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Abstract. We study primitive theta functions, which were first introduced by Shintani, in a purely
local setting. We investigate a metaplectic representation of U(1) acting on the space of local
primitive theta functions and give its explicit irreducible decomposition. As a by-product, we
give a new proof of epsilon dichotomy for (U(1), U(1))
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0. Introduction

0.1. The primitive theta functions studied in this paper were first introduced by
Shintani in his unpublished work ([Sh]) on automorphic forms on U(2,1), a
quasi-split unitary group of degree 3. One of his main results says that a holomorphic
automorphic form f on U(2, 1) can be expressed as a linear combination of primitive
theta functions and their shifts (refined Fourier—Jacobi expansion). Furthermore, he
showed that suitable quotients of coefficients in the expansion of a Hecke eigenform
f are described in terms of the Satake parameters attached to f. This strongly
suggests that primitive theta functions will play an important role in the arithmetic
of automorphic forms on U(2, 1).

The main object of this paper is to study primitive theta functions in a purely local
setting. We are mainly concerned with a metaplectic representation of U(1) acting
on the space of local primitive theta functions. In particular, we give an explicit
irreducible decomposition of the space of primitive theta functions. The key ingredi-
ent in the proof is a trace formula for the metaplectic representation.

In a forthcoming paper, we will give an application of our local results to the
theory of Shintani’s refined Fourier—Jacobi expansion.

0.2. We now explain the content of the paper and summarize the main results. The
first three sections are of a preliminary nature. In Section 1, we define a Heisenberg
group H and construct a smooth irreducible representation of H on a lattice model.
Let F be a finite extension of the p-adic number field Q,. Let K be either a direct
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sum F @ F or a quadratic extension of F, and fix an element x € K* satisfying
K = —k, where zr>Z is the nontrivial automorphism of K/F. We define a
nondegenerate alternating form (, ):K x K — F by (w,w') = Trg,r(xww’). Let
H be K x F with multiplication law (w, )(W, ) =W+ w,t+1 + (w,w')/2).
Fix a nontrivial additive character y of F and take a lattice £ of K that is self-dual
with respect to the pairing (w, w') — y({w, w')) and satisfies %(1 +l)eL for leL.
We realize an irreducible smooth representation p of H with central character
(0, ) = Y(r) on the lattice model

1

V={®ecSK)|Dz+] :lﬁ(i(z, l) +%<1,7)) D(z) (zeK,leLl)

by
(o(w, ) D)(z) = x//<;(z, w) + t) Oz +w) (zeK,w,HHe H ®eV).

In Section 2, we define a metaplectic representation M of K! = {u € K* | uti = 1}
on V after [MVW]. For ue K' and ® € V, we put M(u)® =® if u=1 and

M@)® = |Ngr(1 = )], / w(%w uw>) p((1 = ww, 0)0 dw
K
if u#1, where |-|r denotes the normalized valuation of F and dw the Haar
measure on K self-dual with respect to the pairing (w, w') —y({w, w')).

In Section 3, we recall definitions and basic properties of several local constants
(Weil constants, Gauss sums and epsilon factors), which are frequently used in later
discussions.

The object of Section 4 is to give a splitting of M(u). For z € K*, we put

(z) - zeEFX,

2(2) = lK(w)—l CO(Z _E> oo ze KX —F%,

K

where o is the quadratic character of F* associated with K/F and Ax(i/) the Weil
constant associated with z — (zZ) (cf. Section 3.2). For z € K* and ® € V, we set

M@Z)O =9(z)- M(Z/z)D.

We show that z — M(z) is a smooth representation of K* on V (Theorem 4.5) by
calculating the cocycle of M explicitly.

In Section 5, we define the space of local primitive theta functions. Let
a=00k (€ K*) be a nonzero fractional ideal of K. Let H(a)=
{w.0) e H|wea,i+xww/2e€ (/0 — 0))Ng/r(a) - Ok}, where {1,0} is an Op-
basis of Og. Let V(a) be the H(a)-invariant subspace of V. Then V(a) = {0} unless
Uo 1= ny + ordp(x/(0 — 0)) + ordy N(x) > 0, where ny € Z is defined in Section 1.1.
Denote by P, € End(V) the projection operator of V(a). Suppose that p, = 0.
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We call
Vprim(@) = {® € V(a) | Py® =0 for any b e R(a),b # a}

the space of primitive theta functions in V(a), where R(a) is the set of fractional
ideals b of K satisfying a Cb and u, > 0. (In the case where Jx/r >0 and
U, = 0, the above condition is replaced by Q® = 0, where Q is defined by (5.6)).

Let I'rbe F* - Og if K=F & F,and K*if K is afield. Then z—>M(z)|Vprim(a)
defines a unitary representation Mg prim Of I'x on Vpiim(a). A unitary representation
M, of I'k on V(a) is similary defined. The representation M, prim decomposes as a
direct sum of unitary characters of I'x. Shintani ([Sh]) gave the irreducible
decomposition of M, pim in the case where F =Q, and K = Q(W-1) ®q Q,
by calculating the trace of M, prim. Later Glauberman and Rogawski ((GR]) showed
that M, prim 1S multiplicity-free in the general case and gave its irreducible
decomposition up to a character except in the ramified case. A basis of V' consisting
of eigenfunctions of the metaplectic representation was given by Y. Kato ([Ka])in a
special case and by T. Yang ([Ya]) in the odd residual characteristic case.

The main purpose of the paper is to give an explicit irreducible decomposition of
M prim and M, by calculating their traces explicitly. In Section 6, we state the
main results of the paper (Theorem 6.4 and Theorem 6.6). In the case where K
is a field, they are summarized as follows. For a unitary character y of K*, let
a(y) be the smallest nonnegative integer a such that y is trivial on
(1+PY)NOg, where P is the maximal ideal of Ok. Put Jgr=
ordp N(0 —0) and Yy = o Trx/r. Let &(y, Yx) be the epsilon factor defined by
Tate (cf. Section 3.6).

THEOREM. Suppose that K is a field.

(1) A unitary character y of K> appears in V if and only if y|lpx = and
e( Ux) = x(xk7Y), and its multiplicity is equal to one.

(ii) Suppose that y satisfies the conditions in (i). Then y appears in Vpy.im(a) (resp.
V(a)) if and only if a(y) = w, (resp. a(y) < u,), where

= | Fa - g =0,
¢ 2(ug +0ksFp) -+ Oxr>0.

Remark. The first assertion of the theorem is known as ‘epsilon dichotomy’ for the
dual pair (U(1), U(1)). This result was first proven by Moen ([Mo]) in the case where
the residual characteristic of F is odd. Later Rogawski ([Ro]) completed the proofin
the even residual characteristic case by combining Moen’s result and a global method
(the trace formula for U(3)). For epsilon dichotomy in a more general situation, we
refer to [HKS], where the first assertion of the theorem is proved by a local method
entirely different from ours. We also note that the second assertion of the theorem
is important in an application to the theory of Fourier—Jacobi expansions of auto-
morphic forms on U(2, 1).
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In Sections 7-9, we prove Theorem 6.4 and Theorem 6.6 by employing Shintani’s
idea of calculating the trace of the metaplectic representation. In Section 7, we cal-
culate Xo(2) = Tr(Mo(2)) and X prim(z) = Tr(Mgprim(2)) in an explicit form.
One of the advantages of realizing M on a lattice model is that we have a convenient
trace formula for Mjy(z) (b € R(a)) (cf. Proposition 7.3). The proofs of Theorem 6.4
and Theorem 6.6 are done by comparing the explicit formulas for X, and X prim
with certain summation formulas for characters proved in Section 8 (in the
unramified case) and in Section 9 (in the ramified case).

In Section 10, we reformulate Shintani’s result on the inner structure of V' (a) in
our local setting. Namely, we show that each element of V'(a) can be written as
a sum of a primitive theta function and ‘shifts’ of primitive ones of ‘lower index’.

NOTATION

For a vector space V over C, Idy denotes the identity operator on V. The
cardinality of a finite set X is denoted by #(X). For a locally compact Abelian
group G, let G* stand for the group of unitary characters of G.

1. Heisenberg Group and Lattice Model

1.1. Let F be a finite extension of Q, and r a prime element of F. Denote by Op
and prp = nOf the integer ring of F and the maximal ideal of Op, respectively.
Put ¢ = #(Or/pp). For a e F*, we put |a|p = ¢~ %@, where ordp: F* — Z is
the additive valuation normalized by ordg(n) = 1. We normalize the Haar measure
dx on F so that the volume of Op is equal to 1. Throughout the paper, we fix
a nontrivial additive character  of F. Let n, be the largest integer n such that

ll/lp;” = 1.

1.2. Let K be a commutative semisimple algebra over F with dimg K = 2. Then K
is either isomorphic to F @ F or a quadratic extension of F. We henceforth identify K
with F @ F in the former case. Let

0 Or ® Of -« K=F6®F,
71 the integer ring of K --- K is a field.

Let z+>Z be the unique nontrivial automorphism of K/F. For z € K, we put
Trx/r(z) =z +Z, Nxyr(z) = zZ and |z|g = |Ngyr(2)|p . If there is no fear of con-

fusion, we write N(z) for Ng,r(2).

1.3. Fix an element x of K* with ¥ = —x and define a nondegenerate alternating
form (, }: K x K — F by

(w,w') = Trp(kww').
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Let H be the Heisenberg group associated with the symplectic space (K, (,)). By
definition, the underlying set of H is K x F' and the multiplication law is given by

1
W)W, )y=w+w,t+1+ E(W, w)).

The center of H is {(0,¢) | t € F}.

1.4. Throughout the paper, by a lattice of K we always mean an Op-lattice of K.
For a lattice L of K, the dual L* of L (with respect to ¥({(, ))) is defined by
L*={ze K|y({z,w) =1 for any w € L}. We say that L is self-dual with respect
to Y((,)) if L=L* Let dz be the Haar measure on K self-dual with respect

to the pairing (z, w) —~y({z, w)). Then / dz =1 for any lattice L self-dual with
respect to Y({(,)). L

1.5. We take a lattice £ of K satisfying the following two conditions:

(1) L is self-dual with respect to ({1, 2)).
(i) le £=>%(1+7) eL.

For example, £ =«x"2p, " + (x/2) OF satisfies these conditions. Define
~ 1 -
. =v(j00+1)

for ([,t) e H(L) = L x F. Then J is a character of H(L). By general theory (cf.
[MVW, Ch.2, 1.3)]), Indz(ﬁ) J is a smooth irreducible representation of H with
central character (0, 7) (7). Recall that such a representation is unique up to
equivalence. The representation Indg(ma is identified with the lattice model
(V, p) with respect to £ given by

V= {(I) eSKK) | D(z+1) = lﬁ(é(z, Iy + % <1,7>> d(z) (zeK,le E)},

(p(WD)(z) = 1,0(%(2, w) + t> Oz +w) (h=wt)eH,ze K, eV),

where S(K) denotes the space of locally constant compactly supported functions on
K. Note that y((/,1)/4) = 1(resp.£1) for [ e £ if the residual characteristic of
F is odd (resp. even). We define an inner product on V' by

(®, D) :/ DO(z)D'(z)dz (@, V).
K
It is easy to see that p(k) (h € H) is a unitary operator with respect to the inner

product. In what follows, we write p(w, ) for p((w,t)) if there is no fear of con-
fusion.
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Remark. In [MVW, Ch.2, 11.8], the lattice model is defined in the odd residual
characteristic case. To define the lattice model in the even residual characteristic
case, we need the factor (/,/)/4 in the definition of V.

1.6. Let @° be an element of ¥ such that the support of ®° is contained in £ and
®°(0) = 1. Then

1
0 . zeK-L.

If ® e V satisfies p(1, 0) ® = y((I, [)/4) ® for any [ € L, then ® is a scalar multiple of
®°. The following elementary fact is crucial for the trace formula in Section 7.

1.7. LEMMA For ® € V, we have ®(z) = (p(z, 0)®, ®°) (z € K).

2. Metaplectic Representation

2.1. Let K'={ueK*|uu=1} act on H by u-(wt)=uw,1) (ueckK!,
(w, 1) € H). Foru € K', we define M(u) € End(V) as follows (cf. [MVW, Ch.2, I1.2]).
If u=1, we put M(u) =Idy. If u # 1, we put

(100 = 1=} [ (G000 )00 = w0102

=|1- u|;<1/2 / lp(‘cuww—i—%(z, w)) D(z + w)dw (®eV,zeK),
K

where

1 K kl+u
u:—T —_—) = = .
W=7 rK/F(l—u) 21—u

2.2. LEMMA. Let ue K"

(1)  M(u)op(h)=p(u-h)oMu)(he H).
(i) (M@u)®,d) = (©, Mu="d) (@, D € V).
(iil) M@)o Mu™") = Idy.

Proof. The first and second assertions are easily verified. The third one is obvious
when u=1. Let ue K' — {1}, and fix z € K and ® e V. Take sufficiently large
lattices L, L' of K, such that

u
ul —1
Supp(®) Cc z+ (1 —u) L+ (1 —u L.

uLc L, L' c L, Supp(Mu ®)cCz+(1—u)lL,
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Then we have

11— ulg' MuyM@u ")d(2)

= /; dw / dw tﬁ(é(w, uw) +%(z, (1 — u)w) —i—%(w’, ulw) +
1

(z+ {1 —uww, (1 — u_l)w’)) Oz + (1 —ww+ (1 —u W)

3
= / ( y(w, u '™t — l)w/))dw> 1p<l(w’, u'w) —1—1(2, (1- u_l)w’)> X
r \JL 2 2

x Oz + (1 —uHyw')dw'
=vol(L) lﬁ(l(w’, ulw) + l(z, (1- u_l)w’)> X
u-1=1)"' L* 2 2
x Oz + (1 —u Hw)dw',

where vol(L) = |, . dw. Since we can take L* sufficiently small, the above is equal to

u

vol(L) - vol( 1L*> D) = |1 — ulg' D).

w1 _
This completes the proof of the lemma. O
2.3. In view of Lemma 2.2 and the Stone-von Neumann theorem (cf. [MVW, Ch.2,

1.2]), the mapping u > M(u) defines a projective representation of K' on V.
Namely, we have

M@)o M) = c(u, u') M(uu') (u,u' € K

with ¢(u,u') € C*.

Remark. For ue K' and ® € V, put

M (u)®(z) = /ﬁ lp(;(l, z) + %(1, l>> O '(z+1)dl (z € K).

Then M’(u) defines an endomorphism of V' satisfying the property of Lemma 2.2 (i).
If the residual characteristic of F is odd, it is known that M’(u) € GL(V) and hence
u+—>M'(u) defines a metaplectic representation of K' on V (cf. [MVW, Ch.2, 11.8]).
On the other hand, in the even residual characteristic case, there exists u € K' such
that M’'(u) = 0.
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3. Local Constants

3.1. In this section, we recall the definition of several local constants and their basic
properties. Let {1,060} be an Op-basis of Ok and put

5K/F :0rdFN(0—5). (31)
Then Jx/r > 0 if and only if K/F is a ramified quadratic extension.

3.2. We first recall the definition of Weil constants. Let
7oy = [ oo 2 dv
K

be the Fourier transform of f € S(K). Due to Weil ([We]), there exists a nonzero
complex number Ag(y) such that

/ F@W(azz)dz = Ik () - o(@lalz || / 7@z dz (3.2)
K K

holds for any f € S(K) and a € F*. Here w denotes the quadratic character of F*
associated with K/F by local class field theory. Then Ax(y)* = w(—1). The
following fact is well-known.

3.3. LEMMA. Let a € F*.

(i) Suppose that ox;r = 0. Then ix(Y) = o(n"™).

(ii) Suppose that ox/r > 0. Then

{ g k2 (@) ig(W) -+ ordp(a) = —ny — Ok yr,

otherwise.

/ w(t)Y(at) dt =
o5

(iii) There exists a lattice Ly of K such that, for any lattice L of K containing Ly, the

integral [, y(azz)dz takes the value co(a)|a|;1 |K|}</2 Ax ().

3.4. We next define a Gauss sum. Throughout the paper, by an ideal a of K, we
always mean a nonzero fractional ideal of K (namely, a =00k for some
o € K*). We put ordr N(a) = ordp N(o) and |N(a)|p = |N(2)|r. Let d,z be the
Haar measure on K normalized by [ d.z=1. Note that

dyz = ghetomr dz (3.3)

where we put

o =y + ordy K S ordr N(). (3.4)

https://doi.org/10.1023/A:1002051017269 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002051017269

LOCAL THEORY OF PRIMITIVE THETA FUNCTIONS 281

For a € F*, we define a Gauss sum
Sa(a) = / Y(azz)d,z. (3.5)

By (3.2), we obtain

3.5. LEMMA.
Sa(@)
1 -+ ordp(a) = —ordr N(a) —ny,
= qn'ﬁ+5K/F/2 |N(a)|;1 w(a)|a|;l AK(lp) cee ordF(a) < —ordp N(C{) —hy — 5K/F S
0 ... otherwise.

3.6 Let Pg be n0k if K = F @ F and the maximal ideal of Ok otherwise, and put
qx = #(Ok/PBg). When K is a field, let ordg: K* — Z be the additive valuation of
K normalized by q,_(ord’((z) = |Ng/r(2)lp for ze K*. Set yx =y oTrg)r and
denote by ny, the largest integer n such that g is trivial on B". Then

ny, 51</F=0,
My, = (3.6)
2n,p+51</ﬁ 51(/1: >0.
We put
FX~(9,X< -« K=F6®F,
K= o (3.7)
K* ... K 1is a field.

For y € (T)", let a(y) be the smallest nonnegative integer a such that y is trivial on
(1+ P%) N Og. We set

S _ u
o) =05 5= [ 1 @) dou. (3.8)

where ¢ is an element of K* with ordg(c) =a(y) +ny, if K is a field, and
c =0+ (0 —0) if K=F @& F. Note that &(y, yx) is the epsilon factor defined
by Tate (cf. [Ta]) when K is a field. It is known that |S| = q,}“(’o/ 2 if a(y) >0
and that

(V) e k) = a(=1). (3.9)
3.7. PROPOSITION. Let y € (I'x)" and suppose that y|px = w.

(i)  We have e(y, Yx) = £x( ).
(i) If K=F&F, we have e(y, Yg) = y(x™).
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(iii) If K/F is an unramified quadratic extension, we have
8(7, lpK) — (_l)u()()—t-n,/,—&-ordp-(;c/(«?—@)) 7(K71)

Proof. By the assumption y|p« = w, we have &(x, Y x) = e(x~', ¥x). By (3.9), we
obtain &(y, x//K)2 = y(=1) = y(x~1)?, which proves (i). The second assertion is easily
verified. Though the third assertion can be proved by the argument in [Ro, Remark
to Proposition 4.1] using a formula of Frohlich and Queyrut ([FQ]), we give its
elementary proof for completeness. Suppose that K/F is an unramified quadratic
extension and put /=a(y). We can take c=na""%(0—0). Since x(c)=
(=1)Fmtordr(/0=0) =1 we only have to show that S > 0. Observe that
S =1+J, where

1:/0 dx dyx_l(x+0y)x//< Y )

; Or nl+n./,
— -1 Y
J—/pF dx/(;; dyy (x—f—@y)tp(nlﬂw).

First suppose that / = 0. Thenwehave / =1 — ¢! and J = ¢~ (1 — ¢!), and hence
S =1-¢?%>0. Next suppose that /> 1. Then

_ -1 Xy
1= [ rasoar [ () e

qil 122’

q’l—q’I/O ;{’1(1+9y)dy e =1,

On the other hand,

J:/ 77 (x + 0) dx /O w(#)dy

Pr

0 [;2,

- —q—1/ e+ 0dx - I=1.
Pr

Since

/ 751(1+0y>dy+/ x*l(x+0)dx=<1—q*1>”/ 7 wydu=0,
O

Pr 07(

we obtain S = ¢/ > 0 and the proposition has been proved. O
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4. Splitting of Metaplectic Repesentation

4.1. In this section, we calculate explicitly the cocycle c(u, «) for u,u’ € K' defined
in Section 2.3 and give a splitting of M. For u,u' € K' — {1}, put

1 —u

O-u,u’ = "[u —|— ‘L'ur =

4.2. PROPOSITION. For u,u € K', we have

1 v u=lord =loruu =1,
kW) o(ouu) - otherwise .

cu,u) = {

Proof. The assertion is easily verified if one of u, v/, uv/’ is equal to 1. Suppose that
utl,u#1 and u’ #1. Let ze€ K* and ® € V. We set

I, o) = (1 —w)(1 — ) (M@MW)D)z).

Taking sufficiently large lattices L, L’ of K, we have

I(u,u) = f dw f dw’l//<;(w, uw) +%(W’, u'w') +%((l —uww, (1 — u’)w’)) X
L !
x p((1 —w)w+ (1 —u )W, 0)D(z2).
We may (and do) suppose that #'L" C L. Changing the variable w into w+ u'w’, we
get
/ / 1 1 -1 AW 1 / /ot
T, u)y= [ dw [ dw' Y| =(w,uw) +=(w, (1 —u )1 + u )W) + =W, uu'nw') | x
x p((1 —w)w + (1 —wd )W, 0)D(z).
Replacing the integral [;, dw' by [, dw' and changing the variable w' into

w—(0—u)/(1 —u)w, we obtain

w

I(u, ) = / lp(—xzo';l ww)dw - |1 — uu/lgl/zM(uu/)(D(z)
L

= Ix(p) (=, ) — 1P L R 11— ud|§ M (ud YD(z)

= 7k () (0,0) [(1 — u)(1 — ) "> M(ud)D(z)

in view of Lemma 3.3 (iii). The proposition has been proved. O

4.3. For z € K*, we define y(z) € C* and M(z) € GL(V) by

w(z) - zeFX,
V(Z)Zlﬂ,K(lp)—le_E) o e KX —F 4.2)

K
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and

M) = y(2) M(Z/z2). 4.3)
4.4. LEMMA. For z e K* and ®©,® e V, we have

(M(2) @, @) = (@, Mz D).

Proof. This follows from Lemma 2.2 (ii) and the fact that y(z~!) = y(z) for
ze K*. ]

4.5. THEOREM. The mapping z+> M(z) gives rise to a smooth representation of K*
on V.

Proof. By Proposition 4.2, we have ¢(Z/z,7//z') = y(zZ')/y(2)y(Z)) for z,z € K*,
which implies that z+> M(z) is a homomorphism. The smoothness is easily
verified. ]

Remark. T. Yang ([Ya]) gives a splitting of M’ (cf. Remark to Section 2.3) in the
odd residual characteristic case.

5. The Space of Primitive Theta Functions

5.1. In what follows, we fix an Op-basis {1, 0} of Ox. When K/F is a ramified
quadratic extension, we assume that ordy N(f) =1 and fix a prime element IIT
of K. We put v=—(0/(0—0). Then v+v=1 and veDy),={zeK|
Trg/r(zw) € OF for any w € Og}. Note that v € HD,}}F if dx/r > 0.

5.2. Let a be an ideal of K. We set
H(a) = {(W, t)eleea,l—i—waercN(a)D;{}F}. 5.1
Then H(a) is an open compact subgroup of H. It is easily seen that

H(a) = {(w, t+ty)|weate HiEN(a)}

where
K
Ly = E(V —V)ww. (5.2)
We put
V() ={® e V| plhy)D=d for any hy € H(a)}. (5.3)
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Since

0de<0i§N(a)) =g — Ny,

we have V(a) = {0} unless p, = 0.

5.3. Let d,h be the Haar measure on H normalized by |, @ ot = 1. We define an
operator P, € End(V) by

P.© =/ p(h)y®d.h. (5.4)
H(a)
Let
R(a) = {b| an ideal of K,a C b, u; = 0}. (5.5)

The following fact is easily verified.

5.4. LEMMA.

(i) Wehave V(o)={d eV |P, 0=}
(i) For ® € V, we have

w, t,)@dw .- =0,
P = /;p( Ww) a Hq
0 s fe <0,

(Recall that d,w is defined in Section 3.4.)

(i) For ®©, @ € V, we have (P, ®,d") = (@, P, D).

(iv) For be R(a) we have PyPy=PyPo="Ps and hence P,V C V(a) and
PV = V(a).

5.5. Suppose that ég,r > 0 and p, = 0. We define an operator Q € End(}) by
(9]0) :/ p(w, t,,) @do,w, (5.6)
aj

where we put a; = IT"'a. Note that Q # P,, =0, since Q # 0 (cf. Proposition 5.8
(i1)). The following fact is proved similarly as Lemma 5.4.

5.6. LEMMA.

(1) We have QP, = P,Q = Q and hence QV C V(a).
(i) We have Q> = Q.

https://doi.org/10.1023/A:1002051017269 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002051017269

286 ATSUSHI MURASE AND TAKASHI SUGANO

5.7. We henceforth fix an ideal a of K with u, > 0. First suppose that ég,r =0 or
U, > 0. We set

Vprim(@) = {® € V(a) | Py® =0 for any beR(a), b a} . 5.7
Next suppose that dx;r > 0 and p, = 0. Set

Vorim(a) = {® € V(a) | QP = 0} (5.8)
and
Vi) ={® e V(a) | QD = D}. (5.9)

Then V(a) = Vprim(a) ® V!(a) in view of Lemma 5.6. In both cases, we call Vjyrim(a)
the space of primitive theta functions in V(a). Denote by Py prim € End(V) the
projection operator of Vpyrim(a).

5.8. PROPOSITION.

(i) For b€ R(a) we have Tr(Py|V(a)) = gletoxr,
(i) We have Tr(Q|V(a)) = ¢°*~! when dg/r > 0 and u, = 0.

Proof. By Lemma 1.7, we have
Py @(z) = / ky(z, w) @(w)dw,
K
where
1 ’ 1 / 0 /
k[)(Z, W) = / ‘p(tw’ +§<Wv w +Z) +§(Z7 w ))® (W - W/ - Z) de .
b

Observe that z — ky(z, w) and w — ky(z, w) are in V' (a). It follows that, for a suf-
ficiently large lattice L of K, we have

Tr(Py | V(a)) = /L ky(z,z)dz
- / (/ v((z, w’>)d2) W ()@ (=) dyw/
b L
= vol(L) Yt )P (—w) dpw' .
bNL*

Since we can take L* sufficiently small, we have

Tr(Py | V(a)) = vol(L) vol(L*) x % _ ghtor

which proves (i). The second assertion is proved similarly. O
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5.9. LEMMA.
(a) If K=F®F, we have

Pa—Po = P, + Pa, s g =2,

1
Pu,prim = Pa + ?q,l(_pal - Paz + Pal Puz + Paz Pal) o Hg = 1 s
P g =Y

where a; = (7', D)a, ay = (1, 7 Ya and a;p = (n7!, 77 Ha.

(b) If K/F is an unramified quadratic extension, we have

Poa—=Pr1a -+ /1022’

Peprim =
a,prim { P, e g = 0,1.

() If K/F is a ramified quadratic extension, we have

P :{Pa—Pnla =1,
a,prim PQ_Q :ua:()'
Proof. We prove the lemma only in the case where K = F @ F and u, = 1, since

the assertions in the other cases easily follow from Lemma 5.4 and Lemma 5.6. By
Lemma 5.4 and Proposition 5.8, we have

PePo=Pu, (Po) =Po, Tr(PulV(@)=1 (i=1,2).

By using an argument similar to that of the proof of Proposition 5.8, we obtain

Tr(Py, Por| V() = Tr(Py, Py IV (1) = 7" (5.10)
It follows that there exist ®;,®, € V(a) — {0} (unique up to scalar multiples)
satisfying P, ®; = ®; (i =1,2), and that V(a) = (CD; + CD2) @ Vprim(a). Since
Pay(Po, @1) = Py, @1, we have P, ® =c®d, with ¢ e C. Similarly we have
P, @, = @ with ¢ € C. By (5.10), we have ¢ = ¢~ '. Put

, 1
P =P.+ 1_7q_1(_7)a1 - Paz + Pal Pﬂz + Paz Pa1)~
Then P'V C V(a), P’ is the identity on Vpim(a) and P'®; =0 (i = 1,2), which
implies P" = Pq prim- O

5.10 PROPOSITION.

(l) dimc¢ V(Cl) = q#a‘*‘ék/F'
(i) (@) If K=F@®F, we have

qﬂa(l _q_l)2 'ua 22’
Clin’1C Vprim(a) = q—2 e g = 1,
1 #a:()
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(b) If K/F is an unramified quadratic extension, we have

' gel=q?) o u =2,
dimc¢ Vorim(a) = q e pe=1,
1 e e =0.

(¢) If K/F is a ramified quadratic extension, we have
dime Vprim(@) = ¢" " (1 = ¢7").

Moreover if u, =0, we have dim¢ V'(a) = ¢+,
Proof. Observe that dimc V(a) = Tr(Po|V(a)) and dimc Virim(a) = T7(Pa,prim|
V(a)). The proposition now follows from Proposition 5.8, Lemma 5.9 and

(5.10). O

6. Main Results

6.1. In the remaining part of the paper, we fix anideal a of K satisfying u, = 0. Let
z € 'k (recall that T'x is defined by (3.7)). For b € R(a), we set

Xp(2) = Tr(Py M)V () = Tr(PyM(2)| V(D)) . (6.1)
Note that Xy(tz) = w(f) Xy(z) for t e F*. Define

Xoprim(2) = Tr(Po prim M)V (a)) . (6.2)
When dg/r >0 and g, =0, we set

X! (@) = THQM(@E)|V(a)). (6.3)

6.2. Let z € T'k. Since z/z € O, we have M(z) Py, = P, M(z) for b € R(a). This
implies that M(z) V(a) C V(a) and M(2) Vprim(a) C Vprim(a), and hence M induces
a representation M, (resp. Mg prim) of I'k on V(a) (resp. Vprim(a)). Then

Xo(2) = Tr(Mo(2)),  Xaprim(2) = Tr(Mqprim(2)) . (6.4)
We also have, when ég/r >0 and p, =0,

X (2) = Te (M) V(). (6.5)

6.3. Let X(w)={y € Tx)" | xlpx = w}. For [ € Z,1 >0, we set
X(w; 1) ={y € X(w) | aly) <1} (6.6)

and

Xprim(w; 1) ={ye X(G)) | a(X) =1} (67)
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(recall that a(y) is defined in Section 3.6). Set

X (w3 1) = {7 € X(@; D) | et Yg) = 77} (6.8)
and

X i (@3 1) = (1 € Xprim(@; 1) | e, i) = 27} (6.9)

If K=F @ F,wehave X (0;]) = Xpsim(w; 1) for [ > 0.If K/F is an unramified
quadratic extension,

Xprim(w; 1) --- 1=ny + ordp(x/(0 — 0)) (mod 2)

Xt (w;]) =
prm otherwise

in view of Proposition 3.7 (iii). We now state the main results of the paper.

6.4. THEOREM.
(i) If ok/r =0 we have

Xn,prim = Z X = Z x-

HEX ] (@3 11g) 1€ X prim (@3 1)
(i) If oksr > O we have

Xa,prim = Z x-
xeX;rim(o); 2(ua+0k/F))

(iii) If oksr > 0 and p, =0, we have

Xa]: Z % -

reXT . (w;20k/r—1)

prim
The following fact is proved in [Sh] in the case where F=Q, and
K =Q(v-1)®qQ,, and in [GR] in the general case.
6.5. COROLLARY. The representation Mg prim of I'x is multiplicity-free.

6.6. THEOREM.
(i) If K=F®F, we have

Y=Y Y (k+ny

0<k<pg yexly (@ =k

= Y (—a+Dy.

1EXT (@311,
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(i) If K/F is an unramified quadratic extension, we have

o= 3 2.
k>=0,u,—2k >0 ZeX;rrim(w; Uo—2k)

-y .

2EXT (w5 4t)

(i) If K/F is a ramified quadratic extension, we have

Y= ), 2t )

0<k<p, X€X;~im(‘”; 2(k+0k/F)) reXt. (w;28k/r—1)

prim
= > 7.

2EXH (@;2(1e+0k/F))

As a direct consequence of Theorem 6.6, we have proved the following result due
to Moen [Mo] and Rogawski [Ro], which is known as ‘epsilon dichotomy’ for
(U(1), U(1)) (cf. Section 0.2).

6.7. COROLLARY. Suppose that K is a field.

(1)  The metaplectic representation M of K* on V is multiplicity-free.
(i1) A wunitary character y of K* appears in M if and only if ylpx = and
ot k) = 1.

7. Trace Formula

7.1. The object of this section is to calculate Xu(z), Xoprim(z) and X!(z) for z € T'k.
We first give the kernel function of the operator PyM (1) for u € K'. By Lemma 1.7,
we have

(M (1) D)(z) = /K n(z.2)®()dZ (@ eV,ueK' zeKk),

where 1,(z,2Z) = (M) p(—z, 0) ®°)(z). It follows that
(Py M(u) D)(z) = / Nup(z, 2) @(2) dZ’ (®eV,zeK),
K
where

nu,b(z’ Z/) = f W(%(Z, w) + tw) Vlu(Z +w, Z/) dpw
b
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Observe that, if u # 1, we have

1 1 —_
Nz 2) = 1 —ul " / lp(v:u WP + 5(2/, =)+ 5w, z)) Oz — z 4+ w)dw
K

in view of the definition of M(u) (cf. Section 2.1).

7.2. For z=x+ 60y € K*, we put

_Jordp(y/x) --- x#0,
v(z)_{_ooF DY (7.1)

7.3. PROPOSITION. For z =x+ 0y € T'x, we have

Xo(2)
gooRr oo (x) x| coo0(2) =y + OkyF
= IN)IYx ] . o, (0-0 _
S PUZLY N w<7y> D o) < gy,
0 ... otherwise.

Proof. If z=x € F*, we have Xj(z) = ¢*%F o(x) and the assertion is clear in
this case. Suppose that z € K* — F*. By an argument similar to that in the proof
of Proposition 5.8, we have, for a sufficiently large lattice L of K,

THPuM(z/2) | V() = /L s O, W) i/
=1 —z/z];”/ W(ty + =/ i) dpw
b

= |1 — E/Z|;<1/2 SD(TE/Z + g(\’ - V))

s
‘ Z/Z‘K [’B_ey

Since

1= 2/l = N PP and 56 = 2 o T ).
we obtain
Xo(z) = 7(2) Te(PyM(Z/2)| V (a))

o (0-0 _ K X
= IV ) o S )i ()

The proposition now follows from Lemma 3.5. O
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7.4. LEMMA. If z € (1 + n*F%kr Og) N Ok, we have Mq(z) = Idy(q).

Proof. Since M,(z) is a unitary operator on V/(a), it is sufficient to show that
Xu(z) = dimc V(a) for z € (1 + n+oxr Og) N OF. This fact is a straightforward
consequence of Proposition 7.3 and Proposition 5.10 (i). OJ

7.5. PROPOSITION. Assume that ox/r = 0 and let z = x+ 0y € Og. If p, =2, we

have
g (1 =g (1 —om@g™) - ordp(y) = p,,
Xoprim(2) = 1 —¢"~' (1 —o(m)g™") coordp(y) = pp — 1,
0 e 0< ordp(y) S pp —2.

If u, =1, we have

fg-l1-w@ - ordp(y)>1,
Xa,prim(z) = { -1 ordF(y) =0.

If u, =0, we have X prim(z) = 1.

Proof. The proposition is a direct consequence of Lemma 5.9 and Proposition 7.3
except in the case where K = F @ F and p, = 1. In this case, we further need

TI’(PQI Puz M(z)| V() = Tr(Pag Pm M(2) | V() = q71 (z e O;é),

which is easily verified (for the definition of q;, see Lemma 5.9). O

The following two results are proved similarly as in the case dx/r = 0.

7.6. PROPOSITION. Assume that dg;r > 0 andlet z=x+0y € K*. If dx/r =1,

we have
(1 — g Ho(x) (@) = pgt+ 1,
0—0
Xa,prim(z) = quﬂ{ql/2)~K(l//)lw<Ty> - w(x)} T U(Z) = Uq>s
0 () S p,— 1.

If Ox/r = 2, we have

qhu+51</F(1 — q—l)w(x) e 0(2) =+ 5K/F i

—g"atOxr—1 () o 0(2) = g+ OxyE— 1,
KXo prim(2) = o3 Ho < V(2) < o+ OK/F

qﬂn+5K/F/2/"LK(lp)—IUI( - J/) o) = g,

0 @) < — 1.

(For the definition of u(z), see (7.1).)
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7.7. PROPOSITION. Assume that dx;r > 0 and p, = 0. For z =x+ 0y € K*, we

have
PR lo(x) cou(z) =0k — 1,
0 o0 <96 -2,
Xal(z) _ . v(z) K/F
N e ) IO S

7.8. Remark. Suppose that K is a field. Letting b be sufficiently small in Proposition
7.3, we see that the character of M(z) at z € K* — F* is equal to

o) |12
K

~1/2

z

K

This character formula has been proved in [Pr] in the odd residual characteristic case
(see also [Ho] for the Sp,(F,) case).

8. Irreducible Decomposition: The Case dx,;r =0

8.1. In this section, we suppose that dx,r = 0 and prove Theorem 6.4 and Theorem
6.6 in this case. Recall that T'x = F* - O%.
Let / be a nonnegative integer. Put

1+70g - 1>0,
O o 1=0.

Note that Ox NT'x() ={z=x+40y € Of | ordp(y) = [} for [/ >0, and that

re =" |

X; D) ={x e T | tlp = o, tloxarep = 1}
The following fact is easily verified.
8.2. LEMMA. We have

#HX(w; D) = #Tx /Tk()

B qd0—wmqg) - 1>1,
B 1 . 1=0
and
d1—gHl-wm@mqg") - =2,
H( Xprim(@; ) = { ¢ — 1 — () e 1=1,
1 e [ =0.

We now quote the following elementary fact from the representation theory of
finite Abelian groups.
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8.3. LEMMA Let G be a finite Abelian group and H a subgroup of G. Then we have
#HG) (1 —1/#H)) --- g=e,
3 e = { —HG)HH) o geH—{e},

1€G (g #1 0 . geG—-—H,
where e denotes the unit element of G.
8.4. PROPOSITION. Let z=x+ 0y € Og and p be a nonnegative integer.
1) If u=2 we have

1 =g 1 -omqg") - ordr(y) > pu,
Y. =1 ¢ -omq ) o ordp() =p—1,
7€ X prim (3 11) 0 coooordp(y) Spu—2.

(i) If u=1, we have

L [a-1-o@ - ordr()>1
2. "(Z)_{—1 .. ordp(y) =0.

ZGXpnm(W; 0]

(iii) If u =0, we have

Z wW(z)=1.

XEXprim(w; 0]

Proof. The assertion (iii) is obvious. The other assertions are immediate
consequences of Section 8.1 and Lemma 8.3. O

8.5. Combining Proposition 7.5 and Proposition 8.4, we have proved Theorem 6.4.
We can prove Theorem 6.6 in a similar manner.

9. Irreducible Decomposition: The Case dx/r > 0

9.1. In this section, we suppose that dx,r > 0 and prove Theorem 6.4 and Theorem
6.6 in this case. For p >0 and z € K*, we put

1
L&=5 ) 0@ 1)
ZEXprim(w~ 2(H+()K/1"))

and

CEEED D AR ) ©.2)

XGXprim (o5 2(ﬂ+5K/1"))
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We also put

, 1
I'a=5 1 93)
HEX prim(@; 25k /r—1)
and
, 1
JO=5 > 20y 1) 94)
1EX prim(@; 20k /r—1)

Then we have

> 1(2) = 1(2) + Ju(2)

2€X T (0 2u+0k/F))
and

> 1) =1'0E)+7().

X€X+ (w; 2(51(/1:71)

prim

In view of Proposition 7.6, Proposition 7.7 and the equalities above, the proofs of
Theorem 6.4 and Theorem 6.6 are reduced to the following result.

9.2. PROPOSITION. Let p>=0 and z=x+ 0y € K*.

(1) We have
gt (1 — g o(x) - @)= p+dkr,
L(z) = { =4 o(x) ceo0(2) = pA40gr— 1, (9.5)
0 U(Z)<M+5K/F—2
and
. o, (6-0
JH(Z) _ q/¢+(>l</F/2 }K(I,D) 1 w(K y) ceou(z) =, 9.6)
0 ) A
(ii) We have
k=l p(x) - 0(z) =0k —1,
) = q (x) (2) = OkyF 0.7
U(Z) < 51(/1: -1
and
0 - 0(2) =0,
J(2) = . -0 9.8
(Z) q((>1(/1-'—l)/2 ;LK(lp)_l CO(O - Oy) A 1)(2) <0. ( )
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9.3. For /[ €Z,] > 0, we put

Tx() = F* (1+ $). 9.9)
To prove Proposition 9.2, we need the following elementary fact, the proof of which
is omitted.
9.4. LEMMA. Let z€ K* and | > 0.

(i) Wehave v(z)=[1<= ze Tkl +1)—-Tkg2+2).
(i) We have

1/2 S
) - g is even,
HK*/Tk() =2 x { =2 ... 1 isodd,

1 1 iseven,
HTx(D)/Tg(l+ 1)) = -

q 1 is odd.

9.5. Proof of (9.5) and (9.7). First suppose that u > 0. Take y, € X(w; 2(u+
0k,r — 1)). Then we have

Xprim(@; 2(u 4 0k /F)) = {10 & | £ € G", &y # 1},

where G = K*/T'x(2(u+0k/r)) and H =Tx(2(u+ dk/r — 1)/Tk2(p + 0k /F))-
The equality (9.5) now follows from Lemma 8.3, Lemma 9.4 and the fact that
%0(z2) = o(x) if v(z) = pu+ 6g,r — 1. Next suppose that u = 0. In this case, we have

Xprim(w; 25K/F) = {Xé]é | 6 € GA’ é'H # 1} )

where y, is an element of X(w;20x/F —1), G=K*/T'x(20k;r) and H =
I'k(20k/r — 1)/Tk(20k/F). Then (9.5) is proved similarly as in the case u > 0.
The equality (9.7) is proved similarly as (9.5). O

9.6. Proof of (9.6) and (9.8). Put a = Trk/r(0) and f = Ng,r(0). Then ordra =1
and ordgf =1 (cf. Section 5.1). We take a prime element n of F with
o(m) =1 and put ¢ = "+ (9 — ). Then, for y € Xpim(w; 2(1 + Sk/F)), We
have

e, g) = ¢" R y(c) /O Q) W(%) dou.

It follows that, for z = x + 0y € K*, we have

; 0—0
Ju2) = g +owr m(— ) /0 L Y(Z) dogu 9.10)

K

(note that I,(Nk/r(w)z) =1,(2) for we K*). We first show that J,(z) =0 if
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v(z) = ordp(y/x) < 0. For u = s+ 0t € O, we have

_ s—tx/y
< —
v(zu) = ordp Bt Grany S 1,

since s € Oy, t € Op. Inview of (9.5), we see that I,(zi7) = 0, which proves our claim.

Suppose now that v(z) = 0. Then x~'z =1+ 0y/x € Of. Changing the variable u
into (1 + 0y/x)u in the integral in (9.10), we have

0—10 14+6 U
1= o L) [ (L)

oo <) [as [ anns oy (L),
05 OF

K C

Changing the variable ¢ into st and using Lemma 3.3 (ii), we obtain

A 0—0 _
J) = g onr w<_ . x) fo F { /O ; o(s) lp(snfffi/fw) ds} L(1 + 0r)dt

— 2 () w(_g - Hx> Jo(2),

K

where

/ )y
J(z):/ ol(=—1) L, + t0)dr.
g OF, ordp(t—y/x)=p (x ) g

It follows from (9.5) that, if v(z) # p, we have J)(z) = 0 and hence J,,(z) = 0. Finally
suppose that v(z) = p and put y = —y/n*x € Op. Then we have

J(@)=q" / o(—=t)I,(1 + 7" —n)h)dr .
o

F

By (9.5), we obtain

T1(2) = g (1) / (g5 () df
O, ordp(t'—n)=0k/r—1

+ / (1 = g~ )g" o5 ()t
OF, ordr(t'—n) = ox/r

= g o(=D{(=g" (=g wx(n)) + (1 — g~ g% - g% ox(n))

-of)
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We thus have
0T\ s 01
10 = ¢ o <y ) = s o)

which proves (9.6). The equality (9.8) is proved similarly (in this case, we take
¢ =m0 — 0)/0). O

10. The Inner Structure of ¥V(a)

10.1. The object of this section is to show that each element of }'(a) can be written
as a sum of a primitive theta function and ‘shifts’ of primitive ones of ‘lower index’.
Note that the results of this section were essentially proven in [Sh].

For r € F*, put ¥,(t) = y(rt). Let L") be a lattice of K self-dual with respect to
¥,((,)) satisfying (I+1)/2 € LD for [ € L7, Let (V?, p®) be the lattice model
with respect to £ (cf. Section 1.5). The following fact, which was proven in [Sh]
in the global setting, is crucial in the later discussion. We postpone its proof until
the end of this section.

10.2. PROPOSITION. For f e K*, there exists a linear isomorphism If) of
VOINE) and VO satisfying

2 o p N B, N(BY) = pO(w. 1) o L ((w,1) € H). (10.1)

Remark. By the Stone-von Neumann theorem, Ig) is uniquely determined by

(10.1) up to scalar multiples. This implies that, for S, € KX, we have
TP o Ty/NP = (B, B) - T3, with (B, B) € C*.
10.3. Foranideal a of K, welet V(a) C ¥ and P € End(V'") as in Section 5.
Note that ¥?(a) = {0} unless . :=ny + ordp(ric/(0 — 0)) + ordy N(a) = 0. When
1 > 0, we define the primitive part Vé?im(a) of V"(a) as in Section 5.7. By (10.1),
we have

70 o PYNO) Z P 6 70, (10.2)

In what follows, we often write V(a), Py, t, and Zg for ¥®(a), PV, 1" and Ig)
respectively.

10.4. LEMMA. Let f§ be a nonzero element of Ok with p, —ordr N(f) = 0.

(i) We have Zz(VI/NP)(a)) C V(a). ,
(i) If B € Ok and B/B € OF, we have Iy(V NP () = T,V NP (qy).

prim prim

Proof. The lemma follows from (10.2) and Lemma 5.4 (i). O
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10.5. For an integral ideal b of K with p, —ordr N(b) = 0, we define a subspace
Vy(a) of V(a) by

Va(a) = Zp(V NP (ay), (10.3)

prim

where b = § Ok. Note that the right-hand side of (10.3) is independent of the choice
of f by Lemma 10.4 (ii). Observe that Vo, (a) = V)rim(a) and that

dim Vy(a) = dim ¥/ (a). (10.4)

10.6. LEMMA. Let b,V be integral ideals of K with

b#£Db, po—ordp N(b) =0 and u,—ordp N(b') =0

If ordp N(b) # ordp N(b') or ordg N(b) = ordp N(V') < u,, then we have Vi(a) L

be(a).
Proof Let b=pOx and b/ =p Ok with p,f € Ok, and let ® € V[P (a),
V(il/rjnv * »(a). First consider the case where K is a field. We may (and do) suppose

that B /B € Ok — Og. By (10.2), we have
(Zp®. Iy®) = (Ty®, Iy PINEOID) = (Z50, Pyt @)
= (Py-1,Lp®, Iy®) = (I,P“/{V(ﬂ”cb Ty,

which vanishes by the primitivity of ®. Next consider the case where K = F @ F and
put II; =(xn,1),I1, =(1,n). Observe that, for jeZ with pu,—ordr N(f)—
(G+1) =0, we have

Pl @ =P e =0 @e v Pw). (10.5)

This fact is easily verified and we omit its proof. We may (and do) suppose that

B=TITT, and p' =TIT05 (k, L k',I' > 0) with k+[ <k +1'<p, or k+[=
k' + 1 < p,. First consider the case k' > k. By (10.5), we have
(Zp®,Zyd) = (Z5D, I,;rP(l/N(ﬁ oy = PV @, 7,0 =0,

! 4
=+ 7'y " a

since (u, —k—1I1)— (' =1+ 1) = 0. The assertion in the case k' < k is proved simi-
larly as above. [

10.7. LEMMA. Suppose that K = F & F and put B; = 1,0k, B, = [1,Ok. Then

W = Z e (@) (10.6)
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is a direct sum and hence

dim W =y, + 1. (10.7)

Proof. For simplicity, we write u for p,. Observe that VI/™)(q)=
Vim(a)=C-®y (@ #0). We now show that (T +@odo <k < is linearly
independent, which implies the lemma. Since the claim is trivial when u =0, we

assume u > 0. Suppose that there exists a nontrivial linear relation
I
Y Ly ®o =0
k=0 :

with a, € C,ap=---=a;_1 =0,a; #0. For ff € K*, we write I’ﬂ for Ig/nm) to
simlify the notation. Apply Z[, ., to both sides of the above equality. In view
of the Remark to Proposition 1b.2, we obtain

u
T ®0= ) beZpiip @ (b €C). (10.8)
k=I+1

Since the right-hand side of (10.8) is H(a)-invariant, we have

/ _ p(1/atty 71 _ (1/7%)
Inylng*’(bo =P Zn;1n§*’®0 - Il’[fll'lf_f' Pn;‘ng*/a Do.
. . e 1/mh . .
Since Ih,, - is a bijection, we have @)= Pi_lf T r?“*’ ®y =0, which is a con-
. . 1 2 1 a
tradiction. ’ ]

Remark. The sum (10.6) is not necessarily an orthogonal sum.
We now state the main result of this section.

10.8. THEOREM ([Sh]).

(1) If K=F®F, we have an orthogonal decomposition V(a)= @, Vy(a) ®W,
where b runs over the integral ideals of K with p, —ordp N(b) > 0.

(i) If K is a field, we have an orthogonal decomposition V(a) = @, Vy(a), where b
runs over the integral ideals of K with p, —ordrp N(b) = 0.

Proof. By Lemma 10.6, the sum is an orthogonal direct sum in both cases. By
Proposition 5.10, (10.4) and (10.7), we see that dim V' (a) is equal to the dimension
of the direct sum in both cases, which proves the theorem. O

10.9. From now on, we fix r € F* and f € K*, and show the existence of I(ﬁ")

satisfying the condition of Proposition 10.2. For simplicity, we write ', £ and
(V'.p') for Y,y LN and (WO pC/NED) - respectively.  Define
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R € End(V) by

1 7 /
R = fﬁ W, (Z (. l>) P (B1.0)dl.

The following lemma can be proved similarly as in Section 5 and we omit its proof.

10.10. LEMMA.

(i) We have R?> =TR.
(i1) There exists an ideal a9 of K such that, for any ideal o C ay, we have
RV'(a) C V'(a) and Tr(R|V'(a)) = 1.

10.11. COROLLARY. There exists anonzero element (I);s of V' (unique up to scalar
multiples) satisfying

p'(BL,0) @) = np(—% {1, 7)) oy (leL").

10.12. Proof of Proposition 10.2. Take (D}; as in Corollary 10.11. For @ € V', we
put

IOV = (b2, 0¥, @) (z€ K). (10.9)
It is easily verified that Ig‘) ® e V" and that
I 0 p/(Bw. NBY) = p(w, ) o I ((w.1) € H). (10.10)

To prove the bijectivity of 7 ") we have only to show that I & # 0 in view of (10.10)
and the Stone-von Neumann theorem. Let ®° be the element of V' given by

/] 1 I
(I)’O(z): ¢<1(2’2)> e zeL
0 ... otherwise.

Then Z{ ®°z) = (p/(fz,0)®°, ®)) = D)(—pz) (cf. Lemma 1.7) and hence
I(')d)’o # 0, which completes the proof of Proposition 10.2.

Acknowledgement

The authors would like to thank the referee very much for the suggestions and com-
ments that were very helpful in revising the original manuscript.

https://doi.org/10.1023/A:1002051017269 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002051017269

302

ATSUSHI MURASE AND TAKASHI SUGANO

References

(FQ]
[GR]
[HKS]
[Ho]

[Ka]

[Mo]
[MVW]
[Pr]

[Ro]

Frohlich, A. and Queyrut, J.: On the functional equation of the Artin L-function for
characters of real representations, Invent. Math. 20 (1973), 125-138.
Glauberman, G.I. and Rogawski, J.D.: On theta functions with complex
multiplication, J. reine angew. Math. 395 (1989), 68-101.

Harris, M., Kudla, S.S. and Sweet, W.J.: Theta dichotomy for unitary groups, J.
Amer. Math. Soc. 9 (1996), 941-1004.

Howe, R.: On the character of Weil’s representation, Trans. Amer. Math. Soc. 177
(1973), 287-298.

Kato, Y.: On theta functions occuring in the Fourier expansion of automorphic
forms on unitary groups of order 3 (in Japanese), Master thesis (1980), Univ. of
Tokyo.

Moen, C.: The dual pair (U(1), U(1)) over a p-adic field, Pacific J. Math. 158 (1991),
365-386.

Meeglin, C. Vignéras, M.-F. and Waldspurger, J.-L.: Correspondences de Howe sur
un corps p-adique, Lecture Notes in Math. 1291, Springer—Verlag, New York, 1987.
Prasad, D.: A brief survey on the theta correspondence, Contemp. Math. 210 (1998),
171-193.

Rogawski, J.D.: The multiplicity formula for A-packets, In: R.P. Langlands and D.
Ramakrishnan (eds), The Zeta Functions of Picard Modular Surfaces, 1992, pp.
395-419.

Shintani, T.: On automorphic forms on unitary groups of order 3, unpublished
manuscript (1979).

Tate, J.: Number theoretic background, Proc. Sympos. Pure Math. 33, part 2 (1979),
3-26.

Weil, A.: Sur certains groupes d’opérateurs unitaires, Acta Math. 111 (1964),
143-211.

Yang, T.:. Eigenfunctions of the Weil representation of unitary groups of one
variable, Trans. Amer. Math. Soc. 350 (1998), 2393-2407.

https://doi.org/10.1023/A:1002051017269 Published online by Cambridge University Press


https://doi.org/10.1023/A:1002051017269

