Hg[x_1']_{R_1}, x_2') \cdots (Hg[x_1'x_2'\cdots x_{l-1}']_{R_1}, x_l').$$

We have the locally bijective mapping

$$\phi: \mathcal{K} \longrightarrow \mathcal{K}_1, \quad Hg \longmapsto c, \quad (Hg, x) \longmapsto x \quad (g \in G, \ x \in X).$$

Thus R is complete on Γ by Lemma 2.3.

Let $v = Hg \in V$, with $g = [x_1x_2\cdots x_m]_{R_1}$ $(x_i \in X)$. Then

$$(H1, x_1)(H[x_1]_{R_1}, x_2) \cdots (H[x_1x_2 \cdots x_{m-1}]_{R_1}, x_m)$$

is a path in Γ from o = H1 to v. Thus, by Lemma 2.4, there exists a maximal tree T of Γ at o. Let γ_v denote the unique path in T from o to v. Let $\phi(\gamma_v) = w$ and $g_1 = [w]_{R_1}$. Then $Hg_1 = H[\phi(\gamma_v)]_{R_1} = \tau(\gamma_v) = Hg$. Let $g_1^{-1} = [w']_{R_1}$, and let $w' = x'_1x'_2\cdots x'_k$ $(x'_i \in X)$. Since $[w]_{R_1}[w']_{R_1} = g_1g_1^{-1} = 1$, there is a path $\gamma'_v = (Hg_1, x'_1)(Hg_1[x'_1]_{R_1}, x'_2)\cdots (Hg_1[x'_1x'_2\cdots x'_{k-1}]_{R_1}, x'_k)$ in Γ from v to o. Because

$$\phi(\gamma_v\gamma'_v) = \phi(\gamma_v)\phi(\gamma'_v) = ww' \longleftrightarrow^*_{R_1} \emptyset = \phi(\emptyset_o),$$

by Lemma 2.2 we have $\gamma_v \gamma'_v \longleftrightarrow^*_R \emptyset_o$. Similarly, we have $\gamma'_v \gamma_v \longleftrightarrow^*_R \emptyset_v$. Thus T is complemented.

 Let

$$\phi_*: \pi_1^+(\mathcal{K}, o) \longrightarrow \pi_1^+(\mathcal{K}_1, c) = G$$

be the homomorphism induced by ϕ . By Lemma 2.2, ϕ_* is injective. Let $[p]_R \in \pi_1^+(\mathcal{K}, o)$ (p a closed path in Γ at o). Then $H1 = \tau(p) = H[\phi(p)]_{R_1}$, so we have $\phi_*([p]_R) = [\phi(p)]_{R_1} \in H$. Conversely, if $[p']_{R_1} \in H$, and if p is the lift of p' at o, then $\tau(p) = H[p']_{R_1} = H1 = o$, so $\phi_*([p]_R) = [\phi(p)]_{R_1} = [p']_{R_1}$ with $[p]_R \in \pi_1^+(\mathcal{K}, o)$. Thus $\phi_*: \pi_1^+(\mathcal{K}, o) \longrightarrow H$ is an isomorphism.

References

- D. E. COHEN, String rewriting a survey for group theorists, in *Geometric groups theory* (ed. G. A. Niblo and M. A. Roller), vol. 1, pp. 37–47, London Mathematical Society Lecture Notes Series, no. 181 (Cambridge University Press, 1993).
- L. P. COMERFORD JR, Subgroups of small cancellation groups, J. Lond. Math. Soc. 17 (1978), 422-424.
- 3. E. J. FENNESSEY AND S. J. PRIDE, Equivalences of two-complexes, with applications to NEC-groups, *Math. Proc. Camb. Phil. Soc.* **106** (1989), 215–228.
- 4. J. R. J. GROVES AND G. C. SMITH, Rewriting systems and soluble groups, Bath Computer Science Technical Reports 89–19.
- 5. J. R. J. GROVES AND G. C. SMITH, Soluble groups with a finite rewriting system, Proc. Edinb. Math. Soc. 36 (1993), 283-288.
- 6. P. J. HIGGINS, Notes on categories and groupoids (Van Nostrand Reinhold Company, London, 1971).
- 7. F. OTTO, On properties of monoids that are modular for free products and for certain free products with amalgamated submonoids, Preprint, 1997.
- 8. S. J. PRIDE, Geometric methods in combinatorial semigroup theory, in *Semigroups, for*mal languages and groups (ed. J. Fountain), pp. 215-232 (Kluwer, Dordrecht, 1995).
- 9. S. J. PRIDE, Star-complexes, and the dependence problems for hyperbolic complexes, *Glasgow Math. J.* **30** (1988), 155–170.
- S. J. PRIDE AND JING WANG, Rewriting systems, finiteness conditions, and associated functions, in Proc. Int. Conf. on Algorithmic Problems in Groups and Semigroups, Lincoln, NB, USA, 1998.