
The Journal of Symbolic Logic

Volume 89, Number 4, December 2024

NOTES ON SACKS’ SPLITTING THEOREM

KLAUS AMBOS-SPIES, ROD G. DOWNEY , MARTIN MONATH, AND KENG MENG NG

Abstract. We explore the complexity of Sacks’ Splitting Theorem in terms of the mind change functions
associated with the members of the splits. We prove that, for any c.e. set A, there are low computably
enumerable sets A0 � A1 = A splitting A with A0 and A1 both totally �2-c.a. in terms of the Downey–
Greenberg hierarchy, and this result cannot be improved to totally�-c.a. as shown in [9]. We also show that
if cone avoidance is added then there is no level below ε0 which can be used to characterize the complexity
of A1 and A2.

§1. Introduction. Beginning with Friedberg’s paper [11], some of the earliest theo-
rems in computability theory are those concerning splittings of computably enumer-
able (c.e.) sets. We say that A0 � A1 = A is a splitting of A if A0, A1 are c.e., disjoint,
and A0 ∪ A1 = A. One of the reasons that splitting theorems have interest is their
interactions with the c.e. degrees. If A0 � A1 = A, then deg(A0)∨deg(A1) =deg(A)
holds in the Turing (and in fact weak truth table) degrees.

One form of Sacks’ famous splitting theorem [13] asserts the following.

Theorem 1.1 (Sacks [13]). For each noncomputable c.e. set A there is a splitting
A0 � A1 = A with A0 and A1 both c.e. and of low degree with A0|TA1.

In particular, there is no least c.e. degree, all c.e. degrees are join reducible, and the
low c.e. degrees generate the computably enumerable ones. For more on the many
interactions of splittings of c.e. sets with the c.e. degrees and other topics in classical
computability theory, we refer to the somewhat dated but extensive paper [10].

Ever since Soare’s classic paper [15], Sacks Splitting Theorem is pointed as a
quintessential example of a finite injury argument of “unbounded type.” By this we
mean the following. The standard simple proof of the existence of a c.e. set of low
degree, or of the Friedberg–Muchnik Theorem, as per Soare’s book [16] (or any
other standard text), uses a finite injury priority argument where requirements are
injured at most a computable number of times. Recall that the Friedberg–Muchnik
Theorem says that there are c.e. sets A and B with incomparable Turing degrees. This
differs from Sacks’ splitting theorem (Theorem 1.1) in that Sacks’ splitting theorem
requires additionally A and B to be a partition of a given non-computable c.e. set.

Received September 5, 2022.
2020 Mathematics Subject Classification. Primary 03D25, Secondary 03D55.
Key words and phrases. Sacks Splitting Theorem, totally �-c.a., Downey–Greenberg Hierarchy,

unbounded finite injury.

© The Author(s), 2023. Published by Cambridge University Press on behalf of The Association for Symbolic Logic. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/),
which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

0022-4812/24/8904-0015
DOI:10.1017/jsl.2023.77

1768

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://orcid.org/0000-0003-4381-2845
https://creativecommons.org/licenses/by/4.0/
www.doi.org/10.1017/jsl.2023.77
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2023.77&domain=pdf
https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1769

In the standard proof of the Friedberg–Muchnik Theorem each non-
computability requirement R2e is injured at most 2e many times. This makes
the relevant sets not just low, but superlow. That is, for each i ∈ {0, 1}, not only is
A′
i ≡T ∅′ but A′

i ≡tt ∅′, since each partial function f ≤T Ai can be computed with
an approximation with at most a computable number of mind-changes in the sense
of the limit lemma.

When teaching computability theory, we always point out that Sacks’ Splitting
Theorem has a completely different character since, whilst both A0 and A1 splitting
A are low, we have no a priori knowledge of how many injuries the requirements will
have.

In the present paper we address the following question:

Question 1.2. Is there some way to quantify the difference between the Friedberg–
Muchnik Theorem and Sacks’ Splitting Theorem?

1.1. How should we answer this question? Could there be some proof of Sacks’
Splitting Theorem avoiding the feature of “unbounded but finite injury,” so that it
is simply an artifact of the standard proof rather than a necessary feature?

One possible way to answer this would be using “Reverse Recursion Theory” by
asking what amount of induction is needed for proving Sacks’ Splitting Theorem
in fragments of arithmetic. In this setting we do know that there is a difference.
Mytilinaios [12] showed how to use an analog of Shore’s Blocking [14] to prove this
theorem in P– + IΣ1, whereas Chong and Mourad [3] showed that the Friedberg–
Muchnik Theorem can be proven in the weaker system of P– + BΣ1, and also
proved that Theorem 1.1 fails in some model of P– + BΣ1. We include these
results to mention one possible approach towards answering the question of what
level of “unbounded injury” is necessary for Sacks’ Splitting Theorem. Here the
interpretation is that the system with BΣ1 corresponds to computably bounded
injury. We refer the reader to Chong, Li, and Yang [2] for more on this topic.

1.2. Using classical notions. If we wish to use classical computability theory, we
need to find some way to show that the arguments must be different.

Perhaps lowness might be the key. As mentioned above, we know that if a set is
constructed to be low using a standard argument it will often also be superlow where
X is superlow if X ′ ≡tt ∅′. How does this work for splitting theorems?

Downey and Ng [9] have shown that if we consider splitting with low replaced by
superlow then then Sacks’ Splitting result fails. Indeed, as we see in Theorem 1.3, a
stronger result is true.

The setting of the present paper. In this paper, we will take a different tack to
attempt to understand the complexity of the argument needed for Sacks’ Splitting
Theorem. We will use the new Downey–Greenberg hierarchy [4, 5] of computably
enumerable degrees. This hierarchy seeks to classify the complexity of c.e. degrees
according to the ease of approximation of total functions computable from them.
The Downey–Greenberg Hierarchy was inspired by the array computable c.e.
degrees defined by Downey, Jockusch, and Stob [8], where a c.e. degree a is array
computable iff there is a computable order g (i.e., a computable nondecreasing
unbounded function) such that if function f ≤T a, then f has a Δ0

2 approximation

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1770 KLAUS AMBOS-SPIES ET AL.

f(·) = lims f(·, s) such that for all x,

|{s | f(x, s + 1) 	= f(x, s)}| ≤ g(x).

It is easy to show that all superlow c.e. sets are array computable. But there are non-
low c.e. sets that are array computable [8]. Thus the notion of array computability
is a measure of describing the fact that the degree is easy to approximate in a very
specific way. We now know that array computable degrees capture the combinatorics
of a wide class of constructions in computability theory. For instance, a is array non-
computable (i.e., not array computable) iff it can compute

• c.e. set of infinitely often maximal plain Kolmogorov complexity,
• disjoint pairs of c.e. sets A,B , with � – (A � B) infinite and no set separating

A from B of degree 0′,
• a perfect thin Π0

1 class, etc.

There are many other characterizations of array computability and we refer the
reader to [5], for example.

Following a suggestion of Joe Miller, in [6], array computability was generalized
to what is called totally �-c.a. where a has this property iff for all f ≤T a, there is a
computable order g such that f has a Δ0

2 approximation f(·) = lims f(·, s) such that
for all x,

|{s | f(x, s + 1) 	= f(x, s)}| ≤ g(x).

That is, a is “nonuniformly” array computable, but is still effectively approximable.
In [6], Downey, Greenberg, and Weber showed that the totally�-c.a. degrees indeed
capture a wide class of combinatorial constructions in computability theory, and
are naturally definable in the c.e. degrees.

To capture further combinatorics and definability, Downey and Greenberg [4,
5] extended the notion of being totally �-c.a. as follows. For computable ordinals
below ε0, we can associate a canonical effective Cantor Normal Form. That is, if, for
example, α < �3, say, then α is specified by a triple (n0, n1, n2) representing that α =
n0�

2 + n1� + n2. If f(x) is α-c.a. then it would have a Δ0
2 approximation f(x, s)

where initially f(x, s + 1) 	= f(x, s) can change n2 many times, and after that it
would move to n0�

2 + (n1 – 1)� + n′2 and have another n′2 many further changes
to move to n0�

2 + (n1 – 2)n1 + n′′2 , etc., with each change on one of the ordinals
allowing a free choice for those right of it. Several natural classical constructions
seems to correlate to levels of the resulting (proper) hierarchy. For instance, ��

captures embeddings of the 1–3–1 lattice into the c.e. degrees and being totally �-
c.a. captures certain other configurations, as well as constructions from Kolmogorov
complexity (see [4, 5]).

1.3. Our results using this hierarchy. Downey and Ng [9] did not just prove that
not every c.e. set can be split into a pair of superlow ones. Downey and Ng showed
the following:

Theorem 1.3 (Downey and Ng [9]). There is a c.e. degree a such that if a0 ∪ a1 = a
in the c.e. degrees, then one of a0 or a1 is not totally �-c.a.

In passing, we mention that, in the same paper, Downey and Ng also showed
that every high c.e. degree is the join of two totally �-c.a. c.e. degrees. This second

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1771

result extends a classical theorem of Bickford and Mills [1] who showed that 0′ is
the join of two superlow c.e. degrees. However, in [9] it is also shown that there are
(super-)high c.e. degrees that are not the joins of two superlow degrees.

Thus, if we use the Downey–Greenberg hierarchy for the classification of the
complexity of c.e. sets resulting from an incomparable splitting, we cannot hope to
do better than �2.

In Section 2, we show that the classical Sacks’ construction proves that a c.e. set
A can be split into a pair of totally ��-c.a. (low) c.e. sets (see Theorem 2.1).

However, in Section 3 we find a novel way of proving Sacks’ Splitting in a
certain dynamic way (with perhaps other applications), which allows us to show
the following.

Theorem 1.4. Every c.e. set can be split into a pair of low c.e. sets which are totally
�2-c.a.

1.4. Where the injury becomes unbounded. The original Sacks’ Splitting Theorem
has a stronger form.

Theorem 1.5 (Sacks [13]). For each noncomputable c.e. set A and noncomputable
Δ0

2 set C there is a splitting A0 � A1 = A with A0 and A1 both of low degree and
C 	≤T Ai for i ∈ {0, 1}.

In the final section, we will show that Theorem 1.5 does need a finite injury
argument of “unbounded type.” We prove the following theorem.

Theorem 1.6. Let α < ε0. Then there exist noncomputable c.e. sets A and C such
that for all c.e. splittings A0 � A1 = A of A, if A0 is totally α-c.a. then C ≤T A1.

Hence no level of the Downey–Greenberg Hierarchy suffices to capture this
version of Sacks’ Splitting Theorem.

Indeed, we prove that Theorem 1.6 holds for degrees.

Theorem 1.7. Let α < ε0. Then there exist c.e. degrees a and c > 0 such that for
all c.e degrees a0, a1 with a0 ∨ a1 = a, if a0 is totally α-c.a. then c ≤ a1.

This proof is a slight modification of the proof of Theorem 1.6.
We remark that this is the first example of a classical result which has been shown

to need finite injury of unbounded type, at least as measured by the Downey–
Greenberg Hierarchy.

1.5. Conventions. We refer to [16] or the computability section of [7] as a general
reference to our notation and terminology. We tend to use the Lachlan convention
that appending [s] to a parameter, indicates its state at stage s. Uses will be lower
case letters of the functionals. Parameters don’t change from stage to stage unless
indicated otherwise. Uses are monotone in argument and stage number.

§2. Splitting a c.e. set into ��-c.a. c.e. sets. Before we prove our main result we
show that, by a straightforward variant of Sacks’ splitting technique, we can split
any c.e. set into totally ��-c.a. c.e. sets.

Theorem 2.1. For any c.e. set A there is a c.e. splitting A = A0 � A1 such that A0

and A1 are totally ��-c.a. and low.

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1772 KLAUS AMBOS-SPIES ET AL.

Proof. Given a c.e. set A, we have to split A into disjoint low c.e. sets A0 and A1

meeting the global requirements

Rglobali,e : If ΦAie is total then ΦAie is ��-c.a.

for e ≥ 0 and i ≤ 1. We split Rglobali,e into local requirements R2〈e,x〉+i (x ≥ 0) where

requirement R2〈e,x〉+i attempts to preserve the computation ΦAi,se,s (x) (whenever

this computation is defined) by restraining numbers < ϕAi,se (x) from Ai . I.e., if
ΦAi,se,s (x) ↓ and a number < ϕAi,se (x) enters A at stage s + 1 then R2〈e,x〉+i requires
that this number is put into A1–i . We will argue that if we give a requirement higher
priority if its index is lesser, then this strategy suffices to meet the global requirements
hence to make A0 and A1 totally ��-c.a. In order to show this, we first describe the
construction more formally.

W.l.o.g. assume that A is infinite, fix a 1–1 computable function a enumerating
A, and let As = {a(t) : t < s}. Note that here, As refers to the set of elements
enumerated into A by stage s and is not to be confused with the sets A0 and A1. The
setsA0 andA1 are enumerated in stages where at stage s + 1 we decide whether a(s)
is put into A0 or A1. So Ai,s = {a(t) : t < s & a(t) ∈ Ai}. The restraint imposed by
requirement R2〈e,x〉+i on Ai at stage s + 1 is defined by

r(2〈e, x〉 + i, s) =

{
ϕ
Ai,s
e (x), if ΦAi,se,s (x) ↓,

0, otherwise.

Then, at stage s + 1, a(s) is put into A1 if the least n such that a(s) < r(n, s)
is even (or if no such n exists), and a(s) is put into A0 otherwise. Moreover, we
call R2〈e,x〉+i an i-requirement and an i-e-requirement, and we say that requirement
R2〈e,x〉+i is injured at stage s + 1 if a(s) < r(2〈e, x〉 + i, s) and a(s) is enumerated
into Ai . (Note that i-requirements impose restraint on Ai .)

This completes the construction.
Obviously, the sets A0 and A1 are disjoint and c.e. and A = A0 ∪ A1. So A =

A0 � A1. Moreover, just as in the standard proof of Sacks’ Splitting Theorem, it
follows by a straightforward induction on n ≥ 0 that any requirement Rn is injured
at most finitely often. So we may fix sn minimal such that Rn is not injured after
stage sn. Then, for n = 2〈e, x〉 + i , any computation ΦAi ,te,t (x) existing at a stage
t ≥ sn is preserved, hence

ΦAie (x) ↑ ⇔ ∀ t ≥ s2〈e,x〉+i (ΦAi ,te,t (x) ↑). (1)

So, in particular, the requirements R2〈e,e〉+i ensure that the standard lowness
requirements

Q2e+i : ∃∞s(ΦAi ,se,s (e) ↓) ⇒ ΦAie (e) ↓

are satisfied (e ≥ 0, i ≤ 1). Hence the sets A0 and A1 are low.
It remains to show that the global��-c.a. requirements Rglobali,e are met. Fix i ≤ 1

and e ≥ 0 such that ΦAie is total. Define the canonical computable approximation �
of ΦAie induced by {ΦAi,se,s }s≥0 by letting

�(x, s) = Φ
Ai,s′
e,s′ (x) for the least s ′ ≥ s such that Φ

Ai,s′
e,s′ (x) ↓ .

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1773

Then it suffices to define a computable function c : � × � → �� such that, for
x, s ≥ 0,

c(x, s + 1) ≤ c(x, s) (2)

and

�(x, s + 1) 	= �(x, s) ⇒ c(x, s + 1) 	= c(x, s). (3)

The definition of c is based on the following observations where we let
nx = 2〈e, x〉 + i .

Claim 1. (a) If �(x, s + 1) 	= �(x, s) then Rnx is injured at stage s + 1.
(b) If a requirement Rn is injured at stage s + 1 then there is a number n′ < n such

that r(n′, s + 1) = r(n′, s) and a(s) < r(n′, s), hence

|As+1 � r(n′, s + 1)| < |As � r(n′, s)|. (4)

(c) If r(n, s + 1) 	= r(n, s) then r(n, s) = 0 or Rn is injured at stage s + 1.

�

Proof. (a) Assume �(x, s + 1) 	= �(x, s). Then, by definition of �, �(x, s) =
ΦAi,se,s (x) ↓ and either Φ

Ai,s+1
e,s+1 (x) ↑ or �(x, s + 1) = Φ

Ai,s+1
e,s+1 (x) ↓. So, in either case,

ΦAi,se,s (x) ↓	= Φ
Ai,s+1
e,s+1 (x). This implies that r(nx, s) = ϕAi,se (x) andAi,s+1 � ϕAi,se (x) 	=

Ai,s � ϕAi,se (x). So Rnx is injured at stage s + 1.
(b) Assume that Rn is injured at stage s + 1. Fix i ′ such that Rn is an i ′-

requirement. Then, by construction, a(s) is put into Ai′ and there is a (1 – i ′)-
requirement Rn′ such that n′ < n and a(s) < r(n′, s). Finally, by A1–i′,s+1 = A1–i′,s

and r(n′, s) > 0, it holds that r(n′, s) = ϕ
A1–i′ ,s
e′ (x′) = ϕ

A1–i′ ,s+1
e′ (x′) = r(n′, s + 1)

for the unique numbers e′, x′ ≥ 0 such that n′ = 2〈e′, x′〉 + (1 – i ′).
(c) Assume that r(n, s + 1) 	= r(n, s) and r(n, s) > 0, and fix e′, x′ ≥ 0 and

i ′ ≤ 1 such that n = 2〈e′, x′〉 + i ′. Then, by r(n, s) > 0, Φ
Ai′ ,s
e′,s (x′) ↓ and r(n, s) =

ϕ
Ai′ ,s
e′ (x′). By r(n, s + 1) 	= r(n, s), this implies that either Φ

Ai′ ,s+1
e′,s+1 (x′) is undefined

or Φ
Ai′ ,s+1
e′,s+1 (x′) is defined but ϕ

Ai′ ,s+1
e′,s+1 (x′) ↓	= ϕAi′ ,s

e′,s (x′). It follows that a(s) <

ϕ
Ai′ ,s
e′ (x′) = r(n, s) and a(s) is put into Ai′ at stage s + 1. So Rn is injured at

stage s + 1.
This completes the proof of Claim 1.
Now, for the definition of the computable function c, we represent the ordinals

< �� by nonempty finite tuples of nonnegative integers where the (k + 1)-tuple
(ak, ... , a0) represents the ordinal

k∑
i=0

ai�
i = ak�k + ··· + a2�

2 + a1� + a0.

Then c(x, s) is defined by

c(x, s) = (c0(0, s), c1(0, s), c0(1, s), c1(1, s), ... , c0(nx – 1, s), c1(nx – 1, s))

=
∑
n<nx

(
c0(n, s) · �2(nx–n)–1 + c1(n, s) · �2(nx–n)–2

)
,

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1774 KLAUS AMBOS-SPIES ET AL.

where

c0(n, s) =

{
0, if r(n, s) > 0,
1, otherwise,

and c1(n, s) = |As � r(n, s)|.

(Here and in the following we assume that nx > 0. If nx = 0 then, by Claim 1(a),
�(x, s + 1) = �(x, s) for all stages s ≥ 0. So (2) and (3) will hold if we let c(x, s) = 0
for all s ≥ 0.)

Obviously, c(x, s) is computable. So it only remains to establish (2) and (3).
For a proof of (2) fix x and s such that c(x, s + 1) 	= c(x, s). Choose 2n + i ′

minimal such that i ′ ≤ 1, n < nx , and ci′(n, s + 1) 	= ci′(n, s). It suffices to show
that ci′(n, s + 1) < ci′(n, s). Note that requirement Rn is not injured at stage s + 1
(namely, otherwise, it would follow by Claim 1(b) that there is a number n′ < n such
that c1(n′, s + 1) < c1(n′, s) contradicting minimality of 2n + i ′). Now distinguish
the following two cases. First assume that r(n, s + 1) = r(n, s). Then c0(n, s + 1) =
c0(n, s), hence i ′ = 1. By assumption this implies that

|As+1 � r(n, s)| = ci′(n, s + 1) 	= ci′(n, s) = |As � r(n, s)|.

As As+1 ⊆ As it follows that ci′(n, s + 1) < ci′(n, s). Finally, assume that r(n, s +
1) 	= r(n, s). Since Rn is not injured at stage s + 1, it follows by Claim 1(c) that
r(n, s) = 0. So, by case assumption, r(n, s + 1) > 0, and we may conclude that
i ′ = 0 and c0(n, s + 1) = 0 < 1 = c0(n, s). This completes the proof of (2).

Finally, for a proof of (3), fix x and s such that �(x, s + 1) 	= �(x, s). Then,
by Claim 1(a) and (b), there is a number n′ < nx such that (4) holds whence
c1(n′, s + 1) < c1(n′, s). By definition of c, this implies c(x, s + 1) 	= c(x, s). So (3)
holds.

This completes the proof of Theorem 2.1. �

§3. The �2-proof.

Theorem 3.1. Given a c.e. set A there are c.e. setsA0 andA1 such thatA = A0 � A1

and A0 and A1 have totally �2-c.a. degree.

Proof. We note that the proof does not make A0 and A1 Turing incomparable.
If A is totally �2-c.a. then we can use the usual Sacks’ splitting theorem to obtain
Turing incomparableA0 andA1. The proof is an infinite injury, although we will not
be using a tree to organize the construction. Rather, we will be using a mechanism
similar to e-states used in the maximal set construction. �

3.1. Notation. We fix a 1–1 enumeration of A, and let as be the element
enumerated into A at stage s. We write (e, x, i) to stand for the subrequirement
that wants to restrain the use of Φe(Ai ;x). We also write ϕe(x, i)[s] to be the use of
the computation Φe(Ai ;x) at stage s. Two triples (e, x, i) and (e′, x′, i ′) are said to
be of the same type if i = i ′.

Instead of ordering the triples (e, x, i) by priority, we will instead bunch up
several triples of the same type and view them to be of the same priority. In order to
facilitate this, we will introduce the notion of blocks. A block Bik is a collection of
triples of type i who are assigned the same priority. However, we will differentiate

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1775

the priority between different blocks. The priority ordering between different blocks
are: B0

0 < B1
0 < B0

1 < B1
1 < B0

2 < B1
2 < ··· . This priority ordering is fixed, but the

contents of each block will change. Bin will only contain triples of the form (e, x, i)
where e ≤ n. At each stage s, we denote rin[s] to be the maximum value of ϕe(x, i)
where (e, x, i) ∈ Bin, and Rin to be the maximum value of ri

′
n′ where Bi′

n′ ≤ Bin. If P is
a parameter then P[s] denotes the value of P at the beginning of stage s.

We denote Conv(Bin) for a block Bin to be a finite string of length n + 1 over the
alphabet set {∞, f}, defined such that Conv

(
Bin

)
(e) = ∞ if and only if Bin contains

a triple of the form (e, x, i), for each e ≤ n. We order these strings lexicographically,
where Conv(B) < Conv(B′) if Conv(B) is lexicographically to the left of Conv(B′)
(with the usual convention of ∞ being to the left of f ; the value ∞ standing for
“total” and value f for “partial”). To initialize a block Bin means to make it empty.

We shall need to keep track of the totality of Φe(Ai ;x); the standard way of doing
this is to define the parameter l(e, i)[s] = largest x < s such that Φe(Ai ; y)[s] ↓ for
every y < x. At every stage s, and i = 0, 1, we let �i [s] be a string of length s over
{∞, f} defined by induction on e < s : Suppose �i [s] � e has been defined. We set
�i [s](e) = ∞ if and only if l(e, i)[s] > t, where t < s is the largest stage such that
�i [t] ⊇ (�i [s] � e)̂∞ or �i [t] < �i [s] � e. (We take t = 0 if this does not exist.)

3.2. Discussion of the proof. We have seen in Section 2 that the standard proof
of Sacks’ Splitting Theorem will produce a set splitting A0 � A1 of A where A0

and A1 are of totally ��-c.a. degree. In order to improve this to �2-c.a., we shall
have to organize the priority of the requirements dynamically. The basic unit in the
construction is that of a triple (e, x, i), which represents the (sub)-requirement that
wants to restrain the use of a convergent Φe(Ai ;x). Obviously two triples (e, x, i)
and (e′, x′, i ′) are in direct conflict only if i 	= i ′. In order to fully exploit this fact,
we will place different triples of the same type in a block. Since triples of the same
type are not in direct conflict with each other, we will consider all triples in the
same block to be of the same relative priority, and we will only set priority between
different blocks. The priority ordering between blocks is fixed, but the elements of
each block will change as the construction proceeds.

Let’s first consider a single pair of requirements, Φ0(A0) and Φ0(A1), and assume
both to be total. Each block Bin contains finitely many triples of the form (0, x, i),
withAi -restraintRin. To illustrate, let’s fix i = 0 and some x, and count the number of
changes to Φ0(A0;x). Suppose that (0, x, 0) ∈ Bin[s1] for some n, where s1 is the first
stage we begin monitoring Φ0(A0;x). If a number as enters A, we must enumerate
as immediately into either A0 and A1. This decision is made based on the highest
priority block Bi′

n′ that would be injured by as entering Ai′ , and we would put as
into A1–i′ instead. Doing so will obviously injure all 1 – i ′-blocks of priority lower
than that of Bi′

n′ , so we must initialize them.
Thus in order for the computation Φ0(A0;x) to be injured, we must see some

number as < R1
n–1[s1] enter A. Assuming that B1

0, ... ,B1
n–1 are not injured, the

restraint R1
n–1 is not increased after s1, and thus the number of times Φ0(A0;x)

can be injured is at mostR1
n–1[s1]. An ordinal bound of � will suffice for the number

of mind changes in approximating Φ0(A0;x), provided that B1
0, ... ,B1

n–1 are not
injured.

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1776 KLAUS AMBOS-SPIES ET AL.

What happens if B1
n–1 is injured? This will potentially cause R1

n–1 to increase to,
say, R1

n–1[s2] > R1
n–1[s1], which means that the number of injuries to Φ0(A0;x) will

now be bounded by R1
n–1[s2] > R1

n–1[s1]. This means that the ordinal bound for
the injuries to Φ0(A0;x) will have to be larger than �. B1

n–1 can be injured if a
number as < R0

n–1[s1] enters A, and each time B1
n–1 is injured, the ordinal bound

for the number of injuries to Φ0(A0;x) will have to be increased. Thus, assuming
that B0

0, ... ,B0
n–1 are never injured, the ordinal bound for the number of injuries to

Φ0(A0;x) can be set as � ·R0
n–1[s1].

The reader should now be able to observe a pattern. With a fixed assignment
of triples to blocks (as in Sacks splitting theorem), we see that the bound � ·
R0
n–1[s1] will have to be revised if B0

n–1 is injured by preserving A1 � R1
n–2. Thus, the

straightforward bound is �� .
In order to get a better bound, we will need to have a dynamic assignment of

triples to blocks. Coming back to our example above, the action that had caused
us to go beyond �2 is the injury to B0

n–1, which allowed R0
n–1 to increase past its

original value ofR0
n–1[s1]. The solution is to combine all the blocks B0

n–1,B0
n,B0

n+1, ...

wheneverB0
n–1 is injured so that every triple (0, y, 0) introduced into the construction

after s1 – 1 is now in B0
n–1. For instance, when B0

n–1 is injured after stage s1 and R0
n–1

is increased beyond R0
n–1[s1], we would transfer (0, x, 0) from B0

n to B0
n–1. Now

the current restraint held by B0
n–2 is still R0

n–2[s1] (otherwise we would have already
transferred (0, x, 0) to B0

n–2), and so the original bound of� ·R0
n–1[s1] > � ·R0

n–2[s1]
will still work for Φ0(A0;x). Obviously, ifB0

n–2 is later initialized andR0
n–2 is increased

beyond R0
n–2[s1], we will transfer (0, x, 0) to B0

n–2.
To finish off this example, we also need to verify that the ordinal bound for B1

n–1
is met despite the blocks B0

n–1,B0
n,B0

n+1, ... blocks being combined. The bound for
B1
n–1 is declared to be � ·R1

n–2[t] where t < s1 is the stage where we added a triple
(0, z, 1) to B1

n–1. If the situation described above happens, that is, if B0
n–1 is injured

due to a small number less than R1
n–2[t] enters A, and the blocks B0

n–1,B0
n,B0

n+1, ...
blocks are combined, we will be allowed to reset the number of mind changes for
B1
n–1 as the bound was declared to be � ·R1

n–2[t].
It is easy to see that under this revised strategy, we can have �2 as the bound for

the number of injuries to Φ0(A0) and Φ0(A1). Each block is initialized only finitely
often and has a stable state with finitely many triples. Thus, if there is only a single
Φ on each side, we will have no additional difficulties.

The main difficulty in this proof comes from considering multiple Φs on each
side. For instance, let us consider Φ0(A0), Φ1(A0), and Φ0(A1), so that 0-blocks
contain triples of the form (0, x, 0) and (1, x′, 0), and 1-blocks contain triples of the
form (0, x′′, 1). Suppose that both Φ0(A0) and Φ1(A0) are total, but the totality of
Φ1(A0) is revealed much faster than that of Φ0(A0). Let n be the least such that B0

n

currently does not contain any triple (0, x, 0) for x > x0. This scenario will occur
if Φ0(A0;x0 + 1) is not currently convergent and so R0

n will have to be computed
without using Φ0(A0). Assume also that Φ1(A0) is currently looking total. We will
have to fill the blocks B0

n,B0
n+1, ... with (1, x′, 0) triples, since it could be that Φ1(A0)

is total but Φ0(A0) is not. Once a triple (1, x1, 0) is initially put into B0
n+1 at some

stage s1, the ordinal bound of � ·R0
n[s1] will be declared (and cannot be increased

later if we want Φ1(A0) to be �2-c.a.) If Φ0(A0;x0 + 1) later converges, we will have

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1777

to put (0, x0 + 1, 0) into B0
n, the first 0-block not containing a (0, x, 0)-triple (the

reason why we add (0, x0 + 1, 0) to the smallest possible 0-block rather than a fresh
0-block is explained in the next paragraph). Unfortunately doing so will increaseR0

n

beyondR0
n[s1] and so the bound previously declared for (1, x1, 0) ∈ B0

n+1 will be too
small and will have to be increased. A quick calculation shows that a bound of �3

will suffice without modifying the above strategy.
The reader might wonder why we do not just add (0, x0 + 1, 0) to B0

N , where B0
N is

the first block of type 0 not yet considered by the construction, when Φ0(A0;x0 + 1)
finally does converge. The reason is due to possible injury. Suppose that (0, x0 + 1, 0)
was (for the very first time) added to B0

n. At that stage u0, we would have declared
the bound for (0, x0 + 1, 0) to be � ·R0

n–1[u0]. However it could be that after u0

there was an injury to the block B0
n which caused the computation Φ0(A0;x0 + 1)

to be made undefined. As described above, we would have to (re-)fill the blocks
B0
n,B0

n+1, ... with (1, x′, 0) triples while waiting for Φ0(A0;x0 + 1) to reconverge,
and when it finally does, we do not want to add (0, x0 + 1, 0) to the newest block
B0
N as the previously declared bound of � ·R0

n–1[u0] will not be met at that block.
Therefore we would want to return (0, x0 + 1, 0) to its original block B0

n. We also
note that the very first time we add a triple (0, x0 + 1, 0) to B0

n we can choose n to be
fresh, as we have not yet recorded its ordinal bound. However for easy bookkeeping
we will always choose n as small as possible.

To overcome the problem above, the straightforward solution is to combine the
elements in the blocks B0

n,B0
n+1, ... when Φ0(A0, x0 + 1) converges and (0, x0 + 1, 0)

is added to B0
n. In this way, the triple (1, x1, 0) will be transferred from B0

n+1 to B0
n

when (0, x0 + 1, 0) is added to B0
n. Since we assumed that R0

n–1[s1] already includes
the use of a convergent Φ0(A0;x0)[s1], it will never be increased again later due to
Φ0(A0) looking total, and therefore the previously declared bound of � ·R0

n[s1] >
� ·R0

n–1[s1] for Φ1(A0;x1) will still work after transferring (1, x1, 0) to B0
n. The motif

here is to transfer all triples from ∪k≥nB0
k into B0

n whenever R0
n increases. This can

happen when either B0
n is injured or when we see Φ(A0) convergence.

Unfortunately, the straightforward solution given above does not solve the
problem completely, and there are further subtleties to be considered. The
problematic case is when Φ0(A0) and Φ1(A0) are both total, but the totality of
each functional alternates between being quickly and slowly revealed. Recall the
definition of Conv

(
B0
n

)
from the previous section. Let’s consider a scenario where

Conv
(
B0
k

)
⊃ ∞∞ for all k < n, and where Conv

(
B0
n

)
⊃ f∞. Then while waiting for

Φ0(A0;x0 + 1) to converge, we will have to add (1, x1, 0) to B0
n+1 for some large x1.

This can later be injured due to elements entering A0, so that when Φ0(A0;x0 + 1)
finally converges later and (0, x0 + 1, 0) is added to B0

n, we will have to transfer all
triples in lower priority blocks into B0

n. Unfortunately at this time, it could be that
Φ1(A0;x1) is currently undefined. This means that when Φ1(A0;x1) later converges,
the restraint R0

n of the block B0
n will have to be increased. However, Φ1(A0;x1) can

now take a very long time to converge again, and in the meantime, Φ0(A0) will
look total. This means that we must add (0, x2, 0) to the block B0

n+1 for large x2, as
Φ0(A0) cannot afford to wait for Φ1(A0;x1) to re-converge. Now when Φ1(A0;x1)
finally converges again,R0

n will increase further, which means that (0, x2, 0) will have
to be transferred to B0

n, during which Φ0(A0;x2) may be undefined. The functionals

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1778 KLAUS AMBOS-SPIES ET AL.

Φ0(A0) and Φ1(A0) can alternate between quickly converging and slowly converging,
so that in the end, we are forced to transfer almost every (0, x, 0) and (1, x′, 0) to
B0
n, making the block infinite.
To arrange for blocks to be finite, we will need to allow for infinite injury between

the requirement approximating Φ0(A0) and the requirement approximating Φ1(A0).
In order to get this to work we will need to have two different versions of the
requirement approximating Φ1(A0); one that believes that Φ0(A0) is total (and
hence Conv

(
B0
k

)
(0) = ∞ for all k), and a second version that believes that Φ0(A0)

is not total (and hence Conv
(
B0
k

)
(0) = f for cofinitely many k). The first version will

delay defining the bound for Φ1(A0) on a block B0
k until Φ0(A0) has shown itself to

be total in the block, i.e., Conv
(
B0
k

)
(0) = ∞. The second version will work only with

the blocks B0
k where Conv

(
B0
k

)
(0) = f, and is initialized each time Φ0(A0) looks

total. The actions of these different versions will be organized by keeping track of
Conv

(
B0
k

)
. For instance, in the situation described in the previous paragraph, when

Φ0(A0;x0 + 1) is currently undefined, all triples of the form (1, x1, 0) added to B0
n+1

are under the belief that Φ0 is not total. Later when Φ0(A0;x0 + 1) converges andR0
n

increases, we will simply initialize B0
n+1 and not transfer those triples (1, x′, 0) to B0

n.
This allows us to break the feedback described above and ensure that each block is
eventually finite. There are no additional difficulties beyond certain technical details
which will be addressed in the formal construction.

3.2.1. Construction. We initially set all blocks to be empty. At stage s > 0, we
do the following:

(I) For each i = 0, 1, we do the following. Let n be the least such that
Conv

(
Bin

)
[s] > �i [s]. Initialize Bik for all k ≥ n. For each e ≤ n such that

�i [s](e) = ∞ and for each triple (e, x, i) that is not currently in any block,
where x < l(e, i)[s], we put (e, x, i) into Bin. We say that we act for Bin. If n
does not exist, do nothing at this step.

(II) Let Bin be the highest priority block such that as < Rin. Enumerate as into
A1–i , and initialize B1–i

m for all m such that B1–i
m > Bin. If Bin does not exist,

enumerate as into A0.

3.2.2. Verification. Obviously,A0, A1 is a set splitting of A. We now verify thatA0

andA1 have totally�2-c.a. degrees. First of all, we observe that for any triple (e, x, i),
any stage s, and any block Bin, if (e, x, i) ∈ Bin[s] then Φe(Ai ;x)[s] ↓. Furthermore,
for any i, n,m, s , if n < m then Conv

(
Bin

)
[s] < Conv

(
Bim

)
[s] or Conv

(
Bin

)
[s] ⊂

Conv
(
Bim

)
[s].

Lemma 3.2. Suppose that we act for Bin at stage s. Then Conv
(
Bin

)
⊆ �i [s]

immediately after the action.

Proof. Suppose not. Then there is a least e ≤ n such that Conv
(
Bin

)
(e) = f

and �i [s](e) = ∞. This means that there is some k < n such that (e, x, i) ∈ Bik[s],
where x = l(e, i)[s] – 1. Let t < s be the greatest stage where we acted for Bik and
added (e, x, i) to Bik . At stage t we must have �i [t] < Conv

(
Bik

)
[t + 1] or �i [t] ⊇

Conv
(
Bik

)
[t + 1]. By the maximality of t, we have Conv

(
Bik

)
[t + 1] = Conv

(
Bik

)
[s],

and since we chose to act for Bin rather than Bik at stage s, it means that �i [s] 	<

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1779

Conv
(
Bik

)
[s], which must mean that �i [t] � e + 1 ≤ �i [s] � e + 1. Since �i [s](e) =

∞, this must mean that l(e, i)[s] > t > x, a contradiction. �
Lemma 3.3. Each block is initialized at only finitely many stages.

Proof. If l(0, 0) > 0 at some stage s > 0, then B0
0 = {(0, x, 0) | x < l(0, 0)}

forever, otherwise B0
0 = ∅ forever. So, B0

0 is initialized at most once. Now suppose
that all blocks of priority higher than Bin are no longer initialized after stage s. Then
we have ri

′
k [t] = ri

′
k [s] for every t > s and every block Bi′k < Bin. This means that Bin

can be initialized under step (II) only finitely often after stage s.
Suppose that Bin is initialized under step (I) infinitely often. Pick the least e

such that there are infinitely many stages t > s where �i [t] � e = Conv
(
Bin

)
[t] �

e and �i [t](e) = ∞ and Conv
(
Bin

)
[t](e) = f. By the minimality of e, we see

that Conv
(
Bin

)
[t](e′) is eventually stable for every e′ < e. Now let t1 > t0 >

s be two stages such that �i [tk] � e = Conv
(
Bin

)
[tk] � e and �i [tk](e) = ∞ and

Conv
(
Bin

)
[tk](e) = f for k = 0, 1. Since we can assume that Conv

(
Bin

)
[t0] � e =

Conv
(
Bin

)
[t1] � e, we see that �i [t0] � e = �i [t1] � e and therefore l(e, i)[t1] > t0, and

thus (e, t0, i) will be added to Bin under step (I) at stage t1.
We now argue that (e, t0, i) will be in Bin[t] for every t > t1. Suppose

(e, t0, i) is removed from Bin by the action at some stage t2 > t1. This must be
under Step (I); however, since (e, t0, i) ∈ Bin[t2], we have Conv

(
Bin

)
[t2] � e + 1 =(

Conv
(
Bin

)
[t1] � e

)̂∞. By the minimality of e, �i [t2] cannot be to the left of
Conv

(
Bin

)
[t1] � e, since �i [t2] must be to the left of Conv

(
Bin

)
[t2], it follows that

�i [t2](e) = ∞, and therefore t0 < l(e, i)[t2]. But this means that we would put
(e, t0, i) back into Bin under Step (I) during stage t2, so that (e, t0, i) ∈ Bin[t2 + 1].
Thus, (e, t0, i) ∈ Bin[t] for every t > t1. This means that Conv

(
Bin

)
[t](e) = ∞ for

almost every t, which contradicts the assumption on e. �
Let �̂i = lim infs �i [s]. We will show thatA0 andA1 have totally�2-c.a. degree. We

fix e and i such that Φe(Ai) is total, and let s0 be a stage large enough so that ∀t ≥ s0,
�i [t] � e + 1 ≥ �̂i � e + 1, and that the blocks Bi0, ... ,Bie are never again initialized
after s0. By checking the definition of �i , we can see easily that �̂i(e) = ∞.

Lemma 3.4. For every n > s0, lims Conv
(
Bin

)
[s] � e + 1 = �̂i � e + 1.

Proof. Fix n > s0. By Lemma 3.2, each time we act for Bin under Step (I), we
will make Conv

(
Bin

)
� e + 1 ≥ �̂i � e + 1. By Lemma 3.3, lims Conv

(
Bin

)
[s] � e + 1

exists. Suppose for a contradiction that lims Conv
(
Bin

)
[s] � e + 1 > �̂i � e + 1. But

this means that we will infinitely often act for Bin under Step (I), a contradiction. �
The task for the rest of this proof is to define computable functions�(x, s), c0(x, s)

and c1(x, s) so that for every x, lims �(x, s) = Φe(Ai ;x) and for every x, s , we
have� · c0(x, s) + c1(x, s) ≥ � · c0(x, s + 1) + c1(x, s + 1) and�(x, s) 	= �(x, s +
1) ⇒ � · c0(x, s) + c1(x, s) > � · c0(x, s + 1) + c1(x, s + 1).

For the rest of this proof we fix an x large enough such that (e, x, i) is never in
∪j≤s0Bij (by Lemma 3.3 there are cofinitely many such x). Let nx [s] be the number n

such that (e, x, i) ∈ Bin[s] and where Conv
(
Bin

)
[s] � e + 1 = �̂i � e + 1. If n cannot

be found let nx [s] ↑.

Lemma 3.5. There are infinitely many s such that nx [s] ↓.

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1780 KLAUS AMBOS-SPIES ET AL.

Proof. Fix an arbitrarily large stage s such that l(e, i)[s] > x, and the construc-
tion acts for Bin for some n > s0, and where Conv

(
Bik

)
[s] � e + 1 = �̂i � e + 1 for all

k with s0 < k < n. We also assume that Conv
(
Bin

)
[s + 1] � e + 1 = �̂i � e + 1. This

stage s can be found since lims l(e, i)[s] = ∞ and by applying Lemma 3.4.
When acting for Bin at stage s, we cannot have (e, x, i) ∈ Bik[s] for any k ≤ s0 by

the assumption on the largeness of x. If (e, x, i) ∈ Bik[s] for any s0 < k < n then we
have nx [s] ↓= k. Otherwise, the construction will be able to add (e, x, i) to Bin in
Step (I), and since Bin is not initialized in Step (II), we have nx [s + 1] ↓= n. �

We let s1 ≥ s0 be the first stage where nx [s1] ↓ and where there is some s ′1 such
that �i [s ′1] � e + 1 = �̂i � e + 1 and x < s ′1 < s1. The stage s1 exists by Lemma 3.5.
Obviously, nx [s] ≥ e for every s where it is defined.

Lemma 3.6. For every t > s ′ > s1, and n, if Conv
(
Bin

)
[s ′] � e + 1 > �̂i � e + 1 and

(e, x, i) is not in any block at the beginning of stage s ′, and t > s ′ is the least such that
nx [t] ↓, we will have nx [t] ≤ n.

Proof. We can assume, without loss of generality, that there is no stage v and no
m ≤ n such that s ′ < v < t, Conv

(
Bim

)
[v] � e + 1 > �̂i � e + 1, and (e, x, i) is not in

any block at the beginning of stage v.
Now let s ′′ be the least stage such that s ′′ ≥ s ′ and �i [s ′′] � e + 1 = �̂i � e + 1.

Claim 3.7. For any stage s ′′′ and k with s ′ ≤ s ′′′ ≤ s ′′ and (e, x, i) ∈ Bik[s ′′′] we
must have Conv

(
Bik

)
[s ′′′] � e + 1 > �̂i � e + 1.

Proof. If s ′′′ exists then s ′′′ > s ′ and we can therefore assume that s ′′ > s ′ as well.
Note that (e, x, i) must be added to Bik at some maximal stage v such that s ′ ≤ v <
s ′′′; this same action will cause Conv

(
Bik

)
[v + 1] � e + 1 = �i [v] � e + 1 (by Lemma

3.2). Since v is maximal, we have Conv
(
Bik

)
[v + 1] � e + 1 = Conv

(
Bik

)
[s ′′′] �

e + 1, and since s ′ ≤ v < s ′′′ ≤ s ′′, we also have �i [v] � e + 1 > �̂i � e + 1 by the
minimality of s ′′.

We now claim that s ′′ + 1 = t. Claim 3.7 tells us that t ≥ s ′′ + 1. We now verify
that nx [s ′′ + 1] ↓, which will imply that s ′′ + 1 ≥ t. Since we have Conv

(
Bin

)
[s ′] �

e + 1 > �̂i � e + 1, by the minimality of s ′′, we have �i [s ′′] < Conv
(
Bin

)
[s ′′]. Thus

the construction will act for Bim at stage s ′′, for some m ≤ n. Since s ′′ > s0 we must
have m > e. Since �i [s ′′](e) = �̂i(e) = ∞, we conclude that l(e, i)[s ′′] > s ′1 > x.
Therefore, when acting for Bim at stage s ′′, we will add (e, x, i) to Bim, unless
(e, x, i) ∈ Bik[s ′′] for some k < m. If this is the case, then by Claim 3.7, we must have
Conv

(
Bik

)
[s ′′] � e + 1 > �̂i � e + 1 = �i [s ′′] � e + 1; which means that we would

have acted for Bik instead of Bim at stage s ′′, a contradiction.
This contradiction shows that when acting for Bim at stage s ′′ we will successfully

add (e, x, i) toBim. We will not initializeBim in Step (II) at stage s ′′ by the assumption
on s ′ in the first line of this proof. By Lemma 3.2 we have Conv

(
Bim

)
[s ′′ + 1] �

e + 1 = �̂i � e + 1. So therefore, we conclude that t = s ′′ + 1 and nx [t] = m ≤ n. �
Lemma 3.8. For every t > s ≥ s1, if nx [t] ↓ and nx [s] ↓ then nx [t] ≤ nx [s].

Proof. Fix t > s ≥ s1 such that nx [t] ↓ and nx [s] ↓. Let n = nx [s]. We may
clearly assume thatBin is initialized at some least stage s ′ such that s ≤ s ′ < t. We also

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1781

assume that t is the least stage greater than s ′ such that nx [t] ↓. By the minimality of
s ′ we have Conv

(
Bin

)
[s ′] � e + 1 = �̂i � e + 1. There are three possibilities for what

might happen at stage s ′.
First, suppose that at stage s ′ we did not act for Bim for any m ≤ n. This means

that Bin did not get initialized in Step (I), but was initialized in Step (II). Thus,
Conv

(
Bin

)
[s ′ + 1] = fn+1 and (e, x, i) will not be in any block at the beginning of

stage s ′ + 1, so apply Lemma 3.6 to conclude that nx [t] ≤ n = nx [s].
Second, suppose that at stage s ′ we acted for Bim for some m ≤ n, which is then

initialized under Step (II). In that case, regardless of whether (e, x, i) is transferred
to Bim during Step (I), we will still have Conv

(
Bim

)
[s ′ + 1] = fm+1 and (e, x, i) is

not in any block at the beginning of stage s ′ + 1, so we can still apply Lemma 3.6 to
conclude that nx [t] ≤ m ≤ n = nx [s].

Lastly, suppose that at stage s ′ we acted for Bim for some m ≤ n, and Bim is
not initialized under Step (II). Since m ≤ n, we see that Conv

(
Bim

)
[s ′] � e + 1 ≤

Conv
(
Bin

)
[s ′] � e + 1 = �̂i � e + 1. Since we acted for Bim at s ′, we must have �i [s ′] ⊇

�̂i � e + 1. Now since �i [s ′](e) = �̂i(e) = ∞, we conclude that l(e, i)[s ′] > s ′1 > x.
This means that while acting for Bim at stage s ′, we will put (e, x, i) into Bim. Since
Bim is not initialized in Step (II), again, by Lemma 3.2, we have t = s ′ + 1, and
nx [t] = m ≤ n = nx [s]. �

We next show that after stage s1, all i-blocks of priority higher than Binx must be
holding the original restraint from stage s1:

Lemma 3.9. For every s ≥ s1 such that nx [s] ↓, and every k < nx [s], Rik[s] =
Rik[s1].

Proof. Fix s ≥ s1 such that nx [s] ↓ and some k < nx [s] such thatRik[s] 	= Rik[s1].
This means that there is some stage u such that s1 ≤ u < s and Bik is initialized at
stage u. We fix the least k < nx [s] which is initialized at some such u, and for this k,
we fix the largest u. If Bik is initialized in Step (II) at stage u, then Conv

(
Bik

)
[u + 1] �

e + 1 = fk+1. By the minimality of k, (e, x, i) is not in any block at the beginning of
stage u + 1, so we can apply Lemma 3.6 and Lemma 3.8 to conclude that nx [s] ≤ k,
a contradiction. Thus we can assume that Bik is not initialized by step (II) at stage u.

In Step (I) of stage u, if we had acted for some Bi
k′ for k′ < k, then regardless

of whether we added (e, x, i) to Bi
k′ we cannot have (e, x, i) ∈ Bi

k′ [u + 1] by the
minimality of k. Hence (e, x, i) cannot be in any block at the beginning of stage
u + 1, and so we can apply Lemma 3.6 again, together with Lemma 3.8 to conclude
that nx [s] ≤ k, a contradiction. Thus, we assume that we had acted for Bik in Step
(I) of stage u.

Suppose for a contradiction that �i [u] � e + 1 = �̂i � e + 1. Since u ≥ s1 > s ′1 > x,
and since �i [u](e) = ∞, we conclude that l(e, i)[u] > s ′1 > x. Since we assume that
Bi0, ... ,Bie are already stable, we have e < k. As (e, x, i) cannot be in Bi

k′ [u] for any
k′ < k, we will add (e, x, i) to Bik during Step (I). Since Bik is not initialized by Step
(II), we conclude that (e, x, i) ∈ Bik[u + 1], contradicting the maximality of u.

This contradiction says that �i [u] � e + 1 > �̂i � e + 1. By Lemma 3.2 and the
fact that Bik is not initialized in Step (II), we see that Conv

(
Bik

)
[u + 1] � e + 1 >

�̂i � e + 1. Again, (e, x, i) cannot be in any block at the beginning of stage u + 1,

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1782 KLAUS AMBOS-SPIES ET AL.

otherwise it must be in Bik[u + 1], contradicting the maximality of u. Apply Lemma
3.6 and Lemma 3.8 again to conclude that nx [s] ≤ k, a contradiction. �

Now we are ready to define c0(x, s), c1(x, s) and �(x, s). Let Qik[s] = number
of elements x < Rik[s] such that x 	∈ A[s], and define Q1–i

k [s] similarly. We
define Qi–1[s] = Q1–i

–1 [s] = 0. For s < s1 we define c1(x, s) = �(x, s) = 0, and

c0(x, s) = n0 ·Rin0–1[s1] · 2(n0+1)2
, where n0 = nx [s1]. If s ≥ s1 and nx [s] ↑ then we

define c0(x, s) = c0(x, s – 1), c1(x, s) = c1(x, s – 1) and�(x, s) = �(x, s – 1). Now
suppose that s ≥ s1 and nx [s] ↓= n. Let m be the largest such that B1–i

m < Bin (so
that m = n if i = 1 and m = n – 1 if i = 0). We update according to the following
rules:

• Set c1(x, s) = Q1–i
m [s].

• Set �(x, s) = Φe(Ai ;x)[t] where t ≥ s is the least such that nx [t] ↓ and
Φe(Ai ;x)[t] ↓.

• Decrease c0(x, s) by 1 if s > s1 and one of the following holds:
– c1(x, s) > c1(x, s ′),
– nx [s] < nx [s ′], or
– B1–i

m is initialized at some stage u with s ′ ≤ u < s ,
where s ′ < s is the largest such that nx [s ′] ↓. Otherwise, keep c0(x, s) =
c0(x, s – 1).

We will only care about the values of c0(x, s), c1(x, s), and�(x, s) for s ≥ s1. Notice
that s0 is fixed for Φe(Ai), and s1 can be found effectively in x. Therefore, |c0|, c1,
and � are computable functions. Note that � is total since Φe(Ai) is total.

Clearly, lims≥s1 �(x, s) = Φe(Ai ;x) by Lemma 3.5.

Lemma 3.10. For any s ≥ s1, if �(x, s) 	= �(x, s + 1) then either c0(x, s) 	=
c0(x, s + 1) or c1(x, s) 	= c1(x, s + 1).

Proof. Let s ≥ s1 and let s ′ be largest such that s1 ≤ s ′ ≤ s and n = nx [s ′] ↓.
We may also assume that nx [s + 1] ↓, and by Lemma 3.8, n ≥ nx [s + 1]. Let’s
suppose for a contradiction that c0(x, s) = c0(x, s + 1) and c1(x, s) = c1(x, s + 1).
This implies that nx [s + 1] = nx [s ′] = n, B1–i

m is not initialized at any stage u with
s ′ ≤ u ≤ s , and Q1–i

m [s + 1] = Q1–i
m [s ′]. Notice that if i = 0 and n = 0 then B1–i

m is
not defined, but the same argument below still holds.

We now consider different cases. First, suppose that Bin is initialized in Step (II) at
some stage u where s ′ ≤ u ≤ s . Then this means that au < R1–i

m [u] = R1–i
m [s ′] (since

Bim is not initialized), which in turn means that Q1–i
m [s ′] 	= Q1–i

m [s + 1], contrary to
one of our assumptions. So this first scenario is impossible.

Second, suppose we act for Bik at some stage u where s ′ ≤ u ≤ s and some
k < n. Fix k with the least corresponding u. By the minimality of u, we
must have Conv

(
Bik

)
[u] � e + 1 = Conv

(
Bik

)
[s ′] � e + 1 ≤ Conv

(
Bin

)
[s ′] � e + 1 =

�̂i � e + 1. Since we acted for Bik at stage u, we must have �i [u] ⊃ �̂i � e + 1, which
implies that (e, x, i) must be put into Bik by this action. Since Bik isn’t initialized
in Step (II) of stage u (otherwise the first scenario above holds), this implies that
(e, x, i) ∈ Bik[u + 1], which means that nx [u + 1] ↓= k < n. Since u + 1 ≤ s + 1,
this contradicts Lemma 3.8. So this second scenario is also impossible.

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1783

Third, suppose we act for Bin at some stage u where s ′ ≤ u ≤ s . Then the same
argument as for the second scenario tells us that u = s (by the maximality of s ′),
and after acting for Bin at stage u = s , we will also put (e, x, i) back into Bin.

We conclude that if Bin is initialized between s ′ and s, it can only be in Step (I) of
stage s, where this action will also put (e, x, i) into Bin. This means that in Step (II)
of every stage between s ′ and s, we have (e, x, i) ∈ Bin. Since �(x, s + 1) 	= �(x, s ′),
we must have Φe(Ai ;x)[s ′] ↓, and hence there must be some least stage t such
that s ′ ≤ t ≤ s and at is enumerated into Ai by Step (II) of the construction at
stage t, where at is below the use of Φe(Ai ;x)[s ′]. But during Step (II) of stage
t, we have (e, x, i) ∈ Bin, which means that at < R1–i

m [s ′], which in turn means that
Q1–i
m [s ′] 	= Q1–i

m [s + 1], contradicting one of our assumptions. Thus we conclude
that either c0(x, s) 	= c0(x, s + 1) or c1(x, s) 	= c1(x, s + 1). �

Lemma 3.11. For every s, c0(x, s) ≥ 0.

Proof. Suppose that s ′ and s are two stages such that s1 ≤ s ′ < s + 1, n =
nx [s ′] = nx [s + 1] and where A[s ′] � Rin0–1[s1] = A[s + 1] � Rin0–1[s1] and s ′ ≤ s
is the largest such that nx [s ′] ↓. Suppose that c0(x, s ′) 	= c0(x, s + 1). If B1–i

m is
initialized under Step (II) at some stage u with s ′ ≤ u ≤ s , then au < Rin–1[u] =
Rin–1[s1], by Lemma 3.9, contrary to the assumptions. On the other hand, ifB1–i

m is not
initialized at any stage u with s ′ ≤ u ≤ s then obviously R1–i

m [s ′] = R1–i
m [s + 1] and

soQ1–i
m [s ′] ≥ Q1–i

m [s + 1], which means that c0(x, s ′) = c0(x, s + 1), a contradiction.
Hence Bim is initialized under Step (I) at some stage u where s ′ ≤ u ≤ s . Since Bim
is initialized under Step (I) but never under Step (II) between s ′ and s, we see
that Conv

(
Bik

)
[s ′] > Conv

(
Bik

)
[s + 1] for the least k ≤ m such that Bik is acted on

between s ′ and s.
This says that so long as nx [s] and A[s] � Rin0–1[s1] do not change, the value of

c0(x, s) can decrease at most 2 · 22 ··· 2(m+1) < 2(n0+1)2
many times. Since c0(x, s1) =

n0 ·Rin0–1[s1] · 2(n0+1)2
, we conclude that c0(x, s) ≥ 0 for every s. �

This concludes the proof of Theorem 3.1. �

§4. Unbounded type.

Theorem 4.1. Let α < ε0. There are a c.e. set A and a noncomputable c.e. set C,
such that ifA = A0 � A1 is a c.e. splitting of A, andA0 is totally α-c.a. thenC ≤T A1.

Before we give the proof of the theorem, we first isolate the property of totally
α-c.a. sets to be used, where we call a total computable function f : � × � → � a
computable convergent approximation if, for any x ≥ 0, lims→∞ f(x, s) < � exists.

Lemma 4.2. Let α < ε0. There is a uniformly computable sequence of computable
convergent approximations {fi}i≥0 such that, for any total α-c.a. function g there is
an index i such that fi converges to g, i.e., g(x) = lims→∞ fi(x, s) for all numbers
x ≥ 0.

Proof. In order to avoid technicalities, we give the proof forα = �2. The general
case is obtained by a similar argument using the fact that any ordinal α < ε0 has an
effective Cantor normal form (see Reference).

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1784 KLAUS AMBOS-SPIES ET AL.

Call a triple (f, k, p) of total computable functions of type � × � → � a
computable �2-approximation (of g) if (f converges to g and), for any numbers
x and s, the following hold.

(i) If f(x, s + 1) 	= f(x, s) then (k(x, s + 1), p(x, s + 1)) 	= (k(x, s), p(x, s)),
and

(ii) if (k(x, s + 1), p(x, s + 1)) 	= (k(x, s), p(x, s)) then either k(x, s + 1) <
k(x, s) or k(x, s + 1) = k(x, s) and p(x, s + 1) < p(x, s).

By viewing k(x, s) and p(x, s) as the coefficients of the Cantor normal form of
the ordinal o(x, s) = k(x, s) · � + p(x, s) < �2, the functions k and p assign an
ordinal o(x, s) < �2 to each value f(x, s) such that whenever f(x, s) changes, i.e.,
f(x, s + 1) 	= f(x, s), then the corresponding ordinal decreases, i.e., o(x, s + 1) <
o(x, s). So f is a convergent approximation and, by definition, a function g is �2-
c.a. if and only if there is a computable �2-approximation (f, k, p) of g. Moreover,
given a computable �2-approximation (f, k, p) of a function g, by slowing down
the approximation we obtain a primitive recursive �2-approximation of g, i.e.,
a computable �2-approximation (f̂, k̂, p̂) of g where the functions f̂, k̂, p̂ are
primitive recursive (see Reference). Finally, since there is a computable numbering
of the primitive recursive functions, we easily obtain a computable sequence
{(fi , ki , pi)}i≥0 of all primitive recursive �2-approximations. So, by dropping
the parameters ki and pi , this gives the desired computable sequence {fi}i≥0 of
computable convergent approximations providing approximations of all total �2-
c.a. functions. �

Proof of Theorem 4.1. We construct the desired c.e. sets A and C by a tree
argument. It suffices to meet the noncomputability requirements

Pn : C 	=Wn
and the (global) splitting requirements

Rglobale : If Xe ∪ Ye = A and Xe is totally α-c.a. then C ≤T Ye
for n ≥ 0 and e ≥ 0, respectively, where {(Xe,Ye)}e≥0 is a computable numbering
of all disjoint pairs of c.e. sets.

In order to meet the global requirementRglobale we define a total function ge ≤T Xe
and ensure that C ≤T Ye provided that Xe ∪ Ye = A and ge is α-c.a. In fact, since
this task is too complex to be handled directly, we break it up into the local splitting
requirements

R〈e,i〉 : If Xe ∪ Ye = A and if fi converges to ge then C ≤T Ye
(i ≥ 0) where {fi}i≥0 is a computable sequence of computable convergent
approximations as in Lemma 4.2.

Here the reductionC ≤T Ye will be ensured via delayed simple permitting. During
the construction we will ensure that for all but finitely many y, if Ye � y is stable at
s then C � y is stable at �(s) for a computable function �. This delay is due to the
working of the priority tree and also the need to synchronize between different R
requirements. This will be discussed below in detail.

Let As and Cs be the finite parts of A and C, respectively, enumerated by the
end of stage s (where A0 = C0 = ∅), and fix uniformly computable enumerations
{Xe,s}s≥0 and {Ye,s}s≥0 of the c.e. sets Xe and Ye , respectively (e ≥ 0). We define

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1785

uniformly computable approximations ge(z)[s] of the functions ge (e ≥ 0), where
ge(z)[s] is the value of ge(z) at the end of stage s, and where we obey the following
rules (for e, z, s ≥ 0).

(g0) ge(z)[s] = z for s ≤ z.
(g1) If ge(z)[s + 1] 	= ge(z)[s] then Xe,s+1 � ge(z)[s] + 1 	= Xe,s � ge(z)[s] + 1.
(g2) If ge(z)[s + 1] 	= ge(z)[s] then ge(z)[s + 1] = s + 1 (hence ge(z)[s] <

ge(z)[s + 1].
(g3) There are at most finitely many s such that ge(z)[s + 1] 	= ge(z)[s].

So, intuitively, we may view ge(z) as (the final position of) a movable marker,
where ge(z)[s] is the position of the marker at the end of stage s. The marker ge(z)
is moved only finitely often ((g3)), it is not moved prior to stage z + 1, and its
initial position is z ((g0)), and if it is moved then it is moved to a higher position,
namely the current stage ((g2)), and the move is permitted by a change of Xe at
or below the current position ((g1)). So, obviously, the rules for defining ge(z)[s]
guarantee that, ge(z)[s] is nondecreasing in s, ge(z)[s] ≥ z and, for s ≥ z, ge(z)[s] ≤
s , ge(z) = lims→∞ ge(z)[s] < � exists for all z ≥ 0, and ge ≤T Xe (e ≥ 0). (In the
construction below we tacitly assume that, for s ≤ z, ge(z)[s] is defined according
to (g0), and that ge(z)[s + 1] = ge(z)[s] unless explicitly stated otherwise.)

We call a splitting requirement R〈e,i〉 infinitary if its premises are correct, i.e., if
Xe ∪ Ye = A and lims fi(z, s) = ge(z) for all numbers z, and we call R〈e,i〉 finitary
otherwise. The priority tree of the construction is the full binary tree T = {0, 1}<� .
A node (i.e., binary string) α of length n codes a guess which of the first n R-
requirements are infinitary, where α(m) = 0 denotes that Rm is infinitary and
α(m) = 1 denotes that Rm is finitary (m < n). At the end of any stage s of the
construction we define a string �s of length s as follows, where �s is the guess at the
type of the first s splitting requirements R0, ... , Rs–1 with which we work at stage
s + 1.

First, define the length function 	 by letting 	(〈e, i〉, s) be the greatest 	 ≤ s such
that

∀ z < 	 (ge(z)[s] = fi(z, s) & As � ge(z)[s] + 1 = (Xe,s ∪ Ye,s) � ge(z)[s] + 1).

Since, for any number z, lims→∞ ge(z)[s] < � and lims→∞ fi(z, s) < � exist
(by construction of ge and by choice of fi , respectively), it follows that
lims→∞ 	(〈e, i〉, s) = � if R〈e,i〉 is infinitary, and lims→∞ 	(〈e, i〉, s) < � otherwise.
(For the construction it will be crucial that, for infinitaryR〈e,i〉 and for any numbers
y and z such that y ≤ ge(z)[s] and z < 	(〈e, i〉, s) where y 	∈ As , it holds that
y 	∈ Xe,s ∪ Ye,s and, by enumerating y into A at stage s + 1 we can force y to enter
either Xe or Ye at a stage ≥ s + 1.)

Next, for each node α, inductively define α-stages as follows. Each stage s ≥ 0 is
a
-stage. If s is an α-stage and if 	(|α|, s) > 	(|α|, t) for all α-stages t < s , then call
s α-expansionary. Then an α-stage s is an α0-stage if s is α-expansionary and s is an
α1-stage otherwise.

Finally, for any s ≥ 0, let �s ∈ T be the unique node α of length s such that s is
an α-stage (and call a node � accessible at stage s + 1 if � � �s), and let � be the
left most path through T, such that, for any numberm ≥ 0, � � m � �s for infinitely
many stages s. The path � is the true path through T, i.e., for any m ≥ 0, �(m) = 0

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1786 KLAUS AMBOS-SPIES ET AL.

if and only if the splitting requirement Rm is infinitary. This fact, to which we refer
as the True Path Lemma in the following, is proved by a straightforward induction
on m using the above observations on the length function 	.

For each node� of length n there is a strategyP� for meeting the noncomputability
requirement Pn which is based on the guess that a higher priority R-requirement
Rm (m < n) is infinitary iff �(m) = 0. (For notational convenience, we call Rm—as
well as m and � � m—�-infinitary if �(m) = 0 and �-finitary otherwise (m < |� |).
So, for � = � � n, Rm is �-infinitary iff Rm is infinitary.) We will guarantee that the
strategy P� on the true path, � = � � n, meets the requirement Pn.

Before we explain the strategies P� , we make some general remarks on the format
of the construction. The strategies P� are finitary. Numbers are enumerated into the
sets A and C under construction only by these strategies. At any stage s + 1 > 0
there is a unique � such that P� becomes active at stage s + 1, and, for this � ,
� ≤ �s , i.e., either � is to the left of �s (� <L �s) or � is an initial segment of �s
(� � �s). Moreover, if P� acts at stage s + 1 then all strategies P�′ with � < � ′ are
initialized at stage s + 1. (So, in particular, all strategies to the right of the true
path � are initialized infinitely often.) Finally, if P� is in its initial state at stage s
and acts at stage s + 1 then � is accessible at stage s + 1 and P� may enumerate
only numbers ≥ s + 1 into A or C at any later stage. (For technical convenience, we
let this first action be vacuous and start with the proper actions for the sake of Pn
only afterwards.) Note that this framework ensure that any strategy P� with � � �
is initialized only finitely often, and, in order to ensure that an infinitary splitting
requirement R〈e,i〉 is met, it suffices to ensure that Ye can compute the numbers
enumerated into C by strategies P� with (� � 〈e, i〉)0 = � � (〈e, i〉 + 1) � � .

The strategy P� (|� | = n) is a refinement of the usual noncomputability strategy:
at some stage s + 1, appoint x = s + 1 as follower. Then wait for a stage s ′ ≥ s such
that x ∈Wn,s′ , i.e., such that the follower x is realized at stage s ′ (and all larger
stages). If there is such a stage s ′ then enumerate x into C at stage s ′ + 1, and keep x
out of C otherwise. (Followers will be the only numbers which may be enumerated
into C.)

Now, if 〈e, i〉 < n is �-infinitary then the strategy P� has to ensure that the set Ye
“knows” whether or not the follower x is put into C (provided that (� � 〈e, i〉)0 � �).
(If there is no �-infinitary R-requirement then P� is just the basic strategy and we
call P� trivial.) If R〈e,i〉, 〈e, i〉 < n, is the unique �-infinitary requirement of higher
priority then this can be achieved by the following basic module. First, at some stage
s + 1, we appoint an unused number z ≥ s + 1 as tracker and an unused number
y ≥ s + 1 such thaty ≤ ge(z)[s] as agitator. (For simplicity, by (g0), we let z = s + 1
and y = ge(z)[s] = ge(s + 1)[s] = s + 1.) Next, at any stage s ′ + 1 > s + 1, we
appoint an unused number x ≥ ge(z)[s](= ge(z)[s ′]) as follower (for simplicity,
we let s ′ = s + 1 and x = s ′ + 1 = s + 2). Now, if there is a stage s ′′ > s ′ such
that x is realized at stage s ′′ then we further wait for a stage s ′′′ > s ′′ such that
	(〈e, i〉, s ′′′) ≥ z. (We say, we wait for confirmation. Note that, for x ∈Wn, such a
stage s ′′′ must exist if � is on the true path �, i.e., if P� ’s guess thatR〈e,i〉 is infinitary
is correct.) Then y ≤ ge(z)[s ′′′] ≤ x (since, for the tracker z, ge(z) may be changed
only by P� hence ge(z)[s ′′′] = ge(z)[s]) and

ge(z)[s ′′′] = fi(z, s ′′′) & As′′′ � ge(z)[s ′′′] + 1 = (Xe,s′′′ ∪ Ye,s′′′) � ge(z)[s ′′′] + 1).

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1787

So enumerating the agitator y into A at stage s ′′′ + 1 forces y to enter either Xe or
Ye at a stage > s ′′′ (still assuming � � �). If s ′′′′ is the least stage > s ′′′ at which
this happens and Ye(y) changes then, by y ≤ x, this permits the enumeration of
the follower x into C thereby meeting Pn (recall that C ≤T Ye via the identity
use). Otherwise, the enumeration of y ≤ ge(z)[s ′′′] into Xe allows us to redefine
ge(z) at stage s ′′′′ + 1. In this case, we replace the agitator and the follower by
new unused numbers y′ and x′, respectively, adjust the value of ge(z)[s ′′′′ + 1]
in such a way that y′ ≤ ge(z)[s ′′′′ + 1] ≤ x′ (for simplicity, at stage s ′′′′ + 1 we
let y′ = ge(z)[s ′′′′ + 1] = s ′′′′ + 1 and at stage s ′′′′ + 2 we let x′ = s ′′′′ + 2), and
iterate the above process for the parameters z, y′, x′. Note that, though we have
replaced the agitator and follower, the tracker z is fixed. Since at any stage t + 1
at which we raise the value of ge(z) there has been a lesser stage t′ such that
ge(z)[t] = ge(z)[t′] = fi(z, t′), this process must stop after finitely many rounds
since any change of ge(z)[t] is mirrored by a change offi(z, t), andfi is a convergent
approximation. So (assuming � � �), eventually, there will be a follower which either
is never realized or is realized and put into C whence Pn is met. So the above action
of the strategyP� forPn is finitary, and—assuming � � �—it ensures thatPn is met.

If there is more than one �-infinitary R-requirement then some synchronization
is needed. While in the basic module the required reduction of C to Ye is obtained
by direct permitting, in the general case we achieve this by delayed permitting. In
order to demonstrate this we consider the case of two �-infinitary R-requirements,
say R〈e0,i0〉 and R〈e1,i1〉 where 〈e0, i0〉 < 〈e1, i1〉 (and where α0 and α1 are the
corresponding nodes expanded by � , i.e., α00 � α10 � �). There will be a 0-module
related to R〈e0,i0〉 and a 1-module related to R〈e1,i1〉. We start by appointing a 0-
tracker z0 and a 0-agitator y0 (corresponding to 〈e0, i0〉), a 1-tracker z1 and a 1-
agitator y1 (corresponding to 〈e1, i1〉), and a (common) follower x with the required
properties as in the basic module where we have to ensure that all numbers are
unused and the parameters for α0 differ from the corresponding parameters for α1

(for simplicity, at some stage s + 1 we let z0 = s + 1 and y0 = ge0(z0)[s] = s + 1,
at stage s + 2 we let z1 = s + 2 and y1 = ge1(z1)[s + 1] = s + 2, and at stage s + 3
we let x = s + 3). Then we start the basic module for 〈e1, i1〉, i.e., the 1-module,
with the parameters z1, y1, x, which involves waiting for x to be confirmed and
enumerating the agitator y1. Now it may happen that there will be a stage s ′ such
that the current follower x[s ′] is permitted by Ye1 to enter C at stage s ′ + 1 (if
this is not the case and � � � then, as in the basic module, we may argue that Pn
is met). Now, at stage s ′ + 1, instead of enumerating x[s ′] into C, we activate the
basic module for 〈e0, i0〉, i.e., the 0-module, with the previously defined agitator
and tracker and the current follower (note that x[s + 2] ≤ x[s ′]), wait for getting
(0-)confirmation, if so enumerate y0 into A, and wait for the corresponding change
of Xe0 or Ye0 (say at stage s ′′; note that, assuming that α00 � �, such a stage
must exist). Now, if Ye0 permits x[s ′], then the attack is completed by enumerating
x[s ′] into C. Otherwise, i.e., if Xe0 allows us to raise the value of ge0(z0), then—
as in the basic module—we replace the 0-agitator and raise the value of ge0(z0)
at stage s ′′ + 1 (by setting y0[s ′′ + 1] = ge0(z0)[s ′′ + 1] = s ′′ + 1) and, at the next
stages, we reset the parameters of the 1-module including the follower (by setting
z1[s ′′ + 2] = s ′′ + 2, y1[s ′′ + 2] = ge1(s ′′ + 2)[s ′′ + 2] and x[s ′′ + 3] = s ′′ + 3) and
start the basic module for 〈e1, i1〉 with these new parameters.

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1788 KLAUS AMBOS-SPIES ET AL.

As in the basic module we may argue that any instance of the 1-module is finite
and (assuming � � �) either guarantees that Pn is met as witnessed by the current
follower or ends with a call of the 0-module. Since the tracker z0 of the 0-module
is fixed, we may argue—again, as in the basic module—that this module is finite
and (assuming � � �) either ends with the current follower witnessing that Pn is
met or with the call of a final instance of the 1-module where the follower of this
instance witnesses that Pn is met. So the strategy is finitary and, assuming � � �,
the strategy ensures that Pn is met. Moreover, as in the basic module, the action
is compatible with R〈e0,i0〉 since the follower x is put into C only if it is permitted
by Ye0 . Compatibility with R〈e1,i1〉 is by delayed permitting. To show the latter
assume that α10 � � (otherwise the action of P� is not relevant for the satisfaction
of the requirement R〈e1,i1〉 as pointed out above). Then α00 � � whence R〈e0,i0〉 is
infinitary. So any call of the 0-module will result either in the enumeration of the
current follower into C or in a reset of the 1-module entailing the cancellation of the
follower (unless the strategy P� is initialized, in which case the follower is cancelled
too). Since any call of the 0-module starts with the permitting of the current follower
by Ye1 , this shows that C ≤T Ye1 by delayed permitting.

To summarize the above discussion with two R requirements, we note the
following: We keep running the basic strategy for the 1-module until we get a
confirmed follower with permission from Ye1 to be enumerated into C. Then we run
the 0-module strategy to see if that follower also gets permission from Ye0 ; if yes,
that follower is fully cleared by both Ye0 and Ye1 and can be enumerated into C. If
no, then we reset all parameters associated with the 1-module and repeat until we
eventually get a fully cleared follower.

We now turn to the construction. There and in the following we use the following
additional notation related to the noncomputability strategies P� . For any node �
let n be the length of � (and, similarly, |� ′| = n′ etc.). Let m� be the number of
�-infinitary R-requirements (hence P� is trivial if m� = 0). If P� is not trivial, let

〈e�0 , i
�
0 〉 < ··· < 〈e�

m�–1
, i�
m�–1

〉 < n and α�0 � ··· � α�
m�–1

� �

be the �-infinitary numbers and �-infinitary nodes in order of magnitude.
At any stage s of the construction the strategy P� will be in exactly one of the

following states describing the progress of the current attack (m < m�): initial state,
waiting for an m-tracker, waiting for a follower, waiting for realization, waiting
for m-confirmation, waiting for m-permission, and being satisfied. The m-tracker,
m-agitator, and follower of � at the end of stage s (if defined) are denoted by z�m[s],
y�m[s], andx� [s], respectively, where the m-tracker and m-agitator are concerned with
the�-infinitary R-requirementR〈e�m,i

�
m〉

. (Moreover, the m-agitatory�m[s] is defined at

stage s iff the m-tracker z�m[s] is defined at stage s and, if so, y�m[s] = g
e
�
m

(z�m[s])[s].

Hence, strictly speaking, y�m[s] is redundant.) All parameters associated with P�
persist unless they are explicitly changed. If P� becomes initialized then it is reset to
the initial state and all numbers associated with it (if any) are cancelled.

Stage 0. For any � , P� is initialized at stage 0, hence in the initial state.

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1789

Stage s+1. The highest priority strategy P� which requires attention at stage
s + 1 acts according to the case via which it requires attention as described in
the following. All strategies P�′ with � < � ′ are initialized.

The strategy P� requires attention at stage s + 1 if one of the following holds
(where m < m�).

(0) P� is in the initial state at the end of stage s and � � �s .
Action. If P� is trivial then declare that P� waits for a follower. If P� is
not trivial then declare that P� waits for a 0-tracker.

(1)m P� waits for an m-tracker at the end of stage s.
Action. Appoint z�m[s + 1] = s + 1 as m-tracker of � , and call
y�m[s + 1] = gem (z�m[s + 1])[s + 1](= gem (s + 1)[s + 1] = s + 1) the
m-agitator of � at stage s + 1. If m < m� – 1 declare that P� waits for
an (m + 1)-tracker. Otherwise declare that P� waits for a follower.

(2) P� waits for a follower at the end of stage s.
Action. Appoint x� [s + 1] = s + 1 as �-follower and declare that P�
waits for realization.

(3) P� waits for realization at the end of stage s and x� [s] ∈Wn,s .
Action. If P� is trivial then enumerate x� [s] into C and declare that P�
is satisfied. Otherwise declare that P� waits for (m� – 1)-confirmation.

(4)m P� waits for m-confirmation at the end of stage s and 	(〈e�m, i�m〉, s) >
z�m[s].
Action. Enumerate the m-agitator y�m[s] into A. Declare that P� waits
for m-permission.

(5)m
Y P� waits for m-permission at the end of stage s and y�m[s] =
g
e
�
m

(z�m[s])[s] is in Y
e
�
m,s

\ Y
e
�
m,s–1

.

Action. If m = 0 then enumerate x� [s] into C and declare that P� is
satisfied. If m > 0 then declare that P� waits for (m – 1)-confirmation.

(5)m
X P� waits for m-permission at the end of stage s and y�m[s] =
g
e
�
m

(z�m[s])[s] is in X
e
�
m,s

\ X
e
�
m,s–1

.

Action. Let g
e
�
m

(z�m[s])[s + 1] = s + 1 and replace the m-agitator of

� by y�m[s + 1] = g
e
�
m

(z�m[s])[s + 1](= g
e
�
m

(s + 1)[s + 1] = s + 1). If

m < m� – 1 then, for m < m′ ≤ m� – 1, cancel the current m′-tracker
andm′-agitator of � , cancel the current follower of � , and declare that
P� waits for an (m + 1)-tracker. Otherwise, cancel the current follower
of � and declare that P� waits for a follower.

If P� acts via clause (4)m at stage s + 1 then we say that P� m-acts at stage
s + 1, if P� requires attention via (5)Ym at stage s + 1 then we say that P� is
m-permitted at stage s, and if P� acts via (5)Xm at stage s + 1 then we say that
P� is m-reset at stage s + 1.

This completes the construction. In order to show that the construction is correct,
we start with some observations.

The strategy P�s requires attention via clause (0) at stage s + 1. So there is a
unique node � , in the following denoted by �s , such that the strategy P� becomes

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1790 KLAUS AMBOS-SPIES ET AL.

active at stage s + 1. Note that �s ≤ �s and all strategies P�′ with �s < � ′ (hence
with �s < � ′) are initialized at stage s + 1.

Next note that, at any stage s + 1, at most one tracker is appointed, and—if
so—this tracker is assigned the value s + 1. So trackers are mutually different, i.e., if
(�,m) 	= (� ′, m′) and z�m[s] and z�

′

m′ [s ′] are defined then z�m[s] 	= z�
′

m′ [s ′]. Moreover,

z�m[s] ≤ s and if s < s ′ and z�m[s] ↓	= z�m[s ′] ↓ then s < z�m[s ′]. Corresponding
observations apply to agitators and followers, respectively. Also note that if P�
acts via clause (4)m at stages s + 1 < s ′ + 1 then y�m[s] < y�m[s ′] since there must be
a stage s ′′ with s + 1 < s ′′ + 1 < s ′ + 1 such that P� is initialized or m′-reset for
somem′ ≤ m at stage s ′′ + 1 whence y�m[s] ≤ s < s ′′ + 1 ≤ y�m[s ′]. So a number new
y is enumerated into A at stage s + 1 (i.e., y ∈ As+1 \ As) if and only if, for � = �s ,
y = g

e
�
m

(z�m[s], s) and P� acts via (4)m at stage s + 1. Similarly, a new number x is

enumerated into C at stage s + 1 iff, for � = �s , x is the follower x� [s] of the strategy
P� at the end of stage s and either P� is trivial and acts via (3) at stage s + 1 or P�
is nontrivial and acts via (5)Y0 at stage s + 1.

Claim 1. (a) If P� is initialized only finitely often then P� requires attention only
finitely often.

(b) If � � � then there is a stage s� such that no strategy P�′ with � ′ <L � requires
attention after stage s� .

(c) If � � � then P� is initialized only finitely often and requires attention only
finitely often.

Proof. (a) Given � , for a contradiction assume that P� is initialized only finitely
often and P� requires attention infinitely often. Fix t0 maximal such that P� is
initialized at stage t0. Then P� acts at any stage s + 1 > t0 at which it requires
attention. So, in particular, P� acts infinitely often but is initialized only finitely
often. As one can easily check, this implies that P� is nontrivial and P� is reset
infinitely often. So fix m < m� minimal such that P� is m-reset infinitely often, fix
t1 > t0 minimal such that P� is not m′-reset for any m′ < m after stage t1, and let
sk + 1 (k ≥ 0) be the stages > t1 at which P� is m-reset (where sk < sk+1). Then
P� has an m-tracker at the end of stage s1, say z = z�m[s1]. Since P� is neither
initialized nor m′-reset for any m′ < m after this stage, this tracker is permanent,
i.e., z�m[s] = z for all stages s ≥ s1. Since P� is m-reset at stage sk + 1, it follows
that y�m[sk + 1]] = g

e
�
m

(z)[sk + 1] = sk + 1 for all k ≥ 1. In fact, since sk+1 + 1 is

the next greater stage at which P� is m-reset, it follows that g
e
�
m

(z)[s] = sk + 1 for
all stages s with sk + 1 ≤ s < sk+1 + 1. On the other hand, by construction, there
must be a stage ŝk such that sk < ŝk < sk+1 and such that P� m-acts at stage ŝk + 1,
i.e., acts via clause (4)m at stage ŝk + 1. Hence 	(〈e�m, i�m), ŝk) > z, i.e., f

i
�
m

(z, ŝk) =

g
e
�
m

(z)[s] = sk + 1. So limk→∞ fi�m
(z, ŝk) = �. But this contradicts the fact thatf

i
�
m

is a convergent approximation, i.e., that lims→∞ fi�m
(z, s) < � exists.

(b) Fix � � �. Since � is on the true path, we may fix a stage t such that � ≤ �s
for s ≥ t. Then no strategy P�′ with � ′ <L � requires attention via clause (0) after
stage t (since � ′ 	� �s). So a strategyP�′ with � ′ <L � can require attention at a stage

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1791

s + 1 > t only if P�′ has acted before stage t + 1 and if P�′ has not been initialized
at any stage u with t ≤ u ≤ s . Since there are only finitely many strategies which act
prior to stage t + 1, the existence of the desired stage s� follows by part (a) of the
claim.

(c) The proof is by induction on |� |. Fix � � � and, by inductive hypothesis, fix
s0 > s� such that no strategyP�′ with � ′ � � requires attention after stage s0 (where
s� is chosen as in part (b) of the claim). Then no strategy P�′ with � ′ < � acts after
stage s0. So P� is not initialized after stage s0. The second part of (c) follows by part
(a) of the claim. �

Claim 2. For e ≥ 0, ge is total and ge ≤T Xe .

Proof. Fix e and z. It suffices to show that (g0)–(g2) hold for all stages s and (g3)
holds. (g0) is immediate. For a proof of (g1) and (g2) assume that ge(z)[s + 1] 	=
ge(z)[s]. Then there is a unique nontrivial strategy P� and a number m < m�

such that e = e�m, z = z�m[s] and P� acts via clause (5)Xm . So, by case assumption,
Xe,s+1(ge(z)[s]) 	= Xe,s(ge(z)[s]) and ge(z)[s] < ge(z)[s + 1] since ge(z)[s] ≤ s and
ge(z)[s + 1] = s + 1.

Finally, for a proof of (g3), for a contradiction assume that there are infinitely
many stages s such that ge(z)[s + 1] 	= ge(z)[s]. Then there is a nontrivial strategy
P� , a numberm < m� , and a stage s0 such that z becomes appointed as m-tracker of
� at stage s0 + 1, and there are infinitely many stages s ≥ s0 such that z = z�m[s] =
z�m[s0 + 1]—whenceP� is not initialized after stage s0—andP� acts via (5)Xm at stage
s + 1. But this contradicts Claim 1(a).� �

Claim 3. For n ≥ 0, Pn is met.

Proof. Fix � such that |� | = n and � is on the true path �. We will show that
P� has a permanent follower x and that x ∈ C iff x ∈Wn. So x witnesses that Pn is
met.

By Claim 1 fix s0 minimal such that P� is not initialized after stage s0 + 1 and P�
does not require attention (hence does not act) after stage s0 + 1. Then the state � of
P� at the end of stage s0 + 1 is permanent and so are all other parameters associated
with P� at the end of stage s0 + 1.

Obviously, � is not the initial state (otherwise, by � � �, there are infinitely many
stages s > s0 such that � � �s and P� would require attention via (0) at stage
s + 1 for any such s). Similarly, P� cannot permanently wait for an m-tracker or
a follower (since otherwise P� would require attention via (1)m or (2) at any stage
s + 1 > s0 + 1). So, by minimality of s0, P� acts at stage s0 + 1, has a follower x at
this stage, and eitherP� is trivial or, for allm ≤ m� – 1, an m-tracker zm = z�m[s0 + 1]
and the corresponding m-agitator ym = y�m[s0 + 1] = gem (zm)[s0 + 1] are defined.
Moreover, if P� permanently waits for realization or is permanently satisfied then,
as one can easily check, C (x) =Wn(x) = 0 and C (x) =Wn(x) = 1, respectively.
So, in the remainder of the argument we may assume that P� is nontrivial, and it
suffices to rule out that P� permanently waits for m-confirmation or permanently
waits for m-permission for some m < m� .

For a contradiction, first assume that P� permanently waits for m-confirmation.
Sinceα�m0 � � � �, lims→∞ 	(〈e�m, i�m〉, s) = �, hence 	(〈e�m, i�m〉, s) > zm for almost

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1792 KLAUS AMBOS-SPIES ET AL.

all s ≥ s0 + 1. So P� will require attention via clause (4)m after stage s0 + 1. A
contradiction.

Finally, assume that P� permanently waits for m-permission. Then P� acts via
(4)m at stage s0 + 1. It follows that the parameters attached to P� are unchanged
at stage s0 + 1 and so is the approximation of g

e
�
m

. So the corresponding values

are permanent, i.e., z�m = z�m[s] and y�m = y�m[s] = g
e
�
m

(z�m[s])[s] = g
e
�
m

(z�m) for all

s ≥ s0. Moreover, y�m[s0] 	∈ As0 and 	(〈e�m, i�m〉, s0) > z�m[s0] whence As0(y�m[s0]) =
X
e
�
m,s0

(y�m[s0]) = Y
e
�
ms0

(y�m[s0]) = 0, and y�m[s0] is enumerated into A at stage s0 + 1.

Since, by α�m0 � � � �, A = X
e
�
m
∪ Y

e
�
m

, it follows that there must be a stage s > s0

such that y�m[s0] = y�m[s] is enumerated into X
e
�
m

or Y
e
�
m

at stage s + 1. But this

implies that P� requires attention via (5)Xm or (5)Ym at stage s + 1 > s0 + 1 contrary
to the choice of s0.

This completes the proof of Claim 3. � �

Claim 4. For e, i ≥ 0, R〈e,i〉 is met.

Proof. Fix e, i ≥ 0 where w.l.o.g. R〈e,i〉 is infinitary, i.e., Xe ∪ Ye = A and fi
converges to ge . Let α = � � 〈e, i〉. By assumption, �(〈e, i〉) = 0, hence α0 � �. So,
by Claim 1, we may fix a stage s0 such that no strategy P� with � < α0 acts after
stage s0.

Given a number x, we have to show thatC (x) can be computed fromYe uniformly
in x. Note that x may be put into C only if x is a follower. Moreover, if x is a follower
then x > 0 and x is appointed at stage x whence we may decide whether or not x is
a follower. So, in the following, w.l.o.g. we may assume that x is a follower, we may
let sx = x – 1 (so sx + 1 = x is the stage at which x is appointed), and we may fix
the unique � such that x follows P� . Distinguish the following three cases.

Case 1: � < α0. Then, by case assumption and by choice of s0, x is in C if and
only if x is enumerated into C by the end of stage s0.

Case 2:α0 <L � . Byα0 � �, � is to the right of � whenceP� is initialized infinitely
often. So x is in C if and only if x is enumerated into C by the end of stage tx where
tx is the least stage > x = sx + 1 at which P� is initialized.

Case 3: α0 � � . By case assumption, 〈e, i〉 is �-infinitary (hence, in particular,
P� is nontrivial) and we may (effectively) fixm < m� such that 〈e, i〉 = 〈e�m, i�m〉 and
α = α�m. Since x is appointed as P� -follower (i.e., P� acts via clause (2)) at stage
sx + 1 = x, it follows by construction that, for any m′ < m� , P� has an m′-tracker
zm′ = z�

m′ [sx] at the end of stage sx and a correspondingm′-agitator ym′ = y�
m′ [sx] =

g
e
�

m′
(zm′)[sx]. Note that if any of this parameters changes at a stage s + 1 > sx then,

at the least such stage s + 1, P� is reset or initialized hence x is cancelled. Moreover,
if x is enumerated into C at a stage s + 1 > sx then there must be a stage s ′ such
that sx + 1 < s ′ + 1 ≤ s + 1 and P� acts via clause (5)Ym at stage s ′ + 1 whence
ym = y�m[s ′] ∈ Ye,s′ \ Ye,s′–1.

So, in the remainder of the argument, w.l.o.g. we may assume that ym ∈ Ye (since
x 	∈ C otherwise). It suffices to show that there is a stage s + 1 > sx + 1 such that

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1793

the P� -follower x is cancelled at stage s + 1 or x is enumerated into C at stage
s + 1 (whence C (x) = Cs+1(x) for the least such stage s). For a contradiction
assume that there is no such stage. Since x is never cancelled, P� is neither reset
nor initialized after stage sx . So the parameters zm′ , ym′ , and x are permanent, i.e.,
z�
m′ [s] = zm′ , y�

m′ [s] = g
e
�

m′
(z�
m′)[s] = g

e
�

m′
(zm′)[sx] = ym′ , and x� [s] = x for s ≥ sx

(m′ < m�), P� acts whenever it requires attention after stage sx , and P� does not
require attention via clause (5)X

m′ (m′ < m�) after this stage. Moreover, by Claim 1,
there is a greatest stage ≥ sx + 1, say t0 + 1, at which P� requires attention. On the
other hand, sinceR〈e,i〉 is infinitary and since the m-agitator ym of P� is in Ye , there
must be a stage s + 1 > sx + 1 at which P� acts via (4)m and enumerates ym into
A. So there must be a number m′

0 ≤ m such that P� acts via (4)m′
0

or (5)Y
m′

0
at stage

t0 + 1.
Now, it is crucial to note that, for any m′ ≤ m, the requirement R〈e�

m′ ,i
�

m′ 〉
is

infinitary since R〈e�
m′ ,i

�

m′ 〉
is �-infinitary and 〈e�

m′ , i
�
m′〉 ≤ 〈e�m, i�m〉 whence αm′0 �

αm0 � � � 〈e�m, i�m〉 + 1 � �. This gives the desired contradiction as follows. First
assume thatP� acts via (5)Y

m′
0

at stage t0 + 1. Since x is not enumerated into C,m′
0 > 0

and P� waits for (m′
0 – 1)-confirmation at all stages s ≥ t0 + 1. SinceR〈e�

m′0–1
,i
�

m′0–1
〉 is

infinitary, hence 	(〈e�
m′

0–1
, i�
m′

0–1
〉, s) > zm′

0–1 for almost all stages s, it follows that P�

requires attention via (4)m′
0–1 after stage t0 + 1 contrary to choice of t0. Finally,

assume that P� acts via (4)m′
0

at stage t0 + 1. Then 	(〈e�
m′

0–1
, i�
m′

0–1
〉, t0) > zm′

0–1

whenceAt0(ym′
0–1) = (X

e
�

m′0–1
,t0

∪ Y
e
�

m′0–1
,t0

)(ym′
0–1) = 0, ym′

0–1 is enumerated into A at

stage t0 + 1 and P� waits for (m′
0 – 1)-permission at all stages s ≥ t0 + 1. So, since

R〈e�
m′0–1

,i
�

m′0–1
〉 is infinitary, there is a stage s ≥ t0 + 1 such that ym′

0–1 is enumerated

into X
e
�

m′0–1

or Y
e
�

m′0–1

at stage s. So P� requires attention via clause (5)Y
m′

0–1 or (5)X
m′

0–1

at stage s + 1 > t0 + 1 contrary to choice of t0.
This completes the procedure for uniformly computing C (x) from Ye and

the proof of Claim 4. (Note that the reduction C ≤T Ye is by delayed straight
permitting, hence a wtt-reduction, in fact an ibT-reduction. So in the statement of
Theorem 4.1 we may replace C ≤T A1 by C ≤wtt A1 or even C ≤ibT A1.) � �

Now, correctness of the construction is immediate by Claims 2–4. This completes
the proof of the theorem. �

Theorem 4.1 means that the strong version of Sacks’ Splitting Theorem is truly
“finite injury of unbounded type.” As we point out in the introduction, the result
also holds for degrees.

Theorem 4.3. Let α < ε0. There are c.e. degrees a and c > 0 such that for all c.e.
degrees a0, a1 with a0 ∨ a1 = a, if a0 is totally α-c.a. then c ≤ a1.

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1794 KLAUS AMBOS-SPIES ET AL.

Proof (sketch). The proof resembles the proof of Theorem 4.1 though it is
somewhat more involved. We only sketch the necessary changes. The splitting
requirements

R〈e,i〉 : If Xe ∪ Ye = A and if fi converges to ge then C ≤T Ye
in the set proof are replaced by

R〈e,i〉 : If ΦXe∪Yee = A and ΨAe = Xe ∪ Ye and if fi converges to ge then C ≤T Ye,
where now {(Xe,Ye,Φe ,Ψe)}e≥0 is a computable numbering of all disjoint pairs of
c.e. sets and all pairs of Turing functionals.1 The convergent approximations fi are
chosen as in the previous proof, and, as there, the functions ge are total functions
defined in the course of the construction. Moreover, if ΦXe∪Yee = A and ΨAe =
Xe ∪ Ye—in the following we shortly say that e is correct—then ge isXe-computable
(in the previous proof, ge was Xe-computable for any e). It is easy to show that this
together with meeting the noncomputability requirements and the modified splitting
requirements gives the theorem for a = degT (A) and c = degT (C).

As in the previous proof we define a length of agreement function 	(〈e, i〉, s) in
order to guess whether R〈e,i〉 is infinitary (i.e., whether the hypotheses are correct)
or not. For this sake we first define the length function 	̂(e, s) corresponding to the
first hypothesis (depending on e only) describing the current A-controllable length
of agreement between A and ΦXe∪Yee . Let 	̂(e, s) be the greatest 	 ≤ s such that

∀ y < 	 (ΦXe,s∪Ye,se,s (y) = As(y) ∧ ∀ u < ϕXe,s∪Ye,se,s (y)(ΨAse,s (u) = Xe,s ∪ Ye,s(u))).

Then the length function 	 is defined by

	(〈e, i〉, s) = max y ≤ 	̂(e, s) [∀x < y (ge(x)[s] = fi(x, s))].

Note that, for correct e, lims→∞ 	̂(e, s) = �. Moreover, for such e, if
	̂(e, s) > y then Xe,s ∪ Ye,s � ϕXe,s∪Ye,se,s (y) can be preserved by preserving As �
�Ase,s (ϕ

Xe,s∪Ye,s
e,s (y)), and if we change A � y + 1 at a stage ≥ s , then some number

below ϕXe,s∪Ye,se,s (y) must enter Xe or Ye at or after this stage too. Also note
that, for infinitary R〈e,i〉, lims→∞ 	(〈e, i〉, s) = � (hence, by 	(〈e, i〉, s) ≤ 	̂(e, s),
lims→∞ 	̂(e, s) = � too). In the proof of Theorem 4.1 we also had that, for finitary
R〈e,i〉, lims→∞ 	(〈e, i〉, s) ↓< �. This is not true here anymore, for instance, it could
be that lim sups→∞ 	(〈e, i〉, s) = � but the use of either Φe or Ψe goes to infinity.
However this has no impact on the strategies since the length function 	 is used to
measure agreement and does not on its own cause us to restrain A.

The priority tree T and the relevant parameters related to T are defined as in
the previous proof using the revised definition of the length function 	. Then
�(〈e, i〉) = 0 for all infinitary requirements R〈e,i〉. (Though, in contrast to the
previous proof, � may not be the true path since, as mentioned, now we may

1Since only total reductions will be relevant, w.l.o.g. we may assume that, for any oracle X, the
domains of the functions ΦXe and ΨXe are either � or initial segments of �, and that the corresponding
use functions ϕXe and �Xe , respectively, are nondecreasing (similarly, for the approximations at stage s).
Moreover, we assume that if ΦXe,s (x) is defined then e, x, ϕXe (x),ΦXe (x) < s (and, correspondingly, for
Ψ). So a computation with oracle X which converges at stage s can be preserved by preserving X � s .

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1795

have lim sups→∞ 	(〈e, i〉, s) = � for some finitary requirement R〈e,i〉. But this is
not relevant for the proof.) Hence, for any infinitary requirement R〈e,i〉 and any
node � extending � � 〈e, i〉 + 1, 〈e, i〉 is �-infinitary.

Now, the basic difference to the previous proof is the following. In the set proof,
for given e such that Xe ∪ Ye = A, by putting a new number y into A at a stage at
which the current parts of Xe ∪ Ye and A agreed on y, we could force y into Xe or
Ye . Now, assuming that e is correct, putting a new number y into A at a stage s + 1
such that 	̂(e, s) > y will only guarantee that Xe or Ye will change on a number
< ϕ

Xe,s∪Ye,s
e (y). This weaker effect forces us to adapt the strategies P� for meeting

the noncomputability requirements. As a consequence, we have to relax the rules
for moving the markers ge .

We explain the necessary changes by considering the basic module of a strategyP�
where there is a single �-infinitary requirementR〈e,i〉 (and where we assume that � �
〈e, i〉 + 1 is an initial segment of �). There, at some stage s + 1, we started the attack
by picking z = s + 1 as tracker, and by letting y = ge(z)[s + 1] = s + 1 and x =
s + 2 be the first instances of the corresponding agitator and follower, respectively.
For the argument, it was crucial, that putting the agitator y into A at a later stage
s ′ + 1 madeXe � ge(z)[s ′] + 1 orYe � x + 1 change at a stage s ′′ + 1 ≥ s ′ + 1 (since
y enters one of these sets at this stage and y = ge(z)[s + 1] ≤ min{ge[z](s ′), x}).
The former case gave us the permission to raise the value of the marker ge(z) (in
accordance with the marker rule (g1)) at stage s ′′ + 1, i.e., let ge(z)[s ′′ + 1] = s ′′ + 1.
In this case we defined new instances of the agitator and follower, namely we let
y = s ′′ + 1 and x = s ′′ + 2, and we iterated the attack with this new parameters
(and we argued that this case may happen only finitely often whence eventually the
second case must apply unless the requirement P|�| is met for some trivial reasons).
In the latter case, Ye permitted the enumeration of x into C at stage s ′′ + 1 and let
us successfully complete the attack at this stage.

In the current setting, putting y into A gives this desired effect only if

ϕ
Xe,s′∪Ye,s′
e (y) ≤ ge(z)[s ′] ≤ x. In order to achieve this, we do the following: having

picked the agitator y (at stage y), we wait for the first greater stage t + 1 such
that 	̂(e, t) > y (whence ϕXe,t∪Ye,te (y) < t), move the marker ge(z) to the new
position ge(z)[t + 1] = t + 1 at stage t + 1, (temporarily) preserve the computation
ΦXe,t∪Ye,te (y) (by preserving A � t up to the stage at which we put the agitator into
A), and pick the follower x = t + 2 at the next stage. Preserving A � t will help to
main the length function; as mentioned before even if the length function becomes
unbounded, it does not prevent lower priority strategies from enumerating into A
above t.

Moreover, if the agitator y becomes replaced by a new instance y′ (at a later stage
y′), we act correspondingly, i.e., at the first greater stage t′ + 1 such that 	̂(e, t′) > y′

we move the marker ge(z) and appoint the new instance x′ = t′ + 2 of the follower
at the next stage.

Of course, these moves of ge(z) are not compatible with the marker rule (g1),
i.e., these moves are not directly permitted by Xe . For correct e, however, these
moves are recognizable by Xe via delayed permitting. To be more precise, assume
that e is correct. Then 	̂(e, s) is unbounded in s, whence the function t(y) =
t ≥
y(̂(e)[t] > y) is total and computable. We claim thatXe can tell whether a position

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

1796 KLAUS AMBOS-SPIES ET AL.

ge(z)[s] of the marker is final or not. (Note that this is sufficient to compute (the
final position of the marker) ge(z) relative to Xe , since the other marker rules are
not affected by these modifications whence, in particular, the marker ge(z) reaches a
final position.) First note that the marker ge(z) is moved only if z becomes appointed
as a tracker (related to e) at stage z, and if ge(z) is moved at stage s ′ + 1 then z is
tracker at stage s ′ and there is a corresponding agitator y[s ′] at stage s ′ (appointed at
stage y[s ′] ≤ s ′). So, in order to tell whether ge(z)[s] = ge(z) or not, w.l.o.g. we may
assume that z ≤ s and that z is a tracker at stage s, and we may fix the corresponding
agitator y = y[s] at stage s (appointed at stage y). Now distinguish the following
two cases. First assume that s ≤ t(y). Then, unless z becomes cancelled earlier,
ge(z) is moved at stage t(y) + 1. So, in this case, ge(z)[s] = ge(z) iff ge(z)[s] =
ge(z)[t(y) + 1]. Finally, assume that t(y) < s . Then ge(z) is moved after stage s
only if the agitator y is replaced later, where the first replacement must occur at a
stage s ′ + 1 such thatXe changes on a number≤ ge(z)[s] at stage s ′. So fix s ′ minimal
such thatXe,s′ � ge(z)[s] + 1 = Xe � ge(z)[s] + 1. Now, if y[s ′ + 1] is not defined or
y[s ′ + 1] = y then ge(z) cannot move after stage s ′ + 1 whence ge(z)[s] = ge(z)
iff ge(z)[s] = ge(z)[s ′ + 1]. Otherwise, as in the first case, the first move of ge(z)
after stage s (if any) must occur by stage t(y[s ′ + 1]) + 1 whence ge(z)[s] = ge(z)
iff ge(z)[s] = ge(z)[t(y[s ′ + 1]) + 1].

Formally, the construction has to be modified as follows. Clause (1)m has to be
split into the following two clauses where waiting for m-lifting (m < m�) is a new
state in which the attack waits to become able to move g

e
�
m

(z�m) above the current

value of ϕ
X
e
�
m
∪Y
e
�
m

e
�
m

(y�m) and to preserve this configuration.

(1)m P� waits for an m-tracker at the end of stage s.
Action. Appoint z�m[s + 1] = s + 1 as m-tracker of � and appoint y�m[s +
1] = s + 1 as m-agitator of � at stage s + 1. Declare that P� waits for
m-lifting.

(1)m
′ P� waits for m-lifting and 	̂(e�m, s) > y

�
m[s + 1].

Action. Let g
e
�
m

(z�m[s + 1])[s + 1] = s + 1. If m < m� – 1 declare that P�
waits for an (m + 1)-tracker. Otherwise declare that P� waits for a follower.

Finally, clauses (5)Ym and (5)Xm have to be adjusted as follows where the action
corresponding to clause (5)Ym is unchanged.

(5)m
Y P� waits for m-permission at the end of stage s andY

e
�
m,s

� g
e
�
m

(z�m[s])[s] +

1 	= Y
e
�
m,s–1

� g
e
�
m

(z�m[s])[s] + 1.

(5)m
X P� waits for m-permission at the end of stage s andX

e
�
m,s

� g
e
�
m

(z�m[s])[s] +

1 	= X
e
�
m,s–1

� g
e
�
m

(z�m[s])[s] + 1.

Action. Replace the m-agitator y�m[s] by y�m[s + 1] = s + 1, cancel the
follower x� [s], and—ifm < m� – 1—cancel them′-tracker z�

m′ [s] and the

m′-agitator y�
m′ [s] for all m′ with m < m′ < m� . Finally, declare that P�

waits for m-lifting.

The formal proof of correctness is left to the reader. �

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.77

NOTES ON SACKS’ SPLITTING THEOREM 1797

Acknowledgments. This paper is derived from research whilst Downey was at
the University of Heidelberg under the auspices of an Alexander von Humboldt
Research Award.

Funding. Downey thanks to the Marsden Fund of New Zealand.

REFERENCES

[1] M. Bickford and C. F. Mills, Lowness properties of r.e. sets, unpublished.
[2] C. T. Chong, W. Li, and Y. Yang, Nonstandard models in recursion theory and reverse mathematics.

The Bulletin of Symbolic Logic, vol. 20 (2014), no. 2, pp. 170–200.
[3] C. T. Chong and K. J. Mourad, �n definable sets without �n induction. Transactions of the

American Mathematical Society, vol. 334 (1992), no. 1, pp. 349–363.
[4] R. Downey and N. Greenberg, A hierarchy of computably enumerable degrees. The Bulletin of

Symbolic Logic, vol. 24 (2018), no. 1, pp. 53–89.
[5] ———, A Hierarchy of Turing Degrees, Annals of Mathematics Studies, vol. 206, Princeton

University Press, Princeton, 2020.
[6] R. Downey, N. Greenberg, and R. Weber, Totally �-computably enumerable degrees and

bounding critical triples. Journal of Mathematical Logic, vol. 7 (2007), no. 2, pp. 145–171.
[7] R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, New York,

2010.
[8] R. Downey, C. Jockusch, M. Stob, Array nonrecursive sets and multiple permitting arguments,

Recursion Theory Week (Oberwolfach, 1989), Lecture Notes in Mathematics, 1432, Springer, Berlin,
1990, pp. 141–173.

[9] R. G. Downey and K. M. Ng, Splitting into degrees with low computational strength. Annals of
Pure and Applied Logic, vol. 169 (2018), no. 8, pp. 803–834.

[10] R. G. Downey and M. Stob, Splitting theorems in recursion theory. Annals of Pure and Applied
Logic, vol. 65 (1993), no. 1, pp. 1–106.

[11] R. Friedberg, Three theorems on recursive enumeration, this Journal, vol. 23 (1958), pp.
308–316.

[12] M. E. Mytilinaios, Finite injury and �1-induction, this Journal, vol. 54 (1989), no. 1, pp. 38–49.
[13] G. E. Sacks, On the degrees less than 0′. Annals of Mathematics (2), vol. 77 (1963), pp. 211–231.
[14] R. A. Shore, Splitting anα-recursively enumerable set. Transactions of the American Mathematical

Society, vol. 204 (1975), pp. 65–77.
[15] R. I. Soare. The infinite injury priority method, this Journal, vol. 41 (1976), no. 2, pp. 513–530.
[16] ———, Recursively Enumerable Sets and Degrees, Springer, New York, 1987.

INSTITUT FÜR INFORMATIK
UNIVERSITÄT HEIDELBERG

IM NEUENHEIMER FELD 205—MATHEMATIKON
D-69120 HEIDELBERG, GERMANY

E-mail: ambos@math.uni-heidelberg.de

SCHOOL OF MATHEMATICS AND STATISTICS
VICTORIA UNIVERSITY OF WELLINGTON

P.O. BOX 600, WELLINGTON, NEW ZEALAND
E-mail: rod.downey@vuw.ac.nz

INSTITUT FÜR INFORMATIK
UNIVERSITÄT HEIDELBERG

IM NEUENHEIMER FELD 205—MATHEMATIKON
HEIDELBERG D-69120, GERMANY

E-mail: martin.monath@posteo.de

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES
NANYANG TECHNOLOGICAL UNIVERSITY

SINGAPORE
E-mail: selwyn.km.ng@gmail.com

https://doi.org/10.1017/jsl.2023.77 Published online by Cambridge University Press

mailto:ambos@math.uni-heidelberg.de
mailto:rod.downey@vuw.ac.nz
mailto:martin.monath@posteo.de
mailto:selwyn.km.ng@gmail.com
https://doi.org/10.1017/jsl.2023.77

	1 Introduction
	1.1 How should we answer this question?
	1.2 Using classical notions
	1.3 Our results using this hierarchy
	1.4 Where the injury becomes unbounded
	1.5 Conventions

	2 Splitting a c.e. set into ωω-c.a. c.e. sets
	3 The ω2-proof
	3.1 Notation
	3.2 Discussion of the proof
	3.2.1 Construction.
	3.2.2 Verification.

	4 Unbounded type

