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Dynamics of the interaction of a pair of thin
evaporating droplets on compliant substrates

A. Malachtari1 and G. Karapetsas1,†
1Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

(Received 25 January 2023; revised 7 October 2023; accepted 7 October 2023)

The dynamics of the interaction of a system of two thin volatile liquid droplets
resting on a soft viscoelastic solid substrate are investigated theoretically. The developed
model fully considers the effect of evaporative cooling and the generated Marangoni
stresses due to the induced thermal gradients, while also accounting for the effect
of the gas phase composition and the diffusion of vapour in the atmosphere of the
droplets. Using the framework of lubrication theory, we derive evolution equations for
both the droplet profile and the displacement of the elastic solid, which are solved in
combination with Laplace’s equation for the vapour concentration in the gas phase.
A disjoining-pressure/precursor-film approach is used to describe contact-line motion.
The evolution equations are solved numerically, using the finite-element method, and
we present a thorough parametric analysis to investigate the physical properties and
mechanisms that affect the dynamics of droplet interactions. The results show that the
droplets interact through both the soft substrate and the gas phase. In the absence of
thermocapillary phenomena, the combined effect of non-uniform evaporation due to the
increased vapour concentration between the two droplets and elastocapillary phenomena
determines whether the drop–drop interaction is attractive or repulsive. The Marangoni
stresses suppress droplet attraction at the early stages of the drying process and lead
to longer droplet lifetimes. For substrates with intermediate stiffness, the emergence of
spontaneous symmetry breaking at late stages of evaporation is found. The rich dynamics
of this complex system is explored by constructing a detailed map of the dynamic regimes.
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1. Introduction

The dynamic wetting behaviour of liquid droplets on soft solid substrates has received a
great deal of attention lately, due to its relevance in diverse applications (Bico, Reyssat
& Roman 2018) ranging from biology, i.e. the inhibition of the dispersal of cancer cells
(Douezan, Dumond & Brochard-Wyart 2012) or the control of medicine dispersal on
tissues, to the control of the spreading of the deposited particles over a compliant substrate
after the evaporation of ink-jetted microdroplets (Park & Moon 2006) and microfabrication
of materials in technology (Bonaccurso et al. 2005; Pericet-Camara et al. 2007; Kong et al.
2014).

The evaporation of droplets on rigid substrates has been widely studied over the years,
underlining various aspects of evaporation such as droplet lifetimes (Stauber et al. 2014,
2015), the impact of capillary flow on the coffee stain effect (Deegan et al. 1997) or the
effect of substrate properties (Erbil 2012). A key concept in droplet evaporation is the
so-called shielding effect, where neighbouring droplets interact with each other, since the
presence of the vapour from adjacent droplets reduces the evaporation rate and increases
the droplet lifetime in comparison with those of a single isolated droplet (Fabrikant 1985;
Wray, Duffy & Wilson 2020; Masoud, Howell & Stone 2021; Wray et al. 2021). On
the contrary, the study of droplet evaporation on compliant solid substrates is not very
substantial so far.

The unbalanced vertical forces acting on the contact line of the liquid result in a
local deformation of the compliant substrate affecting droplet shape and, ultimately, the
dynamics of the flow (Andreotti & Snoeijer 2020). This unique attribute of the compliant
substrates is responsible for the creation of a macroscopic surface protrusion, most widely
referred to as a wetting ridge (Shanahan 1988; Park et al. 2014; Chen et al. 2020). The
structure of the wetting ridge is an immediate outcome of the balance between capillary
and elastic forces, while a key role of the solid surface tension has been recently identified
(Jerison et al. 2011; Marchand et al. 2012; Style & Dufresne 2012; Style et al. 2013).
Besides slowing down the contact line, the wetting ridge can also constitute the reason
for periodic stick–slip behaviour, with a periodic depinning of the contact line (Kajiya
et al. 2012, 2014; Lopes & Bonaccurso 2013; Yu, Wang & Zhao 2013; Karpitschka et al.
2016; van Gorcum et al. 2018; Mokbel, Aland & Karpitschka 2022). Starting from a rigid
substrate, when we increase the substrate softness we observe an initial strong increase
in the wetting ridge size while the droplet footprint is kept relatively constant, which is
replaced by a strong depression of the substrate under the droplet in much softer substrates
(Charitatos & Kumar 2020; Henkel, Snoeijer & Thiele 2021). The arising solid angle is
governed by a balance of surface tensions (Marchand et al. 2012; Style & Dufresne 2012;
Style et al. 2013). The possible strain dependence of the solid surface tension (i.e. the
Shuttleworth effect) (Andreotti & Snoeijer 2016; Xu et al. 2017; Pandey et al. 2020; Henkel
et al. 2022) gives rise to another complexity.

Depending on a combination of capillarity and bulk elasticity, adjacent droplets on
solid substrates can interact, leading either to droplet attraction and even coalescence on
thick substrates, or to droplet repulsion on thinner substrates (Hernández-Sánchez et al.
2012; Karpitschka et al. 2016; Leong & Le 2020). Karpitschka et al. (2016) described
the droplet interaction when deposited on soft solids as the ‘inverse Cheerios effect’ with
direct reference to the liquid-on-solid analogue of the so-called ‘Cheerios effect’ (Vella &
Mahadevan 2005); the latter refers to solid particles’ attraction when floating on liquids,
mediated by surface tension forces, and it has been named after the sticking of breakfast
cereals either to the walls of a bowl or to each other. However, there are substantial
differences between the ‘Cheerios effect’ and the ‘inverted Cheerios effect’ regarding the
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driving force and the mechanism which mediates the interaction. The shape of the liquid
interface in the ‘Cheerios effect’ is specified by the balance between surface tension and
gravity, while the interaction is driven by a change in gravitational potential energy. On
the contrary, in the ‘inverse Cheerios effect’ there is no gravity involved and the shape of
the solid interface is specified by elastocapillarity (Karpitschka et al. 2015).

Despite the innumerable studies concerning droplet coalescence (Eggers, Lister & Stone
1999; Aarts et al. 2005), not many of them consider the role that a compliant substrate
might play in the process. More recently, Henkel et al. (2021) investigated the two basic
coarsening modes of two droplets on soft substrates without evaporation; the volume or
mass transfer mode (also referred to as drop collapse mode, diffusion-controlled ripening
or Ostwald ripening) and the translation mode (also referred to as coalescence, collision
or migration mode). On the one hand, in the mass transfer mode, material is transferred
from the small drop to the larger one until the smaller drop has completely vanished,
while the centres of mass of each droplet remain constant. This mass transfer might occur
either through the vapour phase in case of volatile droplets, or through an adsorption layer
in case of non-evaporating partially wetting fluids. On the other hand, in the translation
mode, there is droplet migration towards each other, until their contact lines touch, leading
to coalescence (Henkel et al. 2021).

When compared with rigid substrates, early experimental studies (Lopes & Bonaccurso
2012; Pu & Severtson 2012; Lopes & Bonaccurso 2013; Yu et al. 2013; Chuang et al.
2014; Gerber et al. 2019) highlighted the faster evaporation of droplets observed on softer
substrates, due to the longer pinning of the contact line throughout evaporation, caused
by the formation of the wetting ridge. In addition, some of these experimental studies
(Lopes & Bonaccurso 2013; Yu et al. 2013) revealed that while in the initial stages of
evaporation, the droplet appears to remain pinned, while the contact angle is decreased.
After the droplet depins, the opposite behaviour is observed, i.e. the contact angle remains
constant and the contact radius decreases. Then, at the late stages of droplet evaporation,
the contact angle slightly increases, before ultimately decrease until the droplet completely
evaporates.

As it has been established in studies for rigid substrates, the dynamics of the contact
line plays a crucial role on droplet evaporation (Lopes & Bonaccurso 2012, 2013; Pu &
Severtson 2012; Yu et al. 2013; Chuang et al. 2014; Gerber et al. 2019) and in order to
model the contact line motion an approach, followed by several researchers, has been
to introduce the effect of disjoining pressure, by assuming the presence of an adsorbed
precursor film ahead of the droplet, which is stabilised by the action of intermolecular
interactions between the two interfaces. The presence of the precursor film is evident in
experimental studies with microscopic techniques (Kavehpour, Ovryn & McKinley 2003;
Xu et al. 2004; Hoang & Kavehpour 2011) and constitutes the reason for the levelled
transition from the contact line to the flat gas–solid interface, circumventing the singularity
arising from the shear stress (Wang et al. 2021), due to the contradiction between the
non-zero displacement on the contact line and the no-slip boundary condition on the
liquid–solid interface on the same point. This approach has been widely implemented
for the modelling of not only perfectly wetting fluids (Bonn et al. 2009), but also partially
wetting fluids (Schwartz 1998; Schwartz & Eley 1998; Gomba & Homsy 2010). A similar
approach has been also used by Charitatos & Kumar (2021) to examine droplet evaporation
on partially wetted soft viscoelastic substrates.

To account for the droplet evaporation, two approximations have been mostly used
(Wilson & D’Ambrosio 2023). In the so-called one-sided model, the attention is solely
drawn to the liquid phase, since vapour viscosity, density and thermal conductivity are
considered negligible. In this approach, evaporation is limited by the rate on which the
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molecules of the solvent are headed from the liquid towards the gas phase (Burelbach,
Bankoff & Davis 1988). On that principle, the work of Moosman & Homsy (1980), Ajaev
& Homsy (2001) and later Ajaev (2005) considered an adsorbed thin film ahead of the
evaporating liquid, with non-zero film thickness, which is in thermodynamic equilibrium
with both the solid and the gas phases. The work of Ajaev has been the grounding principle
for many researchers studying, qualitatively, droplet spreading and evaporation of more
complex systems, such as droplets with nanoparticles (Matar, Craster & Sefiane 2007),
the deposition of particles while in the presence of surfactants (Karapetsas, Sahu & Matar
2016), as well as the evaporation of droplets which consist of ethanol–water or other binary
mixtures (Williams et al. 2021), or the vapour adsorption of hygroscopic aqueous solution
droplets (Wang et al. 2021). Concerning droplet evaporation on compliant substrates, the
only theoretical work so far is the work of Charitatos & Kumar (2021), where a one-sided
model is developed to study the evaporation of a single droplet.

However, when the evaporation is diffusion-limited and, hence, the vapour phase
cannot be considered irrelevant, quantitative results can only be achieved by employing
a two-sided approximation (Sultan, Boudaoud & Amar 2005; Schofield et al. 2020;
Wray et al. 2020). Typically, one-sided models consider that the evaporation flux is only
a function of pressure and temperature differences in the liquid–gas interface and the
transport equations in the liquid phase are the only prerequisite for the system modelling.
On the contrary, the diffusion-limited model includes the simultaneous solution of a
diffusion equation concerning the vapour gas phase concentration. The second approach
entails a higher computational cost but provides a more accurate description of phase
change phenomena (Deegan et al. 1997; Hu & Larson 2005; Masoud & Felske 2009;
Cazabat & Guéna 2010; Mikishev & Nepomnyashchy 2013; Larson 2014). A common
assumption to reduce the computational cost, is to consider that the droplet retains a
spherical-cap shape. This assumption, though, is not always safe, since the droplet shape
might be significantly distorted by forces, such as gravitational forces (e.g. evaporation on
inclined substrates), the effect of Marangoni or elastic stresses, etc. Hartmann et al. (2023)
recently developed a long-wave model of a sessile shallow droplet of evaporating partially
wetting fluid on a rigid substrate, which, similarly to the earlier work of Sultan et al.
(2005), captured the transition between the diffusion-limited and the one-sided model.

Several authors have also investigated the effect of Marangoni stresses on droplet
spreading and evaporation. Marangoni flows can be induced by thermal gradients, a
variation in the concentration of surfactants, or by the presence of binary mixtures (Dunn
et al. 2009a; Wang et al. 2021; Williams et al. 2021). The coffee-ring effect may be
suppressed by the action of Marangoni stresses (Karapetsas et al. 2016; Seo et al. 2017),
since they counter the outward liquid flow facilitated by contact-line pinning. Additionally,
the coalescence of merging droplets with different surface tensions (such as water and
ethanol) has been shown to be strongly delayed (Karpitschka & Riegler 2010; Chen et al.
2021). Concerning evaporating droplets, Talbot et al. (2012), Schofield et al. (2018) and
Dunn et al. (2009b) showed that the thermal effects can significantly extend the droplet
lifetime.

There have been different approaches in the literature to describe soft substrate wetting,
ranging from the development of long-wave models (Kumar & Matar 2004; Matar,
Gkanis & Kumar 2005; Gielok et al. 2017; Gomez & Velay-Lizancos 2020) to full-scale
computational studies (Bueno et al. 2017, 2018). Kumar & Matar (2004) and Matar et al.
(2005) first developed a long-wave approach to study the nonlinear evolution of thin liquid
films dewetting near soft elastomeric layers. Charitatos & Kumar (2020) followed Matar’s
work for droplet spreading on soft solid substrates, while Charitatos & Kumar (2021),
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extended their own work developing a one-sided model to examine droplet evaporation on
viscoelastic substrates.

Building on the latter model, the present paper presents a detailed and comprehensive
theoretical model for the investigation of the dynamics of a system of two evaporating
droplets residing on a compliant solid substrate. The droplets may interact through
the developed elastic stresses in the viscoelastic substrate which is modelled using
the Kelvin–Voigt model. When the droplets are exposed to the atmosphere, a further
question is raised, concerning the effect of the local variations in vapour concentration
on the evaporation rate of the droplets. To this end, we develop a two-sided evaporation
model following a similar approach with earlier studies for rigid substrates (Sultan
et al. 2005; Doumenc & Guerrier 2011). Thus, apart from the viscoelastic substrate, our
model unravels the potential of communication of the droplets through the atmosphere,
while also taking fully into consideration the effects of evaporative cooling and induced
thermocapillary phenomena. To remove the stress singularity that arises at the moving
contact line, we assume the presence of a sufficiently thin precursor film. The precursor
film is stabilised and evaporation therein is suppressed through the inclusion of a disjoining
pressure.

The rest of the paper is organised as follows. The problem is formulated in § 2 and the
equations governing the flow dynamics are discussed. The scaling and resulting evolution
equations are presented in §§ 3 and 4, respectively. Results are presented and discussed in
§ 5, followed by concluding remarks in § 6.

2. Problem statement and model formulation

2.1. Description of the problem
We consider the behaviour of a single droplet or a system of two two-dimensional sessile
evaporating droplets, with initial cross-sectional area V̂ , placed on an incompressible
linear viscoelastic solid substrate, which is also referred to as soft substrate. At t̂ = 0,
the droplet is resting on the soft substrate and has an initial footprint half-width l̂0 and
an initial height ĥ0 (figure 1a). The liquid–solid interface is originally located at ẑ = 0.
The soft substrate is originally undistorted and attached to a rigid substrate at ẑ = −Ĥ;
the rigid substrate is highly conductive with constant temperature T̂b. The soft substrate is
characterised by density ρ̂s, viscosity η̂s, thermal conductivity λ̂w, shear modulus Ê and
constant liquid–solid interfacial tension γ̂ , which is independent of strain; the presence
of an immiscible liquid solvent in the soft substrate is assumed. The droplet is assumed
to have constant density ρ̂l, viscosity η̂l, thermal conductivity λ̂, specific heat capacity ĉp

and saturation temperature T̂sat. The liquid–gas interfacial tension, σ̂ , is assumed to be a
linear function of temperature:

σ̂ = σ̂0 − ∂σ̂

∂T̂
(T̂s − T̂ref ), (2.1)

where σ̂0 is the surface tension at the reference temperature T̂ref , and T̂s is the local
temperature at the liquid–gas interface. The reference temperature was considered to be
equal to the bulk temperature of the gas T̂b.

At t̂ > 0, the droplet, being in an unsaturated environment, evaporates causing
the deformation of the soft solid substrate. The liquid–solid interface is located at

ẑ = ξ̂(x̂, t̂), with an outward normal unit vector of n̂s = (−∂ξ̂/∂ x̂, 1)/
√

1 + (∂ξ̂/∂ x̂)2
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t̂  = 0

t̂  > 0

Gas

Liquid

(a)

(b)

(c)

Liquid

�x̂cl

�x̂cm
x̂ = x̂cm,l

x̂ = x̂cm,g

x̂ = x̂cm,r

Solid

Solid

ẑ = d̂g

θ

ξ̂max

β̂

ẑ = d̂g

ẑ = 0

ẑ
n̂s n̂s

n̂l n̂l

x̂

ẑ = –Ĥ

ρ̂v(x̂, t̂ )

ρ̂s, η̂s, Ê, γ̂

ρ̂l, η̂l, σ̂
Liquid
ρ̂l, η̂l, σ̂ĥ(x̂, t̂ ) ĥ(x̂, t̂ )

ẑ = ζ̂(x̂, t̂ )

T̂w = T̂bẑ = ξ̂(x̂, t̂ )

T̂b

Gas
ρ̂v(x̂, t̂ )

T̂b

ĥ0 l̂0

Figure 1. Schematic diagram of model geometry. (a) Initial configuration of a droplet with initial half-width
l̂0 and initial height ĥ0 resting on an undeformed compliant substrate at ẑ = 0, which is attached to a rigid
substrate at ẑ = −Ĥ. (b) The soft solid deforms while the system of two droplets spreads and evaporates.
(c) Magnified view of the contact line, where β̂ is the precursor film thickness, θ̂ is the apparent contact angle
and ξ̂max denotes the maximum height of the wetting ridge. The local thickness of each droplet is given by
ĥ(x̂, t̂) = ζ̂ (x̂, t̂)− ξ̂(x̂, t̂).

while the liquid–air interface is located at ẑ = ζ̂ (x̂, t̂), with an outward normal

unit vector of n̂l = (−∂ζ̂ /∂ x̂, 1)/
√

1 + (∂ζ̂ /∂ x̂)2. The tangential unit vectors are t̂s =
(1, ∂ξ̂/∂ x̂)/

√
1 + (∂ξ̂/∂ x̂)2 and t̂l = (1, ∂ζ̂ /∂ x̂)/

√
1 + (∂ζ̂ /∂ x̂)2 for the liquid–solid and

the liquid–air interface, respectively.
We assume that the droplet is released into a thin precursor film; evaporation in the film

is stabilised by the disjoining pressure which accounts for intermolecular van der Waals
interactions. The inclusion of the precursor film removes the stress singularity that can
arise at the moving contact line (see figure 1c). This approach also allows us to easily
account for the evaporation of multiple droplets as well as their interactions; in figure 1(b)
we depict a system of two evaporating droplets, of the same initial radius and height.
Ahead of the contact line the dimensional precursor film thickness is denoted with β̂ (see
figure 1c) and the apparent contact angle is θ̂ . Concerning the wetting ridge, its maximum
height is denoted as ξ̂max. Moreover, the length of each droplet, that is the distance between
the two contact lines, is denoted as �x̂cl, while the length of the computational domain is
denoted as L̂x (i.e. 0 < x̂ < L̂x). In this domain, the global centre of mass of the system
is located at x̂ = x̂cm,g and the centre of mass of each droplet is located at x̂ = x̂cm,l and
x̂ = x̂cm,r, respectively. Consequently, the distance between the two centres of mass is
denoted as �x̂cm = x̂cm,r − x̂cm,l. The presented model geometry in figure 1 constitutes
the reference layout for the rest of this paper.
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Property Notation Value

Density of the liquid phase (kg m−3) ρ̂l 999
Viscosity of the liquid phase (mPa s) η̂l 1.001

Thermal conductivity of the liquid phase (W m−1 K−1) λ̂ 0.603

Thermal conductivity of the solid phase (W m−1 K−1) λ̂w 0.15
Surface tension of the liquid–gas interface (mN m−1) σ̂0 72.8
Surface tension of the liquid–solid interface (mN m−1) γ̂ 42.5

Latent heat of evaporation (KJ kg−1) L̂v 2454

Diffusion coefficient of the vapour in the gas phase (m2 s−1) D̂v 2.42 × 10−5

Saturation pressure of the liquid phase (Pa) P̂sat 2313.35
Vapour concentration far from the droplet (kg m−3) ρ̂vref 17.099 × 10−3

Temperature derivative of surface tension (N m−1 K) ∂σ̂

∂T̂
2 × 10−4

Initial droplet radius (m) R̂0 0.001

Universal gas constant (J mole−1 K−1) R̂ 8.314

Molecular weight of water (kg mol−1) M̂ 1.8 × 10−2

Accommodation coefficient α 1

Table 1. Properties of water and PDMS at 20 ◦C and 1 atm.

In the present work, the droplets are assumed to be so thin that the droplet aspect ratio
ε = ĥ0/R̂0 is considered to be much smaller than unity; R̂0 is a characteristic length
scale, defined as R̂0 = 2l̂0/3. Under this assumption, we will employ the lubrication
approximation to derive a reduced set of governing evolution equations. Furthermore,
gravitational forces are neglected, since the solid and liquid Bond numbers Bos =
ρ̂sĝR̂2

0/σ̂ and Bol = ρ̂lĝR̂2
0/σ̂ are assumed to be less than unity; this condition typically

holds for small droplets. A two-dimensional Cartesian coordinate system (x̂, ẑ) is used to
model the velocity field, which is described by a function of v̂ = (v̂x, v̂z), whereas the solid
displacement is given by û = (ûx, ûz). Our model can describe a typical system of water
droplets drying on polydimethylsiloxane (PDMS) substrates and the physical properties of
such a system are given in table 1.

2.2. Liquid phase
The mass, momentum and energy conservation equations for the liquid are given by

∇̂ · v̂ = 0, (2.2)

ρ̂l

(
∂ v̂

∂ t̂
+ v̂ · ∇̂v̂

)
= −∇̂p̂l + η̂l∇̂2v̂, (2.3)

∂T̂
∂ t̂

+ v̂ · ∇̂T̂ − α̂l∇̂2T̂ = 0, (2.4)

where p̂l is the liquid pressure, ∇̂ = (∂x̂, ∂ŷ) is the gradient operator, T̂ is the temperature
and α̂l = λ̂/(ρ̂lĉp) is the thermal diffusivity of the liquid. Along the free interface
ẑ = ζ̂ (x̂, t̂), the liquid velocity v̂ = (v̂x, v̂z) differs from the velocity of the interface
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v̂s = (v̂xs, v̂zs). If the evaporative flux is denoted by Ĵ, then

Ĵ = ρ̂l(v̂ − v̂s) · n̂l . (2.5)

Furthermore, along the free interface, the local mass, energy and force balances are given
by

Ĵ = ρ̂l(v̂ − v̂s) · n̂l = ρ̂g(v̂g − v̂s) · n̂l, (2.6)

ĴL̂v + λ̂∇̂T̂ · n̂l − λ̂g∇̂T̂g · n̂l = 0, (2.7)

Ĵ(v̂ − v̂g)− n̂l · (−p̂lI + η̂l(∇̂v̂ + (∇̂v̂)T)− p̂gn̂l + Π̂ n̂l + 2κ̂lσ̂ n̂l + ∇̂sσ̂ = 0, (2.8)

where ρ̂g, λ̂g, v̂g and T̂g denote the density, the thermal conductivity, the velocity and the
temperature of the gas phase, respectively. Here L̂v is the specific latent internal heat of
vaporisation, I is the identity tensor, κ̂l is the mean curvature of the free interface, while
∇̂s is the surface gradient operator. In the above equations, κ̂l = ∇̂s · n̂l and ∇̂s = (I −
n̂l n̂l) · ∇̂. Finally, Π̂ stands for the disjoining pressure, which, taking into consideration
the van der Waals interaction, is equal to

Π̂ = Â1

[(
Â2

ĥ

)n

−
(

Â2

ĥ

)c]
, (2.9)

where Â1 = ÂHam/Â3
2, is a constant that describes the intermolecular interactions between

the liquid–gas and the liquid–solid interfaces, ÂHam the Hamaker constant, Â2 is a constant
of the same order of magnitude as the precursor film thickness β̂. ĥ denotes the droplet
thickness and n > c > 1. Moreover, the kinematic boundary condition along the moving
interface ẑ = ζ̂ (x̂, t̂), is described as

∂ζ̂

∂ t̂
+ v̂xs

∂ζ̂

∂ x̂
= v̂zs. (2.10)

2.3. Gas phase
The gas phase is assumed to comprise air and vapour, but it is not saturated by vapour.
Typically, we may consider that Λg = λ̂/λ̂g � 1, and under this assumption the bulk
temperature of the gas can be assumed to be constant and equal to T̂b. Moreover, we
assume that the viscosity of the gas, η̂g, is much smaller than the viscosity of the liquid
phase, i.e. η̂g/η̂l � 1 and therefore the gas can be considered as inviscid and passive with
respect to the fluid.

The droplet evaporation is approached using the generalised diffusion-limited model
developed by Sultan et al. (2005), in which evaporation is considered limited by the
solvent vapour diffusion in the air; this model is able to capture the transition between the
diffusion-limited and the one-sided model. The vapour concentration ρ̂v in the gas phase
is described by the Laplace’s equation, due to the fact that the gas phase is considered
to be at rest and the characteristic evaporation time is much larger than the respective
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Dynamics of interacting drying droplets on soft substrates

diffusion time. As a result, we get
∇̂2ρ̂v = 0. (2.11)

The vapour mass flux Ĵ is assumed to be limited by the rate of diffusion and thus

Ĵ = −D̂v(n̂l · ∇̂ρ̂v)|
ζ̂
, (2.12)

where D̂v the diffusion vapour coefficient. Considering also that the vapour mass flux Ĵ is
proportional to the departure from equilibrium at the liquid–gas interface (Schrage 1953;
Plesset & Prosperetti 1976; Moosman & Homsy 1980), the following linear constitutive
equation, most commonly known as the Hertz–Knudsen equation, for Ĵ can be used:

Ĵ = α

(
R̂T̂s

2πM̂

)1/2

(ρ̂ve − ρ̂v|
ζ̂
), (2.13)

where α is the accommodation coefficient, usually considered equal to unity near
equilibrium. Here R̂ denotes the universal gas constant, T̂s denotes the temperature of
the liquid–gas interface, ρ̂v is the local vapour concentration in the gas phase and ρ̂ve is
the equilibrium vapour concentration.

In order to get a boundary condition for the vapour concentration ρ̂v at ẑ = ζ̂ , we can
combine (2.12) and (2.13), which leads to

− D̂v(n̂l · ∇̂ρ̂v)|
ζ̂

= α

(
R̂T̂s

2πM̂

)1/2

(ρ̂ve − ρ̂v|
ζ̂
). (2.14)

Finally, following a similar procedure as described by (Moosman & Homsy 1980), the
following equation for the equilibrium vapour concentration can be derived:

ρ̂ve = ρ̂vref +
M̂ρ̂vref

ρ̂lR̂T̂ref
(−2Ĥlσ̂ − Π̂)+

L̂vM̂ρ̂vref

R̂T̂2
ref

(T̂s − T̂ref ), (2.15)

where ρ̂vref is the equilibrium vapour concentration at the reference temperature.
At the far-field boundary, the most natural choice would be to impose a constant vapour

concentration at infinity. However, since it is known that for the diffusion-limited model
there is no analytical solution in two-dimensional half-space (Schofield et al. 2020), we
follow a similar approach to Schofield et al. (2020) considering a finite domain of the
gas phase and the far-field condition is replaced by a similar Dirichlet condition at a
distant, but finite, boundary. Thus, far from the droplet (ẑ = d̂g), the vapour concentration
is maintained at a constant initial vapour concentration ρ̂vi:

ρ̂v|ẑ=d̂g
= ρ̂vi. (2.16)

2.4. Soft solid substrate
The mass, momentum and energy conservation equations for the soft solid substrate are
given by

∇̂ · û = 0, (2.17)

ρ̂s
∂2û
∂ t̂2

= ∇̂ · T̂ s, (2.18)
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A. Malachtari and G. Karapetsas

∂T̂w

∂ t̂
− α̂w∇̂2T̂w = 0, (2.19)

where p̂s is the pressure in the solid, α̂w is the thermal diffusivity of the solid, T̂w is the
temperature of the solid surface and T̂ s is the solid stress tensor. Following the work of
Kumar & Matar (2004), Matar et al. (2005) and Charitatos & Kumar (2020, 2021), who
modelled the soft elastomer layer as a linear viscoelastic material, we consider that the
viscoelastic solid is described by the Kelvin–Voigt model and therefore the solid stress
tensor is defined as

T̂ s = −p̂sI + Ê[∇̂û + (∇̂û)T] + η̂s(∂/∂ t̂)[∇̂û + (∇̂û)T]. (2.20)

Finally, (2.18) gives

ρ̂s
∂2û
∂ t̂2

= −∇̂p̂s + Ê∇̂2û + η̂s∇̂2 ∂û
∂ t̂
. (2.21)

At ẑ = −Ĥ, the application of the no-slip and no-displacement boundary condition yields
v̂x = v̂z = 0 and ûx = ûz = 0, while the temperature at the bottom of the solid substrate is
considered to be equal to T̂b, i.e. T̂w|ẑ=−Ĥ = T̂b.

Along the liquid–solid interface, at ẑ = ξ̂(x̂, t̂), we consider thermal equilibrium T̂w|
ξ̂

=
T̂|
ξ̂

and continuity of thermal flux,

λ̂w(n̂l · ∇̂T̂w)|ξ̂ = λ̂(n̂l · ∇̂T̂)|
ξ̂
. (2.22)

In addition, the combination of the no-slip and the no-penetration boundary conditions
at ẑ = ξ̂(x̂, t̂), that is the liquid–solid interface, form the continuity-of-velocity boundary
condition,

∂û
∂ t̂

∣∣∣∣
ẑ=0

= v̂|
ξ̂
. (2.23)

The normal and tangential force balances on the liquid–solid interface lead to

n̂s · T̂ l · n̂s − n̂s · T̂ s · n̂s + 2γ̂ κ̂s = 0, (2.24)

n̂s · T̂ l · t̂s − n̂s · T̂ s · t̂s = 0, (2.25)

where κ̂s = ∇̂s · n̂s and T̂ l stands for the liquid stress tensor, defined as T̂ l = −p̂lI +
η̂l[∇̂v̂ + (∇̂v̂)T].

3. Scaling

In order to render the aforementioned equations and boundary conditions non-dimensional,
we use the scalings

(x̂, ẑ, ξ̂, ζ̂ ) = R̂0(x, εz, εξ, εζ ), t̂ = R̂0

Û
t;

σ̂ = σ̂0σ, (p̂l, p̂s, Π̂) = η̂lÛ

ε2R̂0
( pl, ps,Π);

(ûx, ûz) = R̂0(ux, εuz), (v̂x, v̂z) = Û(vx, εvz);
T̂ = T̂ref + T�T̂, Ĵ = λ̂�T̂

L̂v ĥ0
J, ρ̂v = ρ̂vrefρ

v;

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)
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Dynamics of interacting drying droplets on soft substrates

where �T̂ = ε2T̂ref . As T̂ref we consider the constant bulk temperature of the gas phase,
T̂b. As characteristic velocity we use Û = ε3σ̂0/η̂l. Note that henceforth all the variables
in the following equations are dimensionless.

3.1. Liquid phase
By substituting these scalings and taking into consideration that ε � 1, the leading-order
equations for the liquid are

∂vx

∂x
+ ∂vz

∂z
= 0, (3.2)

−∂pl

∂x
+ ∂2vx

∂z2 = 0, (3.3)

∂pl

∂z
= 0, (3.4)

∂2T
∂z2 = 0. (3.5)

Along the free interface, i.e. z = ζ(x, t), we get for the mass, energy and force balances in
the normal and tangential coordinate,

EJ = −∂ζ
∂x
(vx − vxs)+ (vz − vzs), (3.6)

∂T
∂z

∣∣∣∣
ζ

= −J, (3.7)

pl|ζ = pg −Π − C−1
l σ

∂2ζ

∂x2 , (3.8)

∂vx

∂z

∣∣∣∣
ζ

= (ε2Cl)
−1 ∂σ

∂x
, (3.9)

where σ = 1 − MaTs, Cl = η̂lÛ/ε3σ̂0, Ma = (∂σ̂ /∂T̂)(�T̂/σ̂0) and E = λ̂�T̂/L̂v ĥ0ρ̂lÛε
the evaporation number, which represents the ratio between the capillary time tc = R̂0/Û
and the evaporation time te = ĥ2

0ρ̂lL̂v/λ̂�T̂ , as it is derived from the scaling. In (3.8) the
gas pressure has been set equal to zero (datum pressure) without loss of generality.

The kinematic equation, i.e. (2.10) in combination with (3.6) gives the evolution
equation for the liquid–gas interface z = ζ(x, t):

∂ζ

∂t
+ vx|ζ ∂ζ

∂x
− vz|ζ + EJ = 0. (3.10)

Finally, the scaled disjoining pressure is given by the following expression:

Π = A
[(

B
h

)n

−
(

B
h

)c]
, (3.11)

where B = Â2/ĥ0 and A = (ÂHam/Â3
2)(εĥ0/η̂lÛ) the dimensionless Hamaker constant.
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A. Malachtari and G. Karapetsas

3.2. Soft solid substrate
Using the same scaling, the leading equations for the soft solid become

∂ux

∂x
+ ∂uz

∂z
= 0, (3.12)

−∂ps

∂x
+ G

∂2ux

∂z2 + m
∂

∂t

(
∂2ux

∂z2

)
= 0, (3.13)

∂ps

∂z
= 0, (3.14)

∂2Tw

∂z2 = 0, (3.15)

where m = η̂s/η̂l. The ratio of elastic forces to interfacial tension forces is defined
as G = ε−3R̂0/l̂ec, where l̂ec = σ̂0/Ê denotes the elastocapillary length which sets the
characteristic size of the deformation of the elastic substrate.

As far as the boundary conditions are concerned, at z = ξ(x, t) we get Tw|ξ = T|ξ ,
whereas at z = −H we get vx = vz = 0, ux = uz = 0 and we set Tw|−H = 0. The
dimensionless continuity of thermal flux along z = ξ(x, t) is given by

∂Tw

∂z

∣∣∣∣
ξ

= 1
Λw

∂T
∂z

∣∣∣∣
ξ

, (3.16)

where Λw = λ̂w/λ̂ denotes the ratio of thermal conductivity between the solid and the
liquid.

At the liquid–solid interface, i.e. z = ξ(x, t), both the continuity-of-velocity and the
normal and tangential force balances render to the following form:

∂ux

∂t

∣∣∣∣
0

= vx|ξ , (3.17)

∂uz

∂t

∣∣∣∣
0

= vz|ξ , (3.18)

ps = pcap,l + pcap,s, (3.19)

∂vx

∂z
− G

∂ux

∂z
− m

∂

∂t

(
∂ux

∂z

)
= 0, (3.20)

where pcap,l = −Cl
−1σ∂2ζ/∂x2 and pcap,s = −Cs

−1∂2ξ/∂x2 the capillary-like pressures
in the liquid and the solid, respectively, with Cs = η̂lÛ/ε3γ̂ denoting the capillary number
at the liquid–solid interface.

3.3. Gas phase
Since the gas phase in the atmosphere may extend to large distances above the liquid phase,
the scaling in the z-direction shown in (3.1) is not appropriate and therefore we employ
the same scaling with the x-direction (i.e. ẑ = R̂0z′ and ζ̂ = R̂0ζ

′). The dimensionless
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Dynamics of interacting drying droplets on soft substrates

conservation equation for the vapour concentration is then given by

∂2ρv

∂x2 + ∂2ρv

∂z′2 = 0. (3.21)

The above equation is subjected to the following boundary conditions far from the droplet
(z′ = dg) and along the liquid–gas interface (z′ = ζ ′(x, t)):

ρv|dg = H, (3.22)

PevJ = −(nl · ∇ρv)|ζ ′, (3.23)

where H = ρ̂vi/ρ̂vref denotes the relative humidity and Pev = λ̂�T̂R̂0/ĥ0D̂vρ̂
v
ref L̂v .

Solving (3.21)–(3.23) we evaluate the vapour concentration in the gas phase, therefore
making it possible to compute the vapour mass flux using the following dimensionless
constitutive equation:

KJ = ρve − ρv|ζ ′, (3.24)

where K = (λ̂�T̂/αρ̂vref L̂v ĥ0)

√
2πM̂/R̂Ts. In the above equation the equilibrium vapour

concentration is given by
ρve = 1 + δpl + ψTs, (3.25)

where δ = M̂η̂lÛ/ρ̂lR̂T̂ref ε
2R̂0 and ψ = L̂vM̂�T̂/R̂T̂2

ref .
In order to evaluate the precursor film thickness β, we can combine (3.24) with (3.25).

Taking into account that far from the droplets the film is flat and at equilibrium with the
environment, the following equation is derived:

δA
[(

B
β

)n

−
(

B
β

)c]
= 1 − H. (3.26)

An estimation of the order-of-magnitude of certain dimensionless parameters is depicted
in table 2.

4. Evolution equations

In order to derive the evolution equations, we make an approximation that the streamwise
displacement follows a parabolic profile in z, since this is the simplest solution that satisfies
(3.13) (Matar et al. 2005; Ghosh, Bandyopadhyay & Sharma 2016; Charitatos & Kumar
2020, 2021) for the soft solid,

ux = b1(x, t)z2 + b2(x, t)z + b3(x, t), (4.1)

in which b1, b2 and b3 are functions of both space and time that will be determined later;
a detailed derivation is given in Appendix A.

Using the boundary condition at z = −H, i.e. ux = 0, we get for b3(x, t) the following:

b3 = b2H − b1H2. (4.2)

Regarding the coefficient b1(x, t), introducing (4.1) into the x-component of the solid
momentum, i.e. (3.13), yields the following expression:

∂b1

∂t
= 1

m

(
1
2
∂ps

∂x
− Gb1

)
. (4.3)

From (3.19), using (4.1) and (3.13), as well as the expression of the x-component of the
liquid velocity (i.e. (A9) derived in Appendix A), we conclude to an expression for the
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Parameter Definition Order-of-magnitude

A ÂHam
Â3

2

εĥ0
η̂lÛ

200–500

B Â2
ĥ0

10−3–10−4

K λ̂�T̂
αρ̂vref L̂v ĥ0

√
2πM̂
R̂gTs

10−5–10−1

Pev
λ̂�T̂R̂0

ĥ0D̂v ρ̂
v
ref L̂v

10−2–1

ψ L̂vM̂�T̂
R̂gT̂2

ref
10−1–1

δ
M̂η̂lÛ

ρ̂lR̂gT̂ref ε2R̂0
5 × 10−4–10−3

E λ̂�T̂
L̂v ĥ0ρ̂lÛε

10−4–10−3

Λw
λ̂w
λ̂

1

Ma
∂σ̂

∂T̂
�T̂
σ̂0

10−4–5 × 10−3

Cl
−1 ε3σ̂0

η̂lÛ
1

Cs
−1 ε3 γ̂

η̂lÛ
0.5

G ÊR̂0
σ̂0ε3 1–105

m η̂s
η̂l

100

H ρ̂vi

ρ̂vref
0–1

Table 2. Order-of-magnitude estimate for the dimensionless parameters assuming ε = 0.1, �T̂ = 3 K.

coefficient b2(x, t),

∂b2

∂t
= 1

m

(
∂pl

∂x
(ξ − ζ )− Gb2 + (ε2Cl)

−1 ∂σ

∂x

)
. (4.4)

In order to derive the evolution equation for ζ(x, t), we use the kinematic equation for the
liquid, i.e. (3.10). Using the expressions of vx and vz (i.e. (A9) and (A11), respectively,
derived in Appendix A), and setting z = ζ , we get

∂ζ

∂t
= ∂

∂x

[
1
3
∂pl

∂x
(ζ − ξ)3 − 1

2
(ε2Cl)

−1 ∂σ

∂x
(ζ − ξ)2 − Hζ

(
∂b2

∂t
− H

∂b1

∂t

)]

+ ξ
∂

∂x

(
H
∂b2

∂t
− H2 ∂b1

∂t

)
+ 2H3

3
∂2b1

∂x∂t
− H2

2
∂2b2

∂x∂t
− EJ. (4.5)

Using the expressions of the material derivatives of ξ and uz(x, 0, t), (i.e. (A12) and (A13),
respectively, derived in Appendix A), leads to an evolution equation for ξ(x, t):

∂ξ

∂t
+ ∂ξ

∂x

(
H
∂b2

∂t
− H2 ∂b1

∂t

)
= ∂

∂t

(
2H3

3
∂b1

∂x
− H2

2
∂b2

∂x

)
. (4.6)
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Dynamics of interacting drying droplets on soft substrates

Furthermore, we can easily find an evolution equation for the droplet thickness h(x, t) =
ζ(x, t)− ξ(x, t) by subtracting (4.6) from (4.5), as follows:

∂h
∂t

+ ∂q
∂x

= −EJ, (4.7)

where the liquid flow rate, q, is given by

q = −1
3
∂pl

∂x
(ζ − ξ)3 + 1

2
(ε2Cl)

−1 ∂σ

∂x
(ζ − ξ)2 + H(ζ − ξ)

(
∂b2

∂t
− H

∂b1

∂t

)
. (4.8)

By integrating the energy equation, i.e. (3.15), with respect to z, and using the continuity
of thermal flux at z = ξ(x, t), i.e. (3.16) and the boundary condition, Tw|−H = 0, the
following evolution equation for the temperature in the soft solid substrate can be derived:

Tw = − J
Λw

(z + H). (4.9)

Similarly, by integrating the energy equation, (3.5), with respect to z, and using the energy
balance, (3.7), and the fact that T|ξ = Tw|ξ , the following evolution equation for the
temperature in the liquid phase can be derived:

T = −J(z − ξ)− J
Λw

(ξ + H). (4.10)

In summary, we solve numerically the evolution equations (4.3), (4.4), (4.6), (4.7) and
(3.24) on the domain 0 < x < Lx and (3.21) on the two-dimensional domain 0 < x < Lx,
0 < z < Lz. The latter equation is subjected to boundary conditions (3.22) and (3.23) in
the z-direction and to the following condition in the x-direction:

∂ρv

∂x

∣∣∣∣
x=0

= ∂ρv

∂x

∣∣∣∣
x=Lx

= 0. (4.11)

The numerical solution of the evolution equations (4.3), (4.4), (4.6) and (4.7) is subjected
to the following conditions at x = 0 and x = Lx:

∂ζ

∂x
= ∂ξ

∂x
= ∂3ζ

∂x3 = ∂3ξ

∂x3 = ∂b1

∂x
= ∂b2

∂x
= 0,

ζ − ξ = β,

⎫⎬
⎭ (4.12)

where β = β̂/ĥ0 is the dimensionless precursor film height. These conditions were
decided upon, after the assumptions that both ζ and ξ are horizontal at x = 0 and x = L
and that the dimensionless precursor film thickness is equal to the distance between the two
interfaces at these positions. Furthermore, the liquid flow rate and the solid displacement
in the z-direction were considered equal to zero at all ends.

Concerning the initial conditions, we assumed a flat liquid–solid interface at t = 0:

b1(x, 0) = b2(x, 0) = ξ(x, 0) = J(x, 0) = 0. (4.13)

As far as the initial shape of the droplet thickness is concerned, we use a fourth-order
polynomial which satisfies ∂h/∂x = ∂3h/∂x3 = 0 at the droplet centre (x = xcm,l or xcm,r)
and ∂h/∂x = 0 as well as h = β at distance l0 from the droplet centre, respectively. The
length and height of the computational domain was taken equal to Lx = L̂x/R̂0 = 16 and
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Lz = L̂z/R̂0 = 5, respectively. The dimensionless initial droplet footprint half-width, l0,
was defined equal to l0 = 1.5 and the dimensionless initial droplet cross-sectional area was
considered to be equal to V = 2/3. Moreover, the initial centre of mass for each droplet
was taken at x = xcm,l = 4 and at x = xcm,r = 12, hence the initial distance between the
two centres of mass was given by �xcm = xcm,r − xcm,l = 8, while the centre of mass of
the system was initially located at x = xcm,g = 8.

The above set of equations were solved using the finite element method, and it was
implemented in COMSOL Multiphysics commercial software. We applied a fully implicit
finite difference scheme to solve the system of the evolution equations and we selected
the PARDISO iterative solver for the intermediate time-stepping. Typically we use 10 000
elements for the discretisation of the system geometry and the moving mesh of the
surrounding atmosphere was appropriately refined using free triangular cells; numerical
checks showed that increasing the number of elements further led to negligible changes.
The simulations stop when the system mass has decreased by 80 %.

5. Results and discussion

Droplet evaporation on compliant substrates is a parametrically rich problem. We begin
our study by examining the case of the evaporation of a single droplet on a soft substrate in
§ 5.1, while in § 5.2 we proceed with simulations for a system of two interacting droplets.
Numerical solutions were obtained over a wide range of parameter values. The ‘base’
case, however, has broadly typical values of ε = 0.1, l0 = 1.5, H = 0.1, A = 500, B =
0.005, n = 3, c = 2, E = 10−4, H = 0.5, K = 0.2, ψ = 0.1, Pev = 0.1, δ = 10−3, m =
100, C−1

l = 1, C−1
s = 0.5, unless noted otherwise in the text. In the figures that follow, we

define a scaled time t′ = t/tev where tev is defined as the time that the system mass has
decreased by 80 %.

5.1. Evaporation of a single droplet

5.1.1. Effect of thermocapillarity
To set the stage, we begin with the simplest configuration, i.e. the evaporation of a single
droplet on a soft substrate. Figure 2 depicts the typical time evolution of the liquid–gas and
the liquid–solid interfaces for a single sessile evaporating droplet, highlighting the contact
line region in the inset of the same figure. Charitatos & Kumar (2021) considered a system
similar to the present set-up, albeit ignoring the effect of thermocapillarity and employing
the one-sided model. In order to examine the effect of thermocapillary phenomena, we
present in figure 2(a) the evolution for Ma = 0 and in figure 2(b) for Ma = 0.005. In the
absence of thermocapillary stresses (figure 2a), in line with Charitatos & Kumar (2021),
we notice a gradual decrease in the droplet footprint, which is accompanied by a small
deformation of the soft substrate, due to the balance of the capillary forces along the
liquid–solid interface and in the contact line region. Consequently, a wetting ridge is
formed and as the droplet dries out, both the contact line and the wetting ridge retract
as a result of the decrease in the droplet volume.

On the other hand, in the presence of thermocapillarity (see figure 2b), the Marangoni
stresses drive liquid towards the colder region (i.e. at droplet apex, see figure 3b) causing a
faster retraction of the droplet. The faster motion of the contact line results in significantly
larger substrate deformation, since for example at t = 100 the maximum deformation of
the wetting ridge (evaluated as the z-position of the contact line, see figure 1c), is ξmax =
0.038 and ξmax = 0.068, in figures 2(a) and 2(b), respectively. Furthermore, it can be
deduced from figure 2(b) that for finite values of Ma the loss of droplet mass is retarded; tev
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Figure 2. Time evolution of the liquid–air (ζ ) and the liquid–solid (ξ ) interfaces for a single droplet for
(a) Ma = 0 (tev = 4242) and (b) Ma = 5 × 10−3 (tev = 5366), respectively, for G = 3. The inset is an
enlargement of the contact line region. The rest of the system parameters are the same with the ‘base’ case.

1.6(a) (b)
t′ = 0.02
t′ = 0.4
t′ = 0.8

t′ = 1

0

–0.2

–0.4

–0.6

–0.8

–1.0

–1.2

1.4

1.2

1.0

0.8J Ts
0.6

0.4

0.2

0

0 0.5 1.0 1.5
x

2.0 2.5 3.0 0 0.5 1.0 1.5
x

2.0 2.5 3.0

Figure 3. Time evolution of (a) the evaporation rate J and (b) the interfacial temperature Ts, for a single
droplet for Ma = 5 × 10−3 and G = 3 (tev = 5366).The rest of the system parameters are the same with the
‘base’ case.

is considerably larger in figure 2(b) as compared with figure 2(a). This is due to the fact that
the action of thermocapillary stresses leads to a considerably smaller droplet footprint with
larger distance of the droplet apex from the rigid solid (at z = −H). The increased droplet
height inhibits the supply of heat from the substrate (maintained at a constant temperature)
to the interface, which is continuously being cooled due to the effect of latent heat. This
consequently leads to lower temperature along the liquid–gas interface and in turn results
in the overall decrease of the evaporation rate; the evolution of the local evaporation flux
is presented in figure 3(a).

To illustrate the vapour concentration field in the gas phase, we present the
corresponding contour plot in figure 4, for the case of Ma = 0.005. It is noted that the
far-field boundary is taken to be very far from the droplet (i.e. at z = ε−1z′ = 50) and
as a result the droplet is difficult to see in this figure. We notice, though, that in the
neighbourhood of the droplet the vapour concentration is high and decreases moving away
from the droplet, as expected.
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Figure 4. Gas phase concentration profiles at different time instants for Ma = 5 × 10−3 and G = 3:
(a) t′ = 0; (b) t′ = 0.02; (c) t′ = 0.4; (d) t′ = 0.8. The rest of the system parameters are the same with the
‘base’ case.

5.1.2. Effect of substrate elasticity and thickness
Here, we examine the effect of elasticity of the substrate by varying G = ÊR̂0/σ̂0ε

3; this
parameter measures the ratio of elastic to liquid–gas interfacial tension forces. Here G is
proportional to the shear modulus of the soft solid and therefore smaller values correspond
to the case of softer substrates. By letting G → ∞, the case of the rigid substrate can be
recovered. In figure 5(a), we investigate the effect of substrate elasticity on the deformation
of the soft solid, by plotting the evolution of the maximum deformation of the wetting
ridge, ξmax, with time. Naturally, it can be seen that the softer substrates deform more
easily. Figures 5(b) and 5(c) depict the time evolution of the contact radius and the apparent
contact angle, respectively, of a single droplet evaporating on a rigid (G = 107) and on
soft solid substrates with G = 1, 3, 10, 100. Following the work of Charitatos & Kumar
(2021), the apparent contact angle is defined as the largest angle between the tangent of the
liquid–air interface, z = ζ(x, t) and z = 0. On the other hand, the contact radius is defined
as the intersection point between the tangent of the largest angle and z = 0.

At early times and for all examined cases, the droplet contact radius quickly decreases
(figure 5b), accompanied by an increase in the apparent contact angle (figure 5c), while in
parallel the size of the wetting ridge grows (figure 5a). The initial droplet retraction, which
is due to both droplet evaporation and the action of thermocapillary stresses, takes place
faster for softer substrates. After the initial droplet retraction, the contact line remains
apparently pinned for a significant amount of time (t ≈ 3 − 300) with a relatively constant
droplet footprint, indicating the stick-phase of the droplet spreading (see inset of figure 5d).
In fact, in the case of softer substrates (i.e. G = 1) the constant contact radius (CCR) is
maintained throughout evaporation accompanied with a continuous decrease of the contact
angle (see figure 5c); the evaporation takes place in CCR mode. In contrast, for harder
substrates (i.e. G ≥ 10) the evaporation takes place in constant contact angle (CCA) mode,
with a continuous slow decrease of the contact radius, in line with previous computational
studies referring to droplet evaporation on rigid substrates (Pham & Kumar 2017). This
CCR mode observed in softer substrates has been previously reported in experimental
studies concerning the evaporation of water droplets on compliant PDMS substrates
(Lopes & Bonaccurso 2012; Gerber et al. 2019). After depinning, the contact line
retracts continuously until the droplet fully evaporates. At the same time a non-monotonic
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Figure 5. Time evolution of (a) the point of maximum deformation of the wetting ridge ξmax, (b) the contact
radius r and (c) the apparent contact angle θ for a single droplet, varying substrate elasticity G and for Ma =
0.005. (d) Space–time plot of the droplet profiles at a soft substrate with G = 1 and for Ma = 0.005. The inset
is a magnified view of the wetting ridge profiles during droplet spreading. The rest of the system parameters
are the same with the ‘base’ case.

behaviour of the contact angle is observed in line with previous experimental studies of
Lopes & Bonaccurso (2012, 2013) and Yu et al. (2013).

In figure 6(a), we investigate the effect of substrate thickness on the deformation of the
soft solid, by plotting the maximum deformation of the wetting ridge, ξmax, with time. It
can be seen that the thicker substrates deform more easily than the thinner ones. Clearly,
this is due to the fact that with decreasing thickness of the compliant substrate, less soft
solid is available to deform, thereby increasing the resistance to the deformation of the
substrate and leading to smaller wetting ridges. Consequently, making the substrate thinner
can be seen as equivalent to making it more rigid, whereas thicker substrates behave
similarly to softer ones. This effect is also reflected in the mode of evaporation. As it
can be seen in figure 6(b), evaporation takes place in CCR mode for the thicker, hence
softer, substrate (H = 10−1), and in CCA mode for the thinner, hence harder, substrate
(H = 10−3), in line with the findings shown in figure 5.

5.2. Evaporation of a pair of droplets
Now that we have studied the basic characteristics of the flow for a single sessile
evaporating droplet, we may proceed with the examination of a system of multiple volatile
droplets. In particular, we will investigate the dynamics of a pair of droplets and focus on
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Figure 6. Time evolution of (a) the point of maximum deformation of the wetting ridge ξmax and (b) the
apparent contact angle θ for a single droplet, varying substrate thickness H and for G = 1, Ma = 0.005. The
rest of the system parameters are the same with the ‘base’ case.
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Figure 7. Time evolution of the liquid–air (ζ ) and the liquid–solid (ξ ) interfaces for two droplets drying on a
soft substrate with G = 1 and for (a) Ma = 0.001 (tev = 4667) and (b) Ma = 0.005 (tev = 5889), respectively.
The inset is an enlargement of the height range of the contact line region of the left drop at t′ = 0.4. The rest
of the system parameters are the same with the ‘base’ case.

the effects of their interaction, either through the soft substrate or their atmosphere, on the
dynamics of the drying process.

In figure 7, we depict the time evolution of a pair of droplets evaporating on a
compliant substrate with G = 1. In these simulations, we fully take into account the
effect of thermocapillarity and examine two cases with Ma = 0.001 and Ma = 0.005 in
figures 7(a) and 7(b), respectively. An interesting observation is that in both cases the
droplets appear to move away from each other as they dry out. Regarding the deformation
of the liquid–solid interface near the two contact lines, we observe that for low values of
Ma the height of the left and the right wetting ridge of each droplet is nearly symmetric (see
inset of figure 7a), whereas for higher values of Ma the droplet deforms asymmetrically
with the deformation of the soft solid in the inner region between the two droplets being
somewhat smaller than the deformation in the outside region (see inset of figure 7b).
These observations provide a clear indication of the interaction of two droplets which
may communicate either through the gas phase or through the developed stresses in the
underlying viscoelastic substrate.
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5.2.1. Effect of the gas phase and thermocapillarity
In order to shed light on the physical mechanisms behind the observed dynamics, we
will first focus on the gas phase and depict in figure 8 the vapour concentration in the
atmosphere of the two droplets. As shown in this figure, the vapour concentration is
higher between the two droplets than in their periphery. Since the evaporation flux is
limited by diffusion (see (3.23)), the higher saturation of the gas phase with vapour in the
region between the two droplets results in weaker evaporation in that region; the spatial
dependence of the evaporation flux J is plotted in figure 9(a). For all values of Pev that
we have examined, J acquires an asymmetric profile along the liquid–gas interface of each
droplet; this can be seen more clearly by plotting ∂J/∂x in the inset of the same figure for
Pev = 0.1.

Due to the effect of the latent heat, the evaporation flux affects the local interfacial
temperature, which is depicted in figure 9(b); the liquid–gas interface is cooler than the
rest of the drop and the interfacial temperature is lowest at the droplet apex. The presence
of temperature gradients affects in turn the flow field inside the droplet due to the action
of Marangoni stresses, the spatial dependence of which, is plotted in figure 9(c); the
Marangoni stress is proportional to h∂σ/∂x. Focusing first on each droplet, we notice
that the Marangoni stresses, exhibiting opposite signs in the regions left and right from
the droplet apex, act as a compressive force reducing the footprint of the droplet. The
effect of thermocapillarity on the droplet footprint is shown very clearly in figure 10(a)
where we plot the length of footprint of the left drop, �xcl (see also figure 1c), defined as
the distance between the maxima of the left and right wetting ridge. Additionally, the
asymmetric profile of the evaporation flux along the liquid–gas interface also induces
a symmetry breaking in the interfacial temperature profile; this is clearly shown in the
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Figure 9. Effect of Pev on the spatial profile of (a) the evaporation rate J, (b) the interfacial temperature Ts,
(c) the Marangoni stresses, h(∂σ/∂x), at t′ = 0.5. (d) The time evolution of the distance between the droplets’
centres of mass, �xcm = xcm,r − xcm,l for G = 1, Ma = 0.005 and the rest of the system parameters are the
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∂Ts/∂x, respectively.

inset of figure 9(b) where we plot the spatial dependence of ∂Ts/∂x for the droplet on the
left-hand side of the domain for Pev = 0.1.

As a result, the Marangoni stresses not only compress the droplet but also contribute
to their repulsion. This is demonstrated in figure 10(b) where we plot the evolution of the
distance between the centres of mass of the droplets on the left-hand and the right-hand
side of the domain,�xcm = xcm,r − xcm,l (see also figure 1c), with time for different values
of Ma. A similar effect is also shown in figure 9(d) where enhanced repulsion is found for
lower values of Pev; increase of Pev corresponds to slower vapour diffusion enhancing
the difference in the evaporation flux between the two sides of the droplets as shown in
figure 9(a). Regarding the droplet lifetime, thermocapillarity plays a dual role; on one
hand enhancing the evaporation rate in the region between the two droplets, as they move
away from each other, but at the same time reducing the overall evaporation due to the
compressive action of Marangoni stresses on the droplets. As it can be seen in figure 10(c),
where we plot the total mass of the system, the droplet lifetime increases considerably with
Ma, thus indicating that the latter effect is more significant.

5.2.2. Effect of substrate elasticity in the absence of thermocapillarity
In order to investigate the effect of the substrate elasticity, we plot in figure 11 the time
evolution of a pair of droplets evaporating on solid substrates with G = 10, 500, 105; here,
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Figure 10. Time evolution of (a) the length of footprint of the left drop, �xcl, (b) the distance between the
two centres of mass, �xcm, and (c) the system mass, for different values of Ma and for G = 1. The rest of the
system parameters are the same with the ‘base’ case.

we neglect the effect of Marangoni stresses, i.e. Ma = 0. Interestingly, we find that in the
case of soft substrates the droplets repulse as they dry out (see figure 11a), whereas in the
case of stiffer substrates the droplets are attracted to each other (see figure 11b). We note
that in the latter case the droplets approach each other but do not coalesce; this behaviour
is found in a well-defined range of G (i.e. 300 ≤ G ≤ 2 × 104 for Ma = 0 and 2 × 103 ≤
G ≤ 5 × 104 for Ma = 10−4). For very stiff substrates (see figure 11c for G = 105), the
two droplets eventually coalesce, and the drying process continues as for a single droplet.
The dynamics for these three cases is also presented in the form of space–time plots in
figure 12 (see figure 12a, figure 12c and figure 12d for G = 10, 500 and 105, respectively).

Inspecting the space–time plots presented in figure 12 and comparing with the work of
Henkel et al. (2021) for non-volatile droplets, we notice a significant difference. For all the
cases of volatile droplets that we have examined, varying the softness of the substrate, we
find that mass transfer from one drop to the other does not take place and hence there is no
droplet coarsening through the Ostwald ripening mode; the latter mode was found to be
dominant in the study of Henkel et al. (2021). For substrates with G = 105 where droplets
coalesce, the coarsening process takes place with a typical translation mode as shown in
figure 12(d). After the two contact lines of the neighbouring droplets come in contact,
there is fast droplet coalescence. This is in contrast to the case shown in figure 12(c)
(G = 500) where after the two adjacent contact lines touch each other, the droplets do
not coalesce. Furthermore, we note that in parallel to the results of Henkel et al. (2021),
the translation mode which defines exclusively the coarsening behaviour in figure 12(d)
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Figure 11. Time evolution of the liquid–air (ζ ) and the liquid–solid (ξ ) interfaces for two droplets with (a)
G = 10 (tev = 4537), (b) G = 500 (tev = 4934) and (c) G = 105 (tev = 5048), respectively, for Ma = 0. The
inset is an enlargement of the height range of the contact line region of the left drop at t′ = 0.4. (d) Time
evolution of the system mass, varying substrate elasticity G. The rest of the system parameters are the same
with the ‘base’ case.

leads to a symmetric movement of the droplets towards each other, without displacing the
system centre of mass (see also figures 11c and 13b). To check whether our model can
capture the emergence of Ostwald ripening in the case of non-volatile droplets, we further
examine in figure 14(a) the limit of negligible evaporation (E = 10−8) for a substrate with
high rigidity (G = 107); the equilibrium contact angle is taken to be approximately equal
to 44◦ (A = 120) in order to consider a system with similar wetting characteristics as in
Henkel et al. (2021). As it is clearly shown in this figure, in the limit of non-volatile
droplets the Ostwald ripening emerges at late times, as expected, with mass transferring
from one drop to the other until the smaller droplet vanishes, and all the mass is contained
in the larger remaining droplet. On the other hand, in figure 14(b) we examine the same
system with two volatile droplets (E = 10−4). As shown, evaporation takes place on much
faster time scales and coalescence eventually occurs with the translation mode.

As explained by Karpitschka et al. (2016), interaction of non-volatile droplets on the
surface of elastic solids is determined by the balance of elasticity and capillary forces and
the resulting local deformation of the soft solid in the contact line region. Depending on
the stiffness (or thickness) of the substrate, the elastic meniscus in the contact line region
between the two droplets rotates by an angle as compared with the meniscus of an isolated
drop and the direction of the rotation determines whether the drop–drop interaction is
attractive or repulsive. In the case of drying droplets, though, the shape of the wetting
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Figure 13. Time evolution of (a) the distance between the two centres of mass �xcm and (b) the centre of
mass of the system xcm,g, for Ma = 0. The rest of the system parameters are the same with the ‘base’ case.

ridge is not determined merely by elastocapillary phenomena but can also be significantly
affected by the local evaporation rate (see the relevant discussion in Charitatos & Kumar
(2021)). Given the fact that the evaporation mass flux between the two contact lines of each
droplet differs, this will also contribute to the imbalance of forces between the inner and
outer contact lines, thereby affecting the mode of droplet interaction. To examine in more
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Figure 14. Space–time plots of the droplet profiles for (a) E = 10−8 and (b) E = 10−4, for Ma = 0 and G =
107. The domain length is L = 48, A = 120 and the rest of the system parameters are the same with the ‘base’
case.

detail the complex droplet dynamics of our system, we plot in figure 13(a) the evolution
of the distance between the centre of mass of the droplets, �xcm, with time. It can be seen
that in the case of soft substrates (G ≤ 100) the droplets repulse, since �xcm continuously
increases throughout evaporation. For harder substrates (G > 100), though, the imbalance
acts in the opposite direction pushing the droplets towards each other. In the case of nearly
rigid substrates (G ≥ 106), the deformation of the viscoelastic solid is so small that this
imbalance does not play an important role and thus the distance between the two droplets
does not change significantly during evaporation.

The different modes of the drying process affect also the lifetime of the droplets. As
shown in figure 11(d), the evaporation is faster in softer substrates, due to the increased
distance between the two droplets and the fact that a smaller amount of vapour is trapped
amidst the repulsing droplets leading to enhanced evaporation fluxes. In contrast, the
greater amount of vapour trapped amidst the droplets when they attract in stiffer substrates,
retards the evaporation significantly. Moreover, we notice that although for soft substrates
the symmetry of the system is preserved throughout the drying process, this is not the
case for substrates with intermediate stiffness. In fact, as it can be seen in figure 11(b)
(and figure 12c), the pair of droplets at late stages of evaporation starts moving to the
left exhibiting a clear symmetry breaking; the mechanisms for this behaviour will be
investigated in detail below. Similarly, as shown in figure 11(c) (and figure 12d) for
G = 105, the droplet that has emerged after the coalescence of the two droplets appears to
move slightly to the right, also indicating a symmetry breaking of the system, albeit with
a somewhat smaller droplet displacement from the system centre of mass.

As noted above, the elasticity of the substrate affects not only the relative distance
between the droplets but may also lead under conditions to a symmetry breaking with the
centre of mass of the system, xcm,g being displaced from its initial position, i.e. the droplets
appear to be ‘walking’ along the viscoelastic substrate. In figure 13(b), we depict the effect
of G on the evolution of the position of the system centre of mass, xcm,g. As shown in
this figure, for very soft and very hard substrates (i.e. G = 10 and G ≥ 106) the centre of
mass of the system remains at xcm,g = 8 and the symmetry is preserved throughout the
drying process. This is not the case, though, for substrates with intermediate stiffness
where symmetry breaking is found; we note that the system symmetry is considered
broken when the centre of mass of the system has moved ±10 % of its initial maximum
height (i.e. 0.1 dimensionless distance) from its initial position. It should be pointed out
that these asymmetric solutions are spontaneous and emerge due to disturbances of the
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Figure 15. Time evolution of the liquid–air (ζ ) and the liquid–solid (ξ ) interfaces for two droplets with (a)
G = 1 (tev = 5889), (b) G = 50 (tev = 5329) and (c) G = 500 (tev = 5222), respectively, for Ma = 0.005.
The inset is an enlargement of the height range of the contact line region of the left drop at t′ = 0.4. (d) Time
evolution of the system mass varying substrate elasticity G. The rest of the system parameters are the same
with the ‘base’ case.

numerical finite element scheme, while they appear to be stable with the increase in
mesh resolution. To make sure that the symmetry breaking is not artificially introduced
by the imposed boundary conditions, we varied the size of the domain or even applied
periodic boundary conditions in the x-direction; these efforts are presented in detail in
Appendix B. As discussed therein, neither the type of imposed boundary conditions or
the domain size qualitatively affect the observed droplet behaviour. It is important to
note that a spontaneous symmetry breaking has been also a matter of interest in earlier
experimental and computational studies (Hernández-Sánchez et al. 2012; Leong & Le
2020) of non-volatile droplets; Leong & Le (2020) examined the growth of an inflating
droplet on viscoelastic soft substrate and also observed asymmetric solutions for substrates
with intermediate stiffness.

5.2.3. Effect of substrate elasticity in the presence of thermocapillarity
Next, we take into account the effect of thermocapillary stresses. In figure 15, we depict the
droplet dynamics for Ma = 0.005 and three different values of G = 1, 50, 500. Regardless
of the elasticity strength of the substrate, it is shown that in all cases the droplets repulse
from each other. This behaviour is markedly different from the one discussed previously
in the absence of thermocapillary effects where the droplets are attracted to each other
for substrates with intermediate or high values of G. As discussed in figure 10, the
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Figure 16. Time evolution of (a) the distance between the two centres of mass�xcm and (b) the centre of mass
of the system xcm,g, for Ma = 0.005. (c) The contribution of the Marangoni stresses and capillary forces in the
average x-velocity of droplet 1 and 2 for G = 500 and Ma = 0.005. The rest of the system parameters are the
same with the ‘base’ case.

Marangoni stresses play a dual role both acting as to compress the droplet footprint
and also contributing to droplet repulsion. As shown in figure 16(a) where we plot the
distance �xcm between the two droplets for a wide range of G values for Ma = 0.005,
the latter contribution is dominant and thus always leading the droplets to repulse from
each other at the early stages of the drying process. Nevertheless, we notice that at later
stages and for substrates with intermediate values of G (i.e. for G = 50, 500, 2000, 104)
the droplet distance eventually starts decreasing indicating that the droplets are attracted
to each other. This can be attributed to the fact that, at these late stages of the drying
process, the droplet distance has increased considerably allowing the vapour concentration
to acquire a more uniform profile along the interface of each droplet, leading to a more
uniform evaporation flux and in turn to smaller temperature gradients. As a result, the
thermal Marangoni stresses are significantly reduced, while the capillary forces induced
by the substrate elasticity become dominant and drive the droplets closer to each other. For
harder substrates, the capillary forces, as explained above, are weaker due to the fact that
the substrate is less susceptible to elastic deformations and therefore the droplets continue
to repulse due to the action of Marangoni stresses throughout the drying process.

Interestingly, we also notice in figure 15(c), i.e. for a substrate with intermediate stiffness
(G = 500), that the droplets initially repulse, then they are attracted and eventually
symmetry breaking takes place; in figure 15(c), a dashed arrow is drawn to indicate the
motion of each droplet. As shown in figure 16(b) where we plot the evolution of the global
centre of mass xcm,g with time, we find that the symmetry is preserved only for extremely
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soft and extremely stiff substrates, while for intermediate values of G the droplets appear
to ‘walk’ along the substrate. It should be noted that the emergence of this symmetry
breaking at late stages of evaporation takes place spontaneously (i.e. at no specific time
instant) and there is no preferred direction; it is triggered by numerical disturbances and
appears to be stable and persistent with the increase in mesh resolution.

In figure 16(c), we make an effort to rationalise and elucidate the mechanisms
responsible for the symmetry breaking, shown in figure 15(c) (i.e. for Ma = 0.005 and
G = 500). In order to examine the contribution of various forces, i.e. capillary, Marangoni
and elastic, on the motion of the droplets, we evaluate their contributions to the mean
velocity in the x-direction of each droplet, as follows:

v̄ =

∫ xcr

xcl

∫ h

0
vx dz dx∫ xcr

xcl

h dx
= v̄cap,l + v̄cap,s + v̄Ma + v̄el. (5.1)

The terms v̄cap,l and v̄cap,s denote the contributions from the capillary forces along the
liquid–gas and liquid–solid interfaces, respectively, while the term v̄el corresponds to
the contribution of the elastic stresses and v̄Ma corresponds to the contribution of the
Marangoni stresses; the analytical expressions for the various contributions are given in
Appendix C. We note that for a number of different cases that we have examined the
dominant contributions come from the capillary forces and the Marangoni stresses along
the liquid–gas interface, evaluated by the terms v̄cap,l and v̄Ma, respectively; v̄cap,s and v̄el
were typically found to be two orders of magnitude smaller than v̄cap,l and v̄Ma, and thus
neglected here. Nevertheless, it is important to note that despite the fact that v̄el is typically
very small, substrate elasticity implicitly contributes to the effect of capillary forces of the
liquid–gas interface through the induced deformation of the contact line region. The time
evolution of v̄cap,l and v̄Ma is depicted in figure 16(c) for both droplets; indexes 1 and 2
correspond to the droplet on the left and right, respectively.

At early times (i.e. approximately for t < 800), the contribution of the capillary
and Marangoni stresses have similar magnitudes in both droplets and the symmetry is
preserved (see figure 16b). The capillary forces act antagonistically with the Marangoni
stresses pushing the droplets in opposite directions. The droplets, however, repulse due
to the slightly higher magnitude of the Marangoni contribution. At later times (i.e. for
t > 800), a disturbance in the local deformation of the solid causes an imbalance between
the two droplets (see figure 16c) leading to symmetry breaking and driving the system
centre of mass away from its initial position.

From figure 16(b), it becomes evident that whether some disturbance will lead to a
symmetry breaking or not, is a matter of the substrate elasticity. On the one hand, when the
substrate is soft, it is very flexible and its deformation is very large. The size of an arising
disturbance is insignificant compared with the size of the total substrate deformation
and, as a result, the system centre of mass will remain constant and the symmetry
will be preserved. On the other hand, in extremely stiff substrates, the deformation of
the liquid–solid interface is very small, quickly damping any possible disturbance that
could lead to an imbalance between the two droplets. However, at intermediate values of
substrate elasticity, there can be a competition between this disturbance and the substrate
deformation, which might eventually lead to an imbalance in the induced capillary and
Marangoni stresses between the two droplets and thus to a symmetry breaking, if the size
of the disturbance grows considerably as compared with the substrate deformation.
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6. Conclusions

In this paper we have studied the two-dimensional dynamics of a system of one or
two droplets evaporating on a viscoelastic solid substrate. Lubrication theory is used to
simplify the equations of mass, momentum, energy and the force balances applied in the
liquid and the solid phases, considering the Kelvin–Voigt model to account for substrate
viscoelasticity. Our model takes into consideration the effect of thermal Marangoni
stresses, as well as the droplet interaction through both the compliant substrate and
the surrounding vapour. The model accounts for the presence of the vapour employing
a two-sided approach and considering the diffusion-limited model. The contact line is
modelled assuming a precursor film ahead of the droplet.

We have carried out a parametric study to investigate how the evaporation process, the
flow dynamics and the interaction of droplets are affected by the physical properties of the
compliant substrate (e.g. thickness, shear modulus) and vapour diffusion in the atmosphere
affecting the local evaporation rate. In the case of a single droplet, it was found that for
thinner substrates the elastic effects become decreasingly important and thus making the
substrate thinner can be seen as equivalent to making it more rigid. Moreover, it is shown
that on softer (or thicker) substrates the solid deforms affecting the wetting of the droplet
and promoting evaporation in CCR mode, in line with experimental observations in the
literature (Lopes & Bonaccurso 2012, 2013; Yu et al. 2013; Gerber et al. 2019); the CCA
mode is observed for harder (or thinner) substrates. Lastly, the effect of evaporative cooling
and the action of thermocapillary stresses lead to smaller droplet footprints, resulting in
an overall decrease of the evaporation rate, capturing the trend observed in earlier studies
(Dunn et al. 2009b; Talbot et al. 2012; Schofield et al. 2018) in the case of rigid substrates.
On the other hand, in the case of a system of a pair of volatile droplets, it is shown that
the droplets may communicate both through the viscoelastic substrate and the induced
deformations of the liquid–solid interface and also through the vapour that diffuses in
the atmosphere of the droplets. The delicate interplay between the elastic stresses in the
substrate, the capillary pressure and the thermal Marangoni stresses determine the mode
of droplet interaction.

To summarise the rich dynamics of this complex system, we produced the parametric
map of the dynamic regimes depicted in figure 17, varying the values of Marangoni
number, Ma, and substrate elasticity G. In order to characterise the different regimes of
the map, we consider that the system symmetry is broken when the centre of mass of the
system has moved ±10 % of the initial maximum droplet height (i.e. 0.1 dimensionless
distance) from its initial position. In the absence of thermocapillary stresses (i.e. Ma = 0),
the droplets repulse on soft substrates (region I) whereas they are attracted to each other
(and even coalesce) on stiff substrates (region VI) with symmetry breaking arising in the
case of substrates with intermediate stiffness (region V). Droplet coalescence that takes
place for substrates with intermediate stiffness closely resemble the translation mode
of droplet coarsening observed for intermediate elasticity in Henkel et al. (2021). The
translation mode is mediated by elastic deformation recovering the inverted Cheerios
effect (Karpitschka et al. 2016). On very stiff and very soft substrates, however, the
dominance of the Ostwald ripening effect found by Henkel et al. (2021) in the case
of non-volatile droplets is significantly suppressed, due to the effect of evaporation that
suppresses mass transfer between the droplets. Themocapillarity, on the other hand, apart
from being responsible for the asymmetry of the wetting ridges on the two sides of each
droplet between the two contact lines of each droplet, has also a drastic effect on the
dynamics of the two droplets causing the repulsion of the droplets at the early stages of the
drying process, irrespective of the stiffness of the viscoelastic solid (regions I, II and III).
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Figure 17. Map of the dynamic regimes depending on the value of Marangoni number, Ma, and substrate
elasticity G. The rest of the system parameters are the same with the ‘base’ case. We note that the borders in
this map have been added as a visual guide and are not precise.

For substrates with intermediate stiffness, though, the droplet repulsion may also be
followed by a phase of droplet attraction at later stages of the evaporating process (regions
II and III), and under conditions to a symmetry breaking (region III); the symmetry is
preserved either for very soft or very stiff substrates (regions I, II). Spontaneous symmetry
breaking was also found in the study of Leong & Le (2020) who examined the coalescence
of inflating droplets on viscoelastic substrates, indicating that these systems are prone to
instability as a result of the delicate interplay amongst elastic, capillary and Marangoni
forces.

Our findings clearly indicate that the flow dynamics can be very interesting with
important implications for the optimal design of soft substrates for controlled evaporation
of droplets. Our comprehensive model can be easily extended to more realistic set-ups
such as the simulation of multiple three-dimensional droplets or more complex systems
such as the evaporation of particle-laden droplets. We believe that the present work should
be complemented in the future with detailed experimental studies. To the best of our
knowledge, such studies are lacking, despite the vast amount of experimental work that
exists on evaporating droplets on rigid substrates.
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Appendix A. Detailed derivation of the evolution equations for the soft substrate

The displacement in the z-direction, i.e. uz(x, t), can be evaluated by integrating the
continuity equation for the solid, i.e. (3.12):

uz = b4(x, t)−
(
∂b1

∂x
z3

3
+ ∂b2

∂x
z2

2
+ ∂b3

∂x
z
)
. (A1)

In the above equation, b4(x, t) can be determined by using the fact that the displacement
of the soft substrate at the interface with the rigid solid at z = −H is zero and also using
(4.2):

b4 = ∂b1

∂x

(
2H3

3

)
+ ∂b2

∂x

(−H2

2

)
. (A2)

Introducing (A2) into (A1) we get the following expression for uz:

uz = ∂b1

∂x
1
3
(2H3 + 3zH2 − z3)− ∂b2

∂x
1
2
(z + H)2. (A3)

At any time instant, the position of the liquid–solid interface, i.e. ξ(x, t), is equal to the
soft solid deformation at z = 0 (i.e. the position of the undeformed liquid–solid interface)
and therefore from (A3) we get

ξ(x, t) = uz(x, 0, t) = ∂b1

∂x
2H3

3
− ∂b2

∂x
H2

2
. (A4)

Turning our attention to the liquid phase, by integrating the x-component of the
momentum, i.e. (3.3), we get the following expression for vx:

vx = ∂pl

∂x
z2

2
+ f1z + f2. (A5)

Integrating the continuity equation for the liquid, i.e. (3.2), and using (A5) we get an
expression for vz:

vz = −f3 −
∫ z

0

∂vx

∂x
dz. (A6)

In (A5), f1(x, t) is determined by taking the derivative of vx with respect to z and by
setting z = ζ(x, t). Using the expression for ∂vx/∂z|ζ from the tangential stress balance in
the liquid phase, i.e. (3.9), we get

f1 = (ε2Cl)
−1 ∂σ

∂x
− ζ

∂pl

∂x
. (A7)

Here f2(x, t) is determined by setting z = ξ(x, t) on (A5) and using (3.17), (4.1) and
(4.3):

f2 = H
∂b2

∂t
− H2 ∂b1

∂t
− ∂pl

∂x

(
ξ2

2
− ξζ

)
− (ε2Cl)

−1ξ
∂σ

∂x
. (A8)

Consequently, the x-component of the liquid velocity, vx, taking into account (A7) and
(A8) in (A5), is equal to

vx = ∂pl

∂x

(
z2

2
− zζ − ξ2

2
+ ζ ξ

)
+ (ε2Cl)

−1 ∂σ

∂x
(z − ξ)+ H

∂b2

∂t
− H2 ∂b1

∂t
. (A9)
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Here f3(x, t) is determined by setting z = ξ(x, t) on (A6) and using (3.18), (A4) and
(A9):

f3 = −2H3

3
∂2b1

∂x∂t
+ H2

2
∂2b2

∂x∂t
− ∂2pl

∂x2

(−ξ3

3
+ ζ ξ2

2

)
− ∂pl

∂x

(
ξ2

2
∂ζ

∂x
− ξ2 ∂ξ

∂x
+ ξζ

∂ξ

∂x

)

+ (ε2Cl)
−1
(
ξ2

2
∂2σ

∂x2 + ξ
∂ξ

∂x
∂σ

∂x

)
− Hξ

∂2b2

∂x∂t
+ H2ξ

∂2b1

∂x∂t
. (A10)

Substituting (A10) in (A6) and using (A9) we finally get for vz:

vz = −∂
2pl

∂x2

(
z3

6
− ζ z2

2
− ξ2z

2
+ ζ ξz + ξ3

3
− ζ ξ2

2

)
− ∂pl

∂x

(
−z2

2
∂ζ

∂x
− ξz

∂ξ

∂x

+ ξz
∂ζ

∂x
+ ζ z

∂ξ

∂x
− ξ2

2
∂ζ

∂x
+ ξ2 ∂ξ

∂x
− ξζ

∂ξ

∂x

)
− (ε2Cl)

−1 ∂
2σ

∂x2

(
z2

2
− ξz + ξ2

2

)

+ (ε2Cl)
−1 ∂σ

∂x

(
z
∂ξ

∂x
− ξ

∂ξ

∂x

)
+ ∂2b2

∂x∂t

(
−Hz − H2

2
+ Hξ

)

+ ∂2b1

∂x∂t

(
H2z + 2H3

3
− H2ξ

)
. (A11)

Taking the material derivative of both sides of ξ = uz(x, 0, t) allows us to derive an
evolution equation for ξ(x, t). The material derivative of ξ is derived using (3.16) and
(4.1), while the material derivative of uz(x, 0, t) is derived using (A3):

Dξ
Dt

= ∂ξ

∂t
+ ∂ξ

∂x

(
H
∂b2

∂t
− H2 ∂b1

∂t

)
, (A12)

Duz

Dt

∣∣∣∣
z=0

= ∂uz

∂t

∣∣∣∣
z=0

= ∂

∂t

(
2H3

3
∂b1

∂x
− H2

2
∂b2

∂x

)
. (A13)

Appendix B. Effect of domain size and boundary conditions

Here, we examine the effect of the boundary conditions on the observed system dynamics.
To this end, we vary the size of the domain both in the x and z directions, as well as
considering the application of periodic boundary conditions in the x-direction.

In figure 18 we examine the effect of the position of the far-field boundary condition
in the z-direction. As explained in § 2.3, the most natural choice would be to impose
the boundary condition of constant vapour concentration at z → ∞. Here, however, we
follow a similar approach to Schofield et al. (2020) considering a finite domain of the gas
phase and the far-field condition is replaced by a similar Dirichlet condition at a distant,
but finite, boundary. To examine the effect of this simplification, we vary the distance,
dg, where the Dirichlet condition is imposed. In figure 18 we depict the effect on the
evolution of both the total droplet mass and the position of the system centre of mass.
As shown in figure 18(a), decreasing dg results in faster evaporation due to the higher
concentration gradient near the liquid–gas interface that is implicitly imposed and the
fact that the evaporation rate depends on the rate of diffusion; we observe a rather slow
convergence of the total evaporation time with increasing values of dg.

In order to examine the effect of dg on the dynamics of a pair of droplets, we focus on
the case presented in figure 11(c) for Ma = 0 and G = 105 and dg = 5. In figure 18(c) and
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Figure 18. Time evolution of (a) the system mass and (b) the centre of mass of the system xcm,g varying the
height dg of the gas phase. Time evolution of the liquid–air (ζ ) and the liquid–solid (ξ ) interfaces for two
droplets with (c) dg = 10 (tev = 6810) and (d) dg = 15 (tev = 7993), respectively. In all panels Ma = 0 and
G = 105. The rest of the system parameters are the same with the ‘base’ case.

18(d) we depict the same case for dg = 10 and 15, respectively, at times that correspond to
the same scaled time, t′; we note the great similarity between the three cases, which is also
reflected on the evolution of the position of the centre of mass, presented in figure 18(b).
Clearly, the position of the far-field condition does not affect the qualitative characteristics
of either droplet coalescence or the observed symmetry breaking.

To investigate the effect of the boundary condition in the x-direction we follow two
different routes. The first is to simply examine the effect of the domain length, Lx for
the same case examined in figure 11(c). In figure 19 we see that the length mildly affects
the predicted evaporation time but does not have a significant impact on the rest of the
qualitative characteristics of the flow (e.g. see figure 19b). Secondly, we solve a case for
Ma = 0 and G = 300 imposing periodic boundary conditions at the edges of the domain
to check whether in cases where a symmetry breaking appears this might be due to the
symmetry being already broken by the boundary conditions; the remaining parameters
are kept the same with the ‘base’ case. As shown in figure 20, imposing either open
or closed boundary conditions does not affect significantly the qualitative characteristics
of the system dynamics and the symmetry breaking persists irrespective of the applied
boundary conditions.
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Figure 19. Time evolution of (a) the system mass and (b) the centre of mass of the system xcm,g varying the
length L of the solid substrate, for Ma = 0 and G = 105. The initial value of xcm,g has been moved to L = 8 for
all cases for presentational purposes. The rest of the system parameters are the same with the ‘base’ case.

Appendix C. Mean velocity

In order to compute the mean velocity of each droplet we first computed the average
x-velocity, vx,ave (using (A9)), as follows:

vx,ave = 1
h

∫ h

0
vx dz = ∂pl

∂x

(
h2

6
− hζ

2
− ξ2

2
+ ζ ξ

)
+ (ε2Cl)

−1 ∂σ

∂x

(
h
2

− ξ

)

+ H
∂b2

∂t
− H2 ∂b1

∂t
. (C1)

The total mean velocity in x-direction of each droplet can be evaluated by the following
expression:

v̄ =

∫
hvx,ave dx∫

h dx
= 1∫

h dx

∫ [
h
∂pl

∂x

(
h2

6
− hζ

2
− ξ2

2
+ ζ ξ

)
+ (ε2Cl)

−1 ∂σ

∂x
h
(

h
2

− ξ

)

+ h
(

H
∂b2

∂t
− H2 ∂b1

∂t

)]
dx = v̄cap,l + v̄cap,s + v̄Ma + v̄el. (C2)

The above integrals are solved between the two contact lines of each droplet. The total
mean velocity of each one of the two droplets is the sum of the contribution of the capillary
forces, the Marangoni stresses and the forces due to the elastic substrate. The contribution
of the solid substrate, both in terms of capillary forces and in terms of elasticity is O(10−4).
More specifically, using (4.3) and (4.4), we get

v̄cap,l = 1∫
h dx

∫
h
∂pl

∂x

(
h2

6
− hζ

2
− ξ2

2
+ ζ ξ − H

m
h
)

dx, (C3)

v̄cap,s = 1∫
h dx

∫ −hH2

2m
∂ps

∂x
dx, (C4)
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Figure 20. Time evolution of (a) the system mass and (b) the centre of mass of the system xcm,g applying
open and closed boundary conditions (BCs). Time evolution of the liquid–air (ζ ) and the liquid–solid (ξ )
interfaces for two droplets with (c) open boundary conditions (tev = 4882) and (d) closed boundary conditions
(tev = 4716), respectively. In all panels Ma = 0 and G = 300. The rest of the system parameters are the same
with the ‘base’ case.

v̄Ma = 1∫
h dx

∫
(ε2Cl)

−1 ∂σ

∂x
h
(

h
2

− ξ + H
m

)
dx, (C5)

v̄el = 1∫
h dx

∫
h

HG
m
(Hb1 − b2) dx. (C6)
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