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SUBGROUPS OF FINITE INDEX IN GROUPS WITH
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Abstract We show that if a group G has a finite complete rewriting system, and if H is a subgroup of
G with \G : H| = n, then H * Fn—\ also has a finite complete rewriting system (where Fn—\ is the free
group of rank n — 1).
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1. Introduction

Groves and Smith [4,5] have proved that if a group G has a subgroup of finite index with
a finite complete rewriting system, then G also has such a system. However, the converse
of this result still remains open: [5, Question 2], [1, p. 41]. We will prove the following
result.

Theorem 1.1. Let H be a subgroup of finite index n in a group G. If G has a finite
complete rewriting system, then so does the free product H * Fn-\, where Fn-\ is the
free group of rank n — 1.

Remark 1.2. Theorem 1.1 provides a link with another open question [7] as follows.
Let A and B be finitely presented groups (or monoids). If the free product A*B has a finite
complete rewriting system, do A and B also have finite complete rewriting systems? (We
remark that we have obtained a sufficient condition for this to be true in [10, Theorem D];
however, this condition is not applicable in the setting of Theorem 1.1.)

A finitely presented group G can be represented geometrically as the fundamental
group of a finite 2-complex K with a single 0-cell. A subgroup H of finite index n is then
represented by an n-fold covering K. of K. UK' is the 2-complex obtained from K by
identifying all 0-cells to a point, then TTI(/C') = H* Fn-\. Geometric properties of K can
be lifted to K and K'. This provides a geometric link between G and H * Fn_i. Such
ideas have been exploited in [2,3,9] for example.
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However, for Theorem 1.1, we need to view G as a monoid rather than a group (rewrit-
ing systems are a monoid concept). We thus need to work with directed 2-complexes. We
obtain some results concerning these in § 2, and complete the proof of Theorem 1.1 in § 3.

The referee has kindly pointed out that another approach to our work is provided
by [6].

2. Directed 2-complexes

Let F = (V, E, L, r) be a directed graph, where V is the set of vertices, E the set of edges,
L the initial function, r the terminal function. We let P(F) denote the set of all paths in
F, and let

PW(F) := {(p,q) :p,qE P(F), t(p) = t{q), r(p) = r(q)}.

A rewriting system R on F is a subset of P^(F). Its elements are referred to as rewriting
rules and they are written, sometimes, in the form r : r+\ = r_i for (r+i,r_i) E R. The
single-step reduction relation —>R is the following relation on P(F): p —>R q if and
only if p = p\r+\pi and q = pir_jp2 for some (r+i ,r_i) E R and p\,P2 E P{F).
Its reflexive, transitive closure is denoted by —>*R, and its reflexive, symmetric and
transitive closure is denoted by <—>*R. For any p E P(F), let \p]n denote the equivalence
class {q € P(F) : q <—>*R p). The empty path at v will be denoted by %v for any v E V.

It is clear that if p <—>R p' and q <—>R q', then pq <—>*R p'q', provided r(p) = i(q).
This enables us to define a partial multiplication of equivalence classes by

falfltelfl = \PQ]R (if T(p) = t(q)).

In particular, if we fix a vertex v and consider the set {\P\R : p e P{P), t-(p) = T{P) = v},
then we have a multiplication on this set, and it is a monoid (with identity [0 ]̂) under
this multiplication. We call the pair [F;i2], a directed 2-complex K, and call the above
monoid the fundamental monoid of K at v, denoting it by TT^(K,V).

We say that R is Noetherian if there is no infinite reduction sequence

Pi — > R V2 — > R P3 —>R

We say that R is locally confluent if, whenever p —>R q± and p —>R 92, there is
a q € P(r) with q\ —i*R q and qi —>*R q. Also, R is called confluent if, whenever
p —>*R q\ and p —>R q2, there is a q S P(P) with q\ —>*R q and 92 —>*R Q- If R is both
Noetherian and confluent, we say that R is complete. It is easy to prove (by Noetherian
induction) that if R is Noetherian and locally confluent, then R is complete.

A monoid presentation "P = [X; R] can be considered as a directed 2-complex K =
[F;/?], where F is a graph with one vertex o and an edge x (i(x) = T[X) = 0) for each
x 6 X, and a word on X is considered as a path in F. It is clear that the monoid presented
by V is isomorphic to the fundamental monoid of K at o. Then R is a complete rewriting
system on X if and only if R is a complete rewriting system on F.

For any v 6 V, we let Star(u) := {e E E : c(e) = v}.
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Let F' be another directed graph with vertex set V and edge set E'. A mapping

4>: r —> r'

is a function from V U E to V I) E' with <£(V) C V , <f>(E) C £ ' and such that

for all e e E. Clearly, $(Star(u)) C Star(^>(u)) for any v € V. We say that <j> is locally
bijective if

0|star(«) : Star(w) —> Star(<£(v))

is bijective for every v € V.
It is easy to prove the following lemma.

L e m m a 2 .1 . Let <f>: F —> F' be a locally bijective mapping of directed graphs. For
any path p' in F', if t(p') = (j>(v) for some vertex v in F, then there is a unique path p in
F such that t,(p) = v and 4>{p) = p'.

We call p the lift of p' at v.
Let 7C = [F; R], K' = [F1; R'] be directed 2-complexes. A mapping from 7C to K' is a

mapping <fr of directed graphs from F to F' such that (<f>(r+i), (/>(r_i)) € R' for each r £ R.
It is clear that if p <—>*R q then </>(p) <—>*RI 4>(q). Thus, we get an induced homomorphism

A mapping <f> from K) to K' will be called locally bijective if the underlying mapping
of directed graphs is locally bijective and if <j>~l(R') = R (that is, if r' = ( r ^ ^ ^ j ) € R'
and r+ i , r_ i are the unique lifts of r'+1,r'_1 at some vertex u of K, then r ( r + i ) = T(r-i)
and ( r + i , r _ i ) 6 i?).

Lemma 2.2. Let ^ : K —> K' be locally bijective, and let p,q be paths in K with
i(p) — i{q). Then <f>(p) —>^, <fi(q) if and only if p —>*R q, and 4>{p) <—>*R, <p(q) if and
only ifp i—^^ q. In particular, for any vertex vofK the induced homomorphism

is injective.

Proof. Similar to (1.2) of [9]. D

Lemma 2.3. Let <f>: K —> K' be locally bijective. Suppose R' is a complete rewriting
system on F'. Then R is a complete rewriting system on F.

Proof. There can be no infinite reduction sequence in K, for otherwise, applying cj)
would give an infinite reduction sequence in K'. Thus R is Noetherian.
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To show confluence of R, suppose that p —>*R qi and p —t*R 92- Then cj)(p) —yR, (f>(q{)
and 4>(p) —>*R, ^(92)- Since R' is confluent, there exists a path q' in K' such that
4>{ii) —>*R' Q' and ^(92) —>*R> q'• Let q be the lift of q' at t(<?i) (note that i{q') =
i(<K<?i)) = 0(t(gi))- T h e n 0(9i) —>*R> <K<?) and ^(g2) —>% <t>(q)- So gx —>*R q and
^2 —>*R q (by Lemma 2.2). •

Lemma 2.4. Let F be a directed graph and let o be a vertex ofF. Suppose that there
is a path in F from o to v for every vertex v in F. Then there exists a subgraph T of F
such that V(T) = V(F), and there is a unique path in T from o to v for every v S V(F).

We will call T a maximal tree of F at o.

Proof. Use Zorn's lemma. •

Let K = [F; R] be a directed 2-complex. Let T be a maximal tree of F at o, and,
for each vertex v, let j v be the unique path in T from o to v. Let us say that T is
complemented in K if, for each vertex v, there is a path j ' v in F from v to o such that
Iv-lv <—>*R 0o and J'VJV i—>*R %v.

Every path p in F can be considered as a word on the edge set E.

Proposition 2.5. If K has a complemented maximal tree T at o, then

is a monoid presentation for irf(K., o), where 0 denotes the empty word on E.

Proof. For any closed path p = e\t2 • • • e; in f at o, we have

Thus, irf(K,o) can be generated by K(e)e7r(e)]# (e € E)- I f e G r> t h e n 7<-(e)e = 7r(e)
(by uniqueness), so [l,{e)eiT(e)]R = [lr(e)iT{e)]R = 1-

Let M be the monoid defined by VK,T- Let <j>i be the homomorphism from the free

monoid on E to nf (K,o), defined by

e 1—> [7t(e)e7r(e)]fl (e G S).

If e € T, then(/>i(e) = 1 = 0i(0). Also, if r e /? withr+i =

(ei,e^ € E) say, then

Similarly, ^i(r_!) = [l^r^r-il'^^R. So <j>i{r+1) = ^i(r_i). Thus we have an

induced homomorphism

0i, : M —>• TT]1"(/C,o), [e]fl- 1—> [7i(e)e7r(e)]«.
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where R' = R U {(e, 0) : e G E n T}.
Now regard VK.T as a directed 2-complex with one vertex c, and consider the following

mapping of directed 2-complexes

<f)2 : K. —> VK,T, vt—>c, e i—> e (v e V, e G E).

We have an induced homomorphism

(j>2* : Trf{K,o) —> M, 4>2*(\P]R) = [4>2(P)]R< = \P\R<-

Since [yv}n> = 1 and \yv^v}R = 1, we have [iv]w = [jv)R'h'v]R' = [lvl'v}R' = 1 for any
v eV. Thus,

<t>2*4>i*([e]w) = 4>2*{[l,(e)ei'T{e)]R) = \l,{e)eiT{e))R' = \e)w,

SoM^7r+(/C,o). D

Let /Ccone be the directed 2-complex obtained from K by adjoining a new vertex a,
adjoining edges yv,yZl {v G V) with i(yv) = r(y~l) = a,r(yv) = (-(j/"1) = v, and
adjoining additional rewriting rules (yvy^^a), (y^Vv^v)-

Proposition 2.6. If K has a complemented maximal tree T at o, then

where n = \V\, Fn-i is the free group of rank n - 1. Also, V = [E;R] is a monoid
presentation ofTrf(K.cone,o).

Proof. Let /Ccone = [r';R'\, where i"" = ( F ' , E ' . I . T ) . Then K' = KU {a}, E' =
EU{yv,yZl :v£V} and R' = R U {(yvy~l,K), (y^Vv^v) : v e V}. It is clear that
7Ccone has a complemented maximal tree I \ = TU {y^1} U {a} at o. By Proposition 2.5,
TT^/CJO) has a monoid presentation "PK^I a n d Trf{K.cone,o) has a monoid presentation

y^-.veV}; Ru{(yvy-\(D),{y-1yv,<D):veV}U{(e,<D),(y-1,<D):eeEnT}].

It is clear that the monoid defined by

[yv^-1 (v e ^ ) ; {yvyZ\V),{vZlVv,Q),{vZ\Q) (« e V)]

is the free group Fn_x of rank n - 1. Thus, Trf (X:cone, o) ^ TT^/C, O) * Fn_x.
It is clear that /Ccone also has a complemented maximal tree T2 = {yv : v 6 V}UVL){a}

at a. So, by Proposition 2.5, n*(K.cone,a) has a monoid presentation

[EU{yVtyZl :veV}; RU{(yvyZ\9), (y^Vv.V) :veV}L) {(yu>0) : v € V}].
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The above presentation is Tietze equivalent [8] to the presentation [E;R]. It is easy to
check that the mapping-

n+(Kc°™, a) - 4 n+(Kcone, o), \p]R, --* [y^pyoh'

is an isomorphism. Thus "P = \E\ R] is a monoid presentation of TT^(Kcone, o). D

Proposition 2.7. Let K. = [F; R] be a finite directed 2-complex and let n = \V\. If R
is complete on F and K has a complemented maximal tree T at o, then TT+(/C, O) * Fn_i
can be presented by a finite complete rewriting system.

Proof. By Proposition 2.6, TTI"(/C,O) * Fn_i has a monoid presentation "P — \E;R\.
We just need to show that R is a complete rewriting system on E.

Any word w on E can be written as w = p\p2 • • -Pk, where Pi S P{F) and r(pi) ^
i(jpi+i). It is clear that w —>R W' in T7 for some word w' on E if and only if w' =
Pi • • -Pi-iQiPi+i • • -Pk and pi —>R qt in K. Since R is complete on F, it is easy to prove
that R is Noetherian and locally confluent on E. So R is a finite complete rewriting
system on E. •

3. Proof of Theorem 1.1

To complete the proof of Theorem 1.1, let G have a finite complete monoid presentation,
which we can regard as a directed 2-complex K,\ = [F\\ R\], where Fi has a single vertex
c and a finite edge set X, and where R\ is a finite complete rewriting system on Fi.
We will construct a finite directed 2-complex K = [F;R] satisfying the conditions of
Proposition 2.7, with Trĵ /C, o) = H. The construction is an adaptation of the standard
method of constructing covering complexes of (undirected) 2-complexes.

Take F to have vertex set V = {Hg : g € G} (right cosets), edge set {(Hg,x):
g€G, x€X} with i((Hg,x)) = Hg, r((Hg,x)) = Hg[x]Rl, and R = {»•(»> : v € V,
r € Ri}, where, for any v = Hg £ V, r £ R\, with r+i = X1X2 • • • %k, f-i — '̂1^2 ' ' ' x'i
say, let

r(+\ = (Hg, xi)(i/5[ii]f l l ,x2) • • • {Hg[xix2 • • • xk-i]Rl, xk),

r™ = (Hg,x'1)(Hg[x'1}Ri,x'2)---(Hg[x'1x'2---x'l_1}Rl,x[).

We have the locally bijective mapping

(j>: K —¥ K\, Hg 1—> c, (Hg, x) 1—¥ x (g 6 G, x 6 X).

Thus R is complete on F by Lemma 2.3.
Let v = Hg € V, with g = \x\x2 • • ' i j ^ , (xi € X). Then

,X2)--- (H[xiX2 • • • I m - l ] f l , , Xm)
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is a path in F from o = HI to v. Thus, by Lemma 2.4, there exists a maximal tree
T of F at o. Let j v denote the unique path in T from o to v. Let 4>{yv) = w and
5i = [u>W Then Hgx = #[<K7«)]fli = T(7«) = #0- Let s^1 = K R > a n d l e t

u/ = x'1x'2---x'k (x't G X). Since H ^ t u / ] ^ = gig^1 = 1, there is a path 7̂ , =
(Hgi,x'1)(Hgi[x'1]R1,x2) • •" (Hgi[xix'2 • • •x'k_1]R1,x

l
k) in F from v to o. Because

—>£, 0 -

by Lemma 2.2 we have jvy'v <—>*R 0O. Similarly, we have J'VJV <—>*R %v. Thus T is
complemented.

Let
^iTrf tJCo)—>7r+(JCi ,c) = G

be the homomorphism induced by <j>. By Lemma 2.2, 0* is injective. Let \P\R € T T ^ / C , O) (p
a closed path in F at o). Then Hi = r(p) = Hfyip)]^, so we have </>*([p]fl) = [4>(P)]RI €
/f. Conversely, if [p ' ]^ S i?, and if p is the lift of p' at o, then r(p) = -ff[p']Hl = HI = o,
so <£,([p]fl) = [<£(p)]fli = [p']fli with [p]R € ^ ( X I . o ) . Thus ^* : TT+(X:,O) —^ ff is an
isomorphism.
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