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Abstract. We study primitive theta functions, whichwere ¢rst introduced by Shintani, in a purely
local setting.We investigate a metaplectic representation of U�1� acting on the space of local
primitive theta functions and give its explicit irreducible decomposition. As a by-product, we
give a new proof of epsilon dichotomy for (U�1�;U�1��.
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0. Introduction

0.1. The primitive theta functions studied in this paper were ¢rst introduced by
Shintani in his unpublished work ([Sh]) on automorphic forms on U�2; 1�, a
quasi-split unitary group of degree 3. One of his main results says that a holomorphic
automorphic form f on U�2; 1� can be expressed as a linear combination of primitive
theta functions and their shifts (re¢ned Fourier^Jacobi expansion). Furthermore, he
showed that suitable quotients of coef¢cients in the expansion of a Hecke eigenform
f are described in terms of the Satake parameters attached to f . This strongly
suggests that primitive theta functions will play an important role in the arithmetic
of automorphic forms on U�2; 1�.

The main object of this paper is to study primitive theta functions in a purely local
setting. We are mainly concerned with a metaplectic representation of U�1� acting
on the space of local primitive theta functions. In particular, we give an explicit
irreducible decomposition of the space of primitive theta functions. The key ingredi-
ent in the proof is a trace formula for the metaplectic representation.

In a forthcoming paper, we will give an application of our local results to the
theory of Shintani's re¢ned Fourier^Jacobi expansion.

0.2. We now explain the content of the paper and summarize the main results. The
¢rst three sections are of a preliminary nature. In Section 1, we de¢ne a Heisenberg
group H and construct a smooth irreducible representation of H on a lattice model.
Let F be a ¢nite extension of the p-adic number ¢eld Qp. Let K be either a direct
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sum F � F or a quadratic extension of F , and ¢x an element k 2 K� satisfying
k � ÿk, where z 7!z is the nontrivial automorphism of K=F . We de¢ne a
nondegenerate alternating form h ; i:K � K ! F by hw;w0i � TrK=F �kww0�. Let
H be K � F with multiplication law �w; t��w0; t0� � �w� w0; t� t0 � hw;w0i=2�.
Fix a nontrivial additive character c of F and take a lattice L of K that is self-dual
with respect to the pairing �w;w0� 7!c�hw;w0i� and satis¢es 1

2�l � l� 2 L for l 2 L.
We realize an irreducible smooth representation r of H with central character
�0; t� 7!c�t� on the lattice model

V � fF 2 S�K� j F�z� l� � c
1
2
hz; li � 1

4
hl; li

� �
F�z� �z 2 K; l 2 L�g

by

�r�w; t�F��z� � c
1
2
hz;wi � t

� �
F�z� w� �z 2 K; �w; t� 2 H;F 2 V � :

In Section 2, we de¢ne a metaplectic representation M of K1 � fu 2 K� j uu � 1g
on V after [MVW]. For u 2 K1 and F 2 V , we put M�u�F � F if u � 1 and

M�u�F � NK=F �1ÿ u��� ��1=2
F

Z
K
c

1
2
hw; uwi

� �
r��1ÿ u�w; 0�F dw

if u 6� 1, where j � jF denotes the normalized valuation of F and dw the Haar
measure on K self-dual with respect to the pairing �w;w0� 7!c�hw;w0i�.

In Section 3, we recall de¢nitions and basic properties of several local constants
(Weil constants, Gauss sums and epsilon factors), which are frequently used in later
discussions.

The object of Section 4 is to give a splitting of M�u�. For z 2 K�, we put

g�z� �
o�z� � � � z 2 F� ;

lK �c�ÿ1 o zÿ z
k

� �
� � � z 2 K� ÿ F� ;

8<:
where o is the quadratic character of F� associated with K=F and lK �c� the Weil
constant associated with z 7!c�zz� (cf. Section 3.2). For z 2 K� and F 2 V , we set

M�z�F � g�z� �M�z=z�F :
We show that z 7!M�z� is a smooth representation of K� on V (Theorem 4.5) by
calculating the cocycle of M explicitly.

In Section 5, we de¢ne the space of local primitive theta functions. Let
a � aOK �a 2 K�� be a nonzero fractional ideal of K . Let H�a� �
f�w; t� 2 H j w 2 a; t� kww=2 2 k=�yÿ y�ÿ �

NK=F �a� � OK g, where f1; yg is an OF -
basis of OK . Let V �a� be the H�a�-invariant subspace of V . Then V �a� � f0g unless
ma :� nc � ordF �k=�yÿ y�� � ordF N�a�X 0, where nc 2 Z is de¢ned in Section 1.1.
Denote by Pa 2 End�V � the projection operator of V �a�. Suppose that ma X 0.
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We call

Vprim�a� � fF 2 V �a� j PbF � 0 for any b 2 R�a�; b 6� ag
the space of primitive theta functions in V �a�, where R�a� is the set of fractional
ideals b of K satisfying a � b and mb X 0. (In the case where dK=F > 0 and
ma � 0, the above condition is replaced by QF � 0, where Q is de¢ned by (5.6)).
Let GK be F� � O�K if K � F � F , and K� if K is a ¢eld. Then z 7!M�z�jVprim�a�

de¢nes a unitary representation Ma;prim of GK on Vprim�a�. A unitary representation
Ma of GK on V �a� is similary de¢ned. The representation Ma;prim decomposes as a
direct sum of unitary characters of GK . Shintani ([Sh]) gave the irreducible
decomposition of Ma;prim in the case where F � Qp and K � Q� �������ÿ1p � 
Q Qp

by calculating the trace of Ma;prim. Later Glauberman and Rogawski ([GR]) showed
that Ma;prim is multiplicity-free in the general case and gave its irreducible
decomposition up to a character except in the rami¢ed case. A basis of V consisting
of eigenfunctions of the metaplectic representation was given by Y. Kato ([Ka]) in a
special case and by T. Yang ([Ya]) in the odd residual characteristic case.

The main purpose of the paper is to give an explicit irreducible decomposition of
Ma;prim and Ma by calculating their traces explicitly. In Section 6, we state the
main results of the paper (Theorem 6.4 and Theorem 6.6). In the case where K
is a ¢eld, they are summarized as follows. For a unitary character w of K�, let
a�w� be the smallest nonnegative integer a such that w is trivial on
�1�Pa

K � \ O�K , where PK is the maximal ideal of OK . Put dK=F �
ordF N�yÿ y� and cK � c � TrK=F . Let e�w;cK � be the epsilon factor de¢ned by
Tate (cf. Section 3.6).

THEOREM. Suppose that K is a ¢eld.

(i) A unitary character w of K� appears in V if and only if wjF� � o and
e�w;cK � � w�kÿ1�, and its multiplicity is equal to one.

(ii) Suppose that w satis¢es the conditions in (i). Then w appears in Vprim�a� (resp.
V �a�� if and only if a�w� � m0a (resp. a�w�W m0a�, where

m0a �
ma � � � dK=F � 0 ;
2�ma � dK=F � � � � dK=F > 0 :

�
Remark. The ¢rst assertion of the theorem is known as `epsilon dichotomy' for the

dual pair (U�1�;U�1��. This result was ¢rst proven by Moen ([Mo]) in the case where
the residual characteristic of F is odd. Later Rogawski ([Ro]) completed the proof in
the even residual characteristic case by combiningMoen's result and a global method
(the trace formula for U�3�). For epsilon dichotomy in a more general situation, we
refer to [HKS], where the ¢rst assertion of the theorem is proved by a local method
entirely different from ours. We also note that the second assertion of the theorem
is important in an application to the theory of Fourier^Jacobi expansions of auto-
morphic forms on U�2; 1�.
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In Sections 7^9, we prove Theorem 6.4 and Theorem 6.6 by employing Shintani's
idea of calculating the trace of the metaplectic representation. In Section 7, we cal-
culate Xa�z� � Tr�Ma�z�� and Xa;prim�z� � Tr�Ma;prim�z�� in an explicit form.
One of the advantages of realizing M on a lattice model is that we have a convenient
trace formula for Mb�z� �b 2 R�a�� (cf. Proposition 7.3). The proofs of Theorem 6.4
and Theorem 6.6 are done by comparing the explicit formulas for Xa and Xa;prim

with certain summation formulas for characters proved in Section 8 (in the
unrami¢ed case) and in Section 9 (in the rami¢ed case).

In Section 10, we reformulate Shintani's result on the inner structure of V �a� in
our local setting. Namely, we show that each element of V �a� can be written as
a sum of a primitive theta function and `shifts' of primitive ones of `lower index'.

NOTATION

For a vector space V over C, IdV denotes the identity operator on V . The
cardinality of a ¢nite set X is denoted by #�X �. For a locally compact Abelian
group G, let G^ stand for the group of unitary characters of G.

1. Heisenberg Group and Lattice Model

1.1. Let F be a ¢nite extension of Qp and p a prime element of F . Denote by OF

and pF � pOF the integer ring of F and the maximal ideal of OF , respectively.
Put q � #�OF=pF �. For a 2 F�, we put jajF � qÿ ordF �a�, where ordF :F� ! Z is
the additive valuation normalized by ordF �p� � 1. We normalize the Haar measure
dx on F so that the volume of OF is equal to 1. Throughout the paper, we ¢x
a nontrivial additive character c of F . Let nc be the largest integer n such that
cjpÿnF

� 1.

1.2. Let K be a commutative semisimple algebra over F with dimF K � 2. Then K
is either isomorphic to F � F or a quadratic extension of F . We henceforth identifyK
with F � F in the former case. Let

OK �
OF �OF � � � K � F � F ;

the integer ring of K � � � K is a field :

(

Let z 7! z be the unique nontrivial automorphism of K=F . For z 2 K , we put
TrK=F �z� � z� z;NK=F �z� � z z and jzjK � jNK=F �z�jF . If there is no fear of con-
fusion, we write N�z� for NK=F �z�.

1.3. Fix an element k of K� with k � ÿk and de¢ne a nondegenerate alternating
form h ; i:K � K ! F by

hw;w0i � TrK=F �kww0�:
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Let H be the Heisenberg group associated with the symplectic space �K; h ; i�. By
de¢nition, the underlying set of H is K � F and the multiplication law is given by

�w; t� �w0; t0� � �w� w0; t� t0 � 1
2
hw;w0i�:

The center of H is f�0; t� j t 2 F g.

1.4. Throughout the paper, by a lattice of K we always mean an OF -lattice of K .
For a lattice L of K , the dual L� of L (with respect to c�h ; i� ) is de¢ned by
L� � fz 2 K j c�hz;wi� � 1 for any w 2 Lg. We say that L is self-dual with respect
to c�h ; i� if L � L�. Let dz be the Haar measure on K self-dual with respect
to the pairing �z;w� 7!c�hz;wi�. Then

Z
L

dz � 1 for any lattice L self-dual with
respect to c�h ; i�.

1.5. We take a lattice L of K satisfying the following two conditions:

(i) L is self-dual with respect to c�h1; 2i�.
(ii) l 2 L�)1

2�l � l� 2 L.
For example, L � kÿ2pÿncF � �k=2�OF satis¢es these conditions. De¢ne

ec��l; t�� � c
1
4
hl; li � t

� �
for �l; t� 2 H�L� � L � F . Then ec is a character of H�L�. By general theory (cf.
[MVW, Ch.2, I.3]), IndH

H�L� ec is a smooth irreducible representation of H with
central character �0; t� 7!c�t�. Recall that such a representation is unique up to
equivalence. The representation IndH

H�L� ec is identi¢ed with the lattice model
�V ; r� with respect to L given by

V � F 2 S�K� j F�z� l� � c
1
2
hz; li � 1

4
hl; li

� �
F�z� �z 2 K; l 2 L�

� �
;

�r�h�F��z� � c
1
2
hz;wi � t

� �
F�z� w� �h � �w; t� 2 H; z 2 K;F 2 V �;

where S�K� denotes the space of locally constant compactly supported functions on
K . Note that c�hl; li=4� � 1 �resp:�1� for l 2 L if the residual characteristic of
F is odd (resp. even). We de¢ne an inner product on V by

�F;F0� �
Z
K

F�z�F0�z� dz �F;F0 2 V �:

It is easy to see that r�h� �h 2 H� is a unitary operator with respect to the inner
product. In what follows, we write r�w; t� for r��w; t�� if there is no fear of con-
fusion.
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Remark. In [MVW, Ch.2, II.8], the lattice model is de¢ned in the odd residual
characteristic case. To de¢ne the lattice model in the even residual characteristic
case, we need the factor hl; li=4 in the de¢nition of V .

1.6. Let F0 be an element of V such that the support of F0 is contained in L and
F0�0� � 1. Then

F0�z� � c
1
4
hz; zi

� �
� � � z 2 L ;

0 � � � z 2 K ÿ L:

8<:
If F 2 V satis¢es r�l; 0�F � c�hl; li=4�F for any l 2 L, then F is a scalar multiple of
F0. The following elementary fact is crucial for the trace formula in Section 7.

1.7. LEMMA For F 2 V, we have F�z� � �r�z; 0�F;F0� �z 2 K�:

2. Metaplectic Representation

2.1. Let K1 � fu 2 K� j uu � 1g act on H by u � �w; t� � �uw; t� �u 2 K1;

�w; t� 2 H�. For u 2 K1, we de¢neM�u� 2 End�V � as follows (cf. [MVW, Ch.2, II.2]).
If u � 1, we put M�u� � IdV . If u 6� 1, we put

�M�u�F��z� � j1ÿ uj1=2K

Z
K
c

1
2
hw; uwi

� �
�r��1ÿ u�w; 0�F��z� dw

� j1ÿ ujÿ1=2K

Z
K
c�tuww� 1

2
hz;wi�F�z� w� dw �F 2 V ; z 2 K�;

where

tu � 1
2

TrK=F
k

1ÿ u

� �
� k

2
1� u
1ÿ u

:

2.2. LEMMA. Let u 2 K1.

(i) M�u� � r�h� � r�u � h� �M�u� �h 2 H�:
(ii) �M�u�F;F0� � �F;M�uÿ1�F0� �F;F0 2 V �:
(iii) M�u� �M�uÿ1� � IdV :

Proof. The ¢rst and second assertions are easily veri¢ed. The third one is obvious
when u � 1. Let u 2 K1 ÿ f1g, and ¢x z 2 K and F 2 V . Take suf¢ciently large
lattices L;L0 of K , such that

uL � L0;
u

uÿ1 ÿ 1
L� � L0; Supp�M�uÿ1�F� � z� �1ÿ u�L;

Supp�F� � z� �1ÿ u�L� �1ÿ uÿ1�L0:
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Then we have

j1ÿ ujÿ1K M�u�M�uÿ1�F�z�

�
Z
L
dw

Z
L0

dw0 c
1
2
hw; uwi � 1

2
hz; �1ÿ u�wi � 1

2
hw0; uÿ1w0i

�
�

� 1
2
hz� �1ÿ u�w; �1ÿ uÿ1�w0i

�
F�z� �1ÿ u�w� �1ÿ uÿ1�w0�

�
Z
L0

Z
L
c�hw; uÿ1�uÿ1 ÿ 1�w0i� dw

� �
c

1
2
hw0; uÿ1w0i � 1

2
hz; �1ÿ uÿ1�w0i

� �
�

� F�z� �1ÿ uÿ1�w0� dw0

� vol�L�
Z
u�uÿ1ÿ1�ÿ1 L�

c
1
2
hw0; uÿ1w0i � 1

2
hz; �1ÿ uÿ1�w0i

� �
�

� F�z� �1ÿ uÿ1�w0� dw0 ;

where vol�L� � RL dw. Since we can take L� suf¢ciently small, the above is equal to

vol�L� � vol
u

uÿ1 ÿ 1
L�

� �
F�z� � j1ÿ ujÿ1K F�z�:

This completes the proof of the lemma. &

2.3. In view of Lemma 2.2 and the Stone^von Neumann theorem (cf. [MVW, Ch.2,
I.2]), the mapping u 7!M�u� de¢nes a projective representation of K1 on V .
Namely, we have

M�u� �M�u0� � c�u; u0�M�uu0� �u; u0 2 K1�

with c�u; u0� 2 C�.

Remark. For u 2 K1 and F 2 V , put

M0�u�F�z� �
Z
L
c

1
2
hl; zi � 1

4
hl; li

� �
F�uÿ1�z� l�� dl �z 2 K�:

Then M0�u� de¢nes an endomorphism of V satisfying the property of Lemma 2.2 (i).
If the residual characteristic of F is odd, it is known that M0�u� 2 GL�V � and hence
u 7!M0�u� de¢nes a metaplectic representation of K1 on V (cf. [MVW, Ch.2, II.8]).
On the other hand, in the even residual characteristic case, there exists u 2 K1 such
that M0�u� � 0.
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3. Local Constants

3.1. In this section, we recall the de¢nition of several local constants and their basic
properties. Let f1; yg be an OF -basis of OK and put

dK=F � ordF N�yÿ y� : �3:1�

Then dK=F > 0 if and only if K=F is a rami¢ed quadratic extension.

3.2. We ¢rst recall the de¢nition of Weil constants. Let

bf �z� � Z
K
f �w�c�hw; zi� dw

be the Fourier transform of f 2 S�K�. Due to Weil ([We]), there exists a nonzero
complex number lK �c� such thatZ

K
f �z�c�azz� dz � lK �c� � o�a�jajÿ1F jkj1=2K

Z
K

bf �z�c�aÿ1k2zz� dz �3:2�

holds for any f 2 S�K� and a 2 F�. Here o denotes the quadratic character of F�

associated with K=F by local class ¢eld theory. Then lK �c�2 � o�ÿ1�. The
following fact is well-known.

3.3. LEMMA. Let a 2 F�.

(i) Suppose that dK=F � 0. Then lK �c� � o�pnc�.
(ii) Suppose that dK=F > 0. ThenZ

O�F
o�t�c�at� dt �

qÿdK=F =2 o�a� lK �c� � � � ordF �a� � ÿnc ÿ dK=F ;

0 � � � otherwise:

(

(iii) There exists a lattice L0 of K such that, for any lattice L of K containing L0, the

integral
R
L c�azz� dz takes the value o�a�jajÿ1F jkj1=2K lK �c�.

3.4. We next de¢ne a Gauss sum. Throughout the paper, by an ideal a of K , we
always mean a nonzero fractional ideal of K (namely, a � aOK for some
a 2 K�). We put ordF N�a� � ordF N�a� and jN�a�jF � jN�a�jF . Let daz be the
Haar measure on K normalized by

R
a daz � 1. Note that

daz � qma�dK=F dz ; �3:3�

where we put

ma � nc � ordF
k

yÿ y
� ordF N�a� : �3:4�

280 ATSUSHI MURASE AND TAKASHI SUGANO

https://doi.org/10.1023/A:1002051017269 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002051017269


For a 2 F�, we de¢ne a Gauss sum

Sa�a� �
Z
a

c�azz� daz : �3:5�

By (3.2), we obtain

3.5. LEMMA.

Sa�a�

�
1 � � � ordF �a�X ÿ ordF N�a� ÿ nc ;

qnc�dK=F =2 jN�a�jÿ1F o�a�jajÿ1F lK �c� � � � ordF �a�W ÿ ordF N�a� ÿ nc ÿ dK=F ;

0 � � � otherwise :

8><>:
3.6 LetPK be pOK if K � F � F and the maximal ideal of OK otherwise, and put
qK � #�OK=PK �. When K is a ¢eld, let ordK :K� ! Z be the additive valuation of
K normalized by qÿ ordK �z�

K � jNK=F �z�jF for z 2 K�. Set cK � c � TrK=F and
denote by ncK

the largest integer n such that cK is trivial on PÿnK . Then

ncK
�

nc � � � dK=F � 0 ;

2nc � dK=F � � � dK=F > 0 :

(
�3:6�

We put

GK �
F� � O�K � � � K � F � F ;

K� � � � K is a field :

(
�3:7�

For w 2 �GK �^, let a�w� be the smallest nonnegative integer a such that w is trivial on
�1�Pa

K � \ O�K . We set

e�w;cK � � w�c� SjSj ; S �
Z
O�K

wÿ1�u�cK
u
c

� �
dOK u ; �3:8�

where c is an element of K� with ordK �c� � a�w� � ncK
if K is a ¢eld, and

c � pa�w��nc �yÿ y� if K � F � F . Note that e�w;cK � is the epsilon factor de¢ned
by Tate (cf. [Ta]) when K is a ¢eld. It is known that jSj � qÿa�w�=2K if a�w� > 0
and that

e�w;cK � e�wÿ1;cK � � w�ÿ1� : �3:9�

3.7. PROPOSITION. Let w 2 �GK �^ and suppose that wjF� � o.

(i) We have e�w;cK � � �w�kÿ1�.
(ii) If K � F � F, we have e�w;cK � � w�kÿ1�.

LOCAL THEORY OF PRIMITIVE THETA FUNCTIONS 281

https://doi.org/10.1023/A:1002051017269 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002051017269


(iii) If K=F is an unrami¢ed quadratic extension, we have

e�w;cK � � �ÿ1�a�w��nc�ordF �k=�yÿy�� w�kÿ1�

Proof. By the assumption wjF� � o, we have e�w;cK � � e�wÿ1;cK �. By (3.9), we
obtain e�w;cK �2 � w�ÿ1� � w�kÿ1�2, which proves (i). The second assertion is easily
veri¢ed. Though the third assertion can be proved by the argument in [Ro, Remark
to Proposition 4.1] using a formula of Fro« hlich and Queyrut ([FQ]), we give its
elementary proof for completeness. Suppose that K=F is an unrami¢ed quadratic
extension and put l � a�w�. We can take c � pl�nc�yÿ y�. Since w�c� �
�ÿ1�l�nc�ordF �k=�yÿy�� w�kÿ1�, we only have to show that S > 0. Observe that
S � I � J, where

I �
Z
O�F

dx
Z
OF

dy wÿ1�x� yy�c y
pl�nc

� �
;

J �
Z
pF

dx
Z
O�F

dy wÿ1�x� yy�c y
pl�nc

� �
:

First suppose that l � 0. Then we have I � 1ÿ qÿ1 and J � qÿ1�1ÿ qÿ1�, and hence
S � 1ÿ qÿ2 > 0. Next suppose that lX 1. Then

I �
Z
OF

wÿ1�1� yy� dy
Z
O�F

c
xy

pl�nc

� �
dx

�
qÿl � � � lX 2 ;

qÿl ÿ qÿ1
Z
OF

wÿ1�1� yy� dy � � � l � 1 :

8><>:
On the other hand,

J �
Z
pF

wÿ1�x� y� dx
Z
O�F

c
y

pl�nc

� �
dy

�
0 � � � lX 2 ;

ÿqÿ1
Z
pF

wÿ1�x� y� dx � � � l � 1 :

8><>:
Since

Z
OF

wÿ1�1� yy� dy�
Z
pF

wÿ1�x� y� dx � �1ÿ qÿ1�ÿ1
Z
O�K

wÿ1�u� du � 0 ;

we obtain S � qÿl > 0 and the proposition has been proved. &
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4. Splitting of Metaplectic Repesentation

4.1. In this section, we calculate explicitly the cocycle c�u; u0� for u; u0 2 K1 de¢ned
in Section 2.3 and give a splitting of M. For u; u0 2 K1 ÿ f1g, put

su;u0 � tu � tu0 � k
1ÿ uu0

�1ÿ u��1ÿ u0� 2 F : �4:1�

4.2. PROPOSITION. For u; u0 2 K1, we have

c�u; u0� � 1 � � � u � 1 or u0 � 1 or uu0 � 1 ;
lK �c�o�su;u0 � � � � otherwise :

�
Proof. The assertion is easily veri¢ed if one of u; u0; uu0 is equal to 1. Suppose that

u 6� 1; u0 6� 1 and uu0 6� 1. Let z 2 K� and F 2 V . We set

I�u; u0� � j�1ÿ u��1ÿ u0�jÿ1=2K �M�u�M�u0�F��z� :
Taking suf¢ciently large lattices L;L0 of K , we have

I�u; u0� �
Z
L

dw
Z
L0

dw0 c
1
2
hw; uwi � 1

2
hw0; u0w0i � 1

2
h�1ÿ u�w; �1ÿ u0�w0i

� �
�

� r��1ÿ u�w� �1ÿ u0�w0; 0�F�z� :
We may (and do) suppose that u0L0 � L. Changing the variable w into w� u0w0, we
get

I�u; u0� �
Z
L
dw

Z
L0

dw0 c
1
2
hw; uwi � 1

2
hw; �1ÿ uÿ1��1� uu0�w0i � 1

2
hw0; uu0w0i

� �
�

� r��1ÿ u�w� �1ÿ uu0�w0; 0�F�z� :
Replacing the integral

R
L0 dw0 by

R
K dw0 and changing the variable w0 into

w0 ÿ �1ÿ u� = �1ÿ uu0 �w, we obtain

I�u; u0� �
Z
L
c�ÿk2sÿ1u;u0 ww�dw � j1ÿ uu0jÿ1=2K M�uu0�F�z�

� lK �c�o�ÿk2sÿ1u;u0 �j ÿ k2sÿ1u;u0 jÿ1F jkj1=2K � j1ÿ uu0jÿ1=2K M�uu0�F�z�
� lK �c�o�su;u0 � j�1ÿ u��1ÿ u0�jÿ1=2K M�uu0�F�z�

in view of Lemma 3.3 (iii). The proposition has been proved. &

4.3. For z 2 K�, we de¢ne g�z� 2 C� and M�z� 2 GL�V � by

g�z� �
o�z� � � � z 2 F� ;

lK �c�ÿ1 o zÿ z
k

� �
� � � z 2 K� ÿ F�

8<: �4:2�
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and

M�z� � g�z�M�z=z� : �4:3�

4.4. LEMMA. For z 2 K� and F;F0 2 V, we have

�M�z�F;F0� � �F;M�zÿ1�F0� :

Proof. This follows from Lemma 2.2 (ii) and the fact that g�zÿ1� � g�z� for
z 2 K�. &

4.5. THEOREM. The mapping z 7!M�z� gives rise to a smooth representation of K�

on V.
Proof. By Proposition 4.2, we have c�z=z; z0=z0� � g�zz0�=g�z�g�z0� for z; z0 2 K�,

which implies that z 7!M�z� is a homomorphism. The smoothness is easily
veri¢ed. &

Remark. T. Yang ([Ya]) gives a splitting of M0 (cf. Remark to Section 2.3) in the
odd residual characteristic case.

5. The Space of Primitive Theta Functions

5.1. In what follows, we ¢x an OF -basis f1; yg of OK . When K=F is a rami¢ed
quadratic extension, we assume that ordF N�y� � 1 and ¢x a prime element P
of K . We put n � ÿ�y = �yÿ y��. Then n� n � 1 and n 2 Dÿ1K=F � fz 2 K j
TrK=F �zw� 2 OF for any w 2 OK g. Note that n 2 PDÿ1K=F if dK=F > 0.

5.2. Let a be an ideal of K . We set

H�a� �
�
�w; t� 2 H j w 2 a; t� k

2
ww 2 kN�a�Dÿ1K=F

�
: �5:1�

Then H�a� is an open compact subgroup of H. It is easily seen that

H�a� �
�
�w; t� tw� j w 2 a; t 2 k

yÿ y
N�a�

�
where

tw � k
2
�nÿ n�ww : �5:2�

We put

V �a� � fF 2 V j r�h0�F � F for any h0 2 H�a�g: �5:3�
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Since

ordF
k

yÿ y
N�a�

� �
� ma ÿ nc ;

we have V �a� � f0g unless ma X 0.

5.3. Let dah be the Haar measure on H normalized by
R
H�a� dah � 1. We de¢ne an

operator Pa 2 End�V � by

Pa F �
Z
H�a�

r�h�F dah : �5:4�

Let

R�a� � fb j an ideal of K; a � b; mb X 0g : �5:5�

The following fact is easily veri¢ed.

5.4. LEMMA.

(i) We have V �a� � fF 2 V j Pa F � Fg.
(ii) For F 2 V, we have

PaF �

Z
a

r�w; tw�Fdaw � � � ma X 0 ;

0 � � � ma < 0 :

8<:
(Recall that daw is de¢ned in Section 3.4.)

(iii) For F;F0 2 V, we have �Pa F;F0� � �F;PaF0�.
(iv) For b 2 R�a�, we have Pa Pb � Pb Pa � Pb, and hence PbV � V �a� and

PaV � V �a�.

5.5. Suppose that dK=F > 0 and ma � 0. We de¢ne an operator Q 2 End�V � by

QF �
Z
a1

r�w; tw�F da1w; �5:6�

where we put a1 � Pÿ1a. Note that Q 6� Pa1 � 0, since Q 6� 0 (cf. Proposition 5.8
(ii)). The following fact is proved similarly as Lemma 5.4.

5.6. LEMMA.

(i) We have QPa � PaQ � Q and hence QV � V �a�.
(ii) We have Q2 � Q.
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5.7. We henceforth ¢x an ideal a of K with ma X 0. First suppose that dK=F � 0 or
ma > 0. We set

Vprim�a� � fF 2 V �a� j PbF � 0 for any b2R(a), b6= ag . �5:7�

Next suppose that dK=F > 0 and ma � 0. Set

Vprim�a� � fF 2 V �a� j QF � 0g �5:8�

and

V1�a� � fF 2 V �a� j QF � Fg : �5:9�
Then V �a� � Vprim�a� � V 1�a� in view of Lemma 5.6. In both cases, we call Vprim�a�
the space of primitive theta functions in V �a�. Denote by Pa;prim 2 End�V � the
projection operator of Vprim�a�.

5.8. PROPOSITION.

(i) For b 2 R�a�, we have Tr�Pb jV �a�� � qmb�dK=F .
(ii) We have Tr�QjV �a�� � qdK=Fÿ1 when dK=F > 0 and ma � 0.

Proof. By Lemma 1.7, we have

Pb F�z� �
Z
K
kb�z;w�F�w� dw ;

where

kb�z;w� �
Z
b

c�tw0 � 1
2
hw;w0 � zi � 1

2
hz;w0i�F0�wÿ w0 ÿ z� dbw0 :

Observe that z 7! kb�z;w� and w 7! kb�z;w� are in V �a�. It follows that, for a suf-
¢ciently large lattice L of K , we have

Tr�Pb jV �a�� �
Z
L
kb�z; z� dz

�
Z
b

Z
L
c�hz;w0i� dz

� �
c�tw0 �F0�ÿw0� dbw0

� vol�L�
Z
b\L�

c�tw0 �F0�ÿw0� dbw0 :

Since we can take L� suf¢ciently small, we have

Tr�Pb jV �a�� � vol�L� vol�L�� � dbw0

dw0
� qmb�dK=F ;

which proves (i). The second assertion is proved similarly. &
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5.9. LEMMA.

(a) If K � F � F, we have

Pa;prim �
Pa ÿ Pa1 ÿ Pa2 � Pa12 � � � ma X 2 ;

Pa � 1
1ÿ qÿ1

�ÿPa1 ÿ Pa2 � Pa1 Pa2 � Pa2 Pa1� � � � ma � 1 ;

Pa � � � ma � 0 ;

8>><>>:
where a1 � �pÿ1; 1�a; a2 � �1; pÿ1�a and a12 � �pÿ1; pÿ1�a.

(b) If K=F is an unrami¢ed quadratic extension, we have

Pa;prim � Pa ÿ Ppÿ1a � � � ma X 2 ;
Pa � � � ma � 0; 1 :

�
(c) If K=F is a rami¢ed quadratic extension, we have

Pa;prim � Pa ÿ PPÿ1a � � � ma X 1 ;
Pa ÿQ � � � ma � 0 :

�
Proof. We prove the lemma only in the case where K � F � F and ma � 1, since

the assertions in the other cases easily follow from Lemma 5.4 and Lemma 5.6. By
Lemma 5.4 and Proposition 5.8, we have

Pa Pai � Pai ; �Pai �2 � Pai ; Tr�Pai jV �a�� � 1 �i � 1; 2�:
By using an argument similar to that of the proof of Proposition 5.8, we obtain

Tr�Pa1 Pa2 jV �a�� � Tr�Pa2 Pa1 jV �a�� � qÿ1 : �5:10�
It follows that there exist F1;F2 2 V �a� ÿ f0g (unique up to scalar multiples)
satisfying PaiFi � Fi �i � 1; 2�, and that V �a� � �CF1 � CF2� � Vprim�a�. Since
Pa2 �Pa2 F1� � Pa2 F1, we have Pa2 F1 � cF2 with c 2 C. Similarly we have
Pa1 F2 � c0 F1 with c0 2 C. By (5.10), we have cc0 � qÿ1. Put

P0 � Pa � 1
1ÿ qÿ1

�ÿPa1 ÿ Pa2 � Pa1 Pa2 � Pa2 Pa1�:

Then P0 V � V �a�, P0 is the identity on Vprim�a� and P0 Fi � 0 �i � 1; 2�, which
implies P0 � Pa;prim. &

5.10 PROPOSITION.

(i) dimC V �a� � qma�dK=F .
(ii) (a) If K � F � F, we have

dimC Vprim�a� �
qma �1ÿ qÿ1�2 � � � ma X 2 ;
qÿ 2 � � � ma � 1 ;
1 � � � ma � 0 :

8<:
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(b) If K=F is an unrami¢ed quadratic extension, we have

dimC Vprim�a� �
qma �1ÿ qÿ2� � � � ma X 2 ;
q � � � ma � 1 ;
1 � � � ma � 0 :

8<:
(c) If K=F is a rami¢ed quadratic extension, we have

dimC Vprim�a� � qma�dK=F �1ÿ qÿ1� :

Moreover if ma � 0, we have dimC V1�a� � qdK=Fÿ1 :
Proof. Observe that dimC V �a� � Tr�PajV �a�� and dimC Vprim�a� � Tr�Pa;primj

V �a��. The proposition now follows from Proposition 5.8, Lemma 5.9 and
(5.10). &

6. Main Results

6.1. In the remaining part of the paper, we ¢x an ideal a of K satisfying ma X 0. Let
z 2 GK (recall that GK is de¢ned by (3.7)). For b 2 R�a�, we set

Xb�z� � Tr�PbM�z�jV �a�� � Tr�PbM�z�jV �b�� : �6:1�
Note that Xb�tz� � o�t�Xb�z� for t 2 F�. De¢ne

Xa;prim�z� � Tr�Pa;primM�z�jV �a�� : �6:2�

When dK=F > 0 and ma � 0, we set

X1
a �z� � Tr�QM�z�jV �a�� : �6:3�

6.2. Let z 2 GK . Since z=z 2 O�K , we have M�z� Pb � PbM�z� for b 2 R�a�. This
implies that M�z�V �a� � V �a� and M�z�Vprim�a� � Vprim�a�, and hence M induces
a representation Ma (resp. Ma;prim ) of GK on V �a� (resp. Vprim�a�). Then

Xa�z� � Tr�Ma�z��; Xa;prim�z� � Tr�Ma;prim�z�� : �6:4�

We also have, when dK=F > 0 and ma � 0,

X1
a �z� � Tr�M�z�jV 1�a�� : �6:5�

6.3. Let X�o� � fw 2 �GK �^ j wjF� � og. For l 2 Z; lX 0, we set

X�o; l� � fw 2 X�o� j a�w�W lg �6:6�

and

Xprim�o; l� � fw 2 X�o� j a�w� � lg �6:7�
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(recall that a�w� is de¢ned in Section 3.6). Set

X��o; l� � fw 2 X�o; l� j e�w;cK � � w�kÿ1�g �6:8�

and

X�prim�o; l� � fw 2 Xprim�o; l� j e�w;cK � � w�kÿ1�g : �6:9�

If K � F � F , we have X�prim�o; l� � Xprim�o; l� for lX 0. If K=F is an unrami¢ed
quadratic extension,

X�prim�o; l� � Xprim�o; l� � � � l � nc � ordF �k=�yÿ y�� �mod 2�
; � � � otherwise

(

in view of Proposition 3.7 (iii). We now state the main results of the paper.

6.4. THEOREM.

(i) If dK=F � 0, we have

Xa;prim �
X

w2X�
prim
�o; ma�

w �
X

w2Xprim�o; ma�
w :

(ii) If dK=F > 0, we have

Xa;prim �
X

w2X�
prim
�o; 2�ma�dK=F ��

w :

(iii) If dK=F > 0 and ma � 0, we have

X1
a �

X
w2X�

prim
�o; 2dK=Fÿ1�

w :

The following fact is proved in [Sh] in the case where F � Qp and
K � Q� �������ÿ1p � 
Q Qp, and in [GR] in the general case.

6.5. COROLLARY. The representation Ma;prim of GK is multiplicity-free.

6.6. THEOREM.

(i) If K � F � F, we have

Xa �
X

0W kW ma

X
w2X�

prim
�o; maÿk�

�k� 1� w

�
X

w2X��o;ma�
�ma ÿ a�w� � 1� w :
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(ii) If K=F is an unrami¢ed quadratic extension, we have

Xa �
X

kX 0;maÿ2kX 0

X
w2X�

prim
�o; maÿ2k�

w

�
X

w2X��o;ma�
w :

(iii) If K=F is a rami¢ed quadratic extension, we have

Xa �
X

0W kW ma

X
w2X�

prim
�o; 2�k�dK=F ��

w�
X

w2X�
prim
�o; 2dK=Fÿ1�

w

�
X

w2X��o;2�ma�dK=F ��
w :

As a direct consequence of Theorem 6.6, we have proved the following result due
to Moen [Mo] and Rogawski [Ro], which is known as `epsilon dichotomy' for
(U�1�;U�1�� (cf. Section 0.2).

6.7. COROLLARY. Suppose that K is a ¢eld.

(i) The metaplectic representation M of K� on V is multiplicity-free.
(ii) A unitary character w of K� appears in M if and only if wjF� � o and

e�w;cK � � w�kÿ1�.

7. Trace Formula

7.1. The object of this section is to calculate Xa�z�, Xa;prim�z� and X 1
a �z� for z 2 GK .

We ¢rst give the kernel function of the operator PbM�u� for u 2 K1. By Lemma 1.7,
we have

�M�u�F��z� �
Z
K
Zu�z; z0�F�z0� dz0 �F 2 V ; u 2 K1; z 2 K�;

where Zu�z; z0� � �M�uÿ1� r�ÿz; 0�F0��z0� : It follows that

�Pb M�u�F��z� �
Z
K
Zu;b�z; z0�F�z0� dz0 �F 2 V ; z 2 K�;

where

Zu;b�z; z0� �
Z
b

c
1
2
hz;wi � tw

� �
Zu�z� w; z0� dbw
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Observe that, if u 6� 1, we have

Zu�z; z0� � j1ÿ ujÿ1=2K

Z
K
c tu ww� 1

2
hz0; zÿ wi � 1

2
hw; zi

� �
F0�z0 ÿ z� w� dw

in view of the de¢nition of M�u� (cf. Section 2.1).

7.2. For z � x� yy 2 K�, we put

u�z� � ordF �y=x� � � � x 6� 0;
ÿ1 � � � x � 0 :

�
�7:1�

7.3. PROPOSITION. For z � x� yy 2 GK, we have

Xb�z�

� jN�z�j1=2F �

qmb�dK=F o�x� jxjÿ1F � � � u�z�X mb � dK=F ;

qdK=F =2 lK �c�ÿ1 o yÿ y
k

y
� �

jyjÿ1F � � � u�z�W mb ;

0 � � � otherwise :

8>>>>><>>>>>:
Proof. If z � x 2 F�, we have Xb�z� � qmb�dK=F o�x� and the assertion is clear in

this case. Suppose that z 2 K� ÿ F�. By an argument similar to that in the proof
of Proposition 5.8, we have, for a suf¢ciently large lattice L of K ,

Tr�PbM z=z� � jV �a�� �
Z
L
Zz=z;b�w0;w0� dw0

� 1ÿ z=z
�� ��ÿ1=2

K

Z
b

c�tw � tz=z ww� dbw

� 1ÿ z=z
�� ��ÿ1=2

K Sb tz=z � k
2
�nÿ n�

� �
� 1ÿ z=z
�� ��ÿ1=2

K Sb
k

yÿ y

x
y

� �
:

Since

1ÿ z=z
�� ��ÿ1=2

K � jN�z�j1=2F qdK=F =2 jyjÿ1F and g�z� � lK �c�ÿ1 o yÿ y
k

y
� �

;

we obtain

Xb�z� � g�z�Tr�PbM z=z� �jV �a��

� jN�z�j1=2F qdK=F =2 lK �c�ÿ1 o yÿ y
k

y
� �

jyjÿ1F Sb
k

yÿ y

x
y

� �
:

The proposition now follows from Lemma 3.5. &
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7.4. LEMMA. If z 2 �1� pma�dK=F OK � \ O�K, we have Ma�z� � IdV �a�.

Proof. Since Ma�z� is a unitary operator on V �a�, it is suf¢cient to show that
Xa�z� � dimC V �a� for z 2 �1� pma�dK=F OK � \ O�K . This fact is a straightforward
consequence of Proposition 7.3 and Proposition 5.10 (i). &

7.5. PROPOSITION. Assume that dK=F � 0 and let z � x� yy 2 O�K. If ma X 2, we
have

Xa;prim�z� �
qma �1ÿ qÿ1��1ÿ o�p�qÿ1� � � � ordF �y�X ma ;

ÿqmaÿ1 �1ÿ o�p�qÿ1� � � � ordF �y� � ma ÿ 1 ;
0 � � � 0W ordF �y�W ma ÿ 2 :

8><>:
If ma � 1, we have

Xa;prim�z� � qÿ 1ÿ o�p� � � � ordF �y�X 1 ;
ÿ1 � � � ordF �y� � 0 :

�
If ma � 0, we have Xa;prim�z� � 1 :

Proof. The proposition is a direct consequence of Lemma 5.9 and Proposition 7.3
except in the case where K � F � F and ma � 1. In this case, we further need

Tr�Pa1 Pa2M�z� jV �a�� � Tr�Pa2 Pa1M�z� jV �a�� � qÿ1 �z 2 O�K �;
which is easily veri¢ed (for the de¢nition of ai, see Lemma 5.9). &

The following two results are proved similarly as in the case dK=F � 0.

7.6. PROPOSITION. Assume that dK=F > 0 and let z � x� yy 2 K�. If dK=F � 1,
we have

Xa;prim�z� �
qma�1�1ÿ qÿ1�o�x� � � � u�z�X ma � 1 ;

qmafq1=2lK �c�ÿ1o yÿ y
k

y
� �

ÿ o�x�g � � � u�z� � ma ;

0 � � � u�z�W ma ÿ 1 :

8>>><>>>:
If dK=F X 2, we have

Xa;prim�z� �

qma�dK=F �1ÿ qÿ1�o�x� � � � u�z�X ma � dK=F ;

ÿqma�dK=Fÿ1o�x� � � � u�z� � ma � dK=F ÿ 1 ;
0 � � � ma < u�z� < ma � dK=F ÿ 1 ;

qma�dK=F =2lK �c�ÿ1o yÿ y
k

y
� �

� � � u�z� � ma ;

0 � � � u�z�W ma ÿ 1 :

8>>>>>>><>>>>>>>:
(For the de¢nition of u�z�, see (7.1).)
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7.7. PROPOSITION. Assume that dK=F > 0 and ma � 0. For z � x� yy 2 K�, we
have

X1
a �z� �

qdK=Fÿ1o�x� � � � u�z�X dK=F ÿ 1 ;
0 � � � 0W u�z�W dK=F ÿ 2 ;

q�dK=Fÿ1�=2lK �c�ÿ1o yÿ y
k

y
� �

� � � u�z�W ÿ 1 :

8>>><>>>:
7.8. Remark. Suppose that K is a ¢eld. Letting b be suf¢ciently small in Proposition
7.3, we see that the character of M�z� at z 2 K� ÿ F� is equal to

lK �c�ÿ1 o zÿ z
k

� �
1ÿ z

z

���� ����ÿ1=2
K

This character formula has been proved in [Pr] in the odd residual characteristic case
(see also [Ho] for the Spn�Fq� case).

8. Irreducible Decomposition: The Case dK=F � 0

8.1. In this section, we suppose that dK=F � 0 and prove Theorem 6.4 and Theorem
6.6 in this case. Recall that GK � F� � O�K .

Let l be a nonnegative integer. Put

GK �l� � F� � 1� plOK � � � l > 0 ;
O�K � � � l � 0 :

�
Note that O�K \ GK �l� � fz � x� yy 2 O�K j ordF �y�X lg for lX 0, and that

X�o; l� � fw 2 �GK �^ j wjF� � o; wjO�K \GK �l� � 1g :
The following fact is easily veri¢ed.

8.2. LEMMA. We have

#�X�o; l�� � #�GK=GK �l��

� ql�1ÿ o�p�qÿ1� � � � lX 1 ;

1 � � � l � 0

(

and

#�Xprim�o; l�� �
ql�1ÿ qÿ1��1ÿ o�p�qÿ1� � � � lX 2 ;
qÿ 1ÿ o�p� � � � l � 1 ;
1 � � � l � 0 :

8<:
We now quote the following elementary fact from the representation theory of

¢nite Abelian groups.
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8.3. LEMMA Let G be a ¢nite Abelian group and H a subgroup of G. Then we have

X
w2G^;wjH 6�1

w�g� �
#�G� �1ÿ 1=#�H�� � � � g � e ;
ÿ#�G�=#�H� � � � g 2 H ÿ feg ;
0 � � � g 2 GÿH ;

8<:
where e denotes the unit element of G.

8.4. PROPOSITION. Let z � x� yy 2 O�K and m be a nonnegative integer.

(i) If mX 2, we have

X
w2Xprim�o; m�

w�z� �
qm�1ÿ qÿ1��1ÿ o�p�qÿ1� � � � ordF �y�X m ;

ÿqmÿ1�1ÿ o�p�qÿ1� � � � ordF �y� � mÿ 1 ;
0 � � � ordF �y�W mÿ 2 :

8><>:
(ii) If m � 1, we haveX

w2Xprim�o; m�
w�z� � qÿ 1ÿ o�p� � � � ordF �y�X 1

ÿ1 � � � ordF �y� � 0 :

�

(iii) If m � 0, we haveX
w2Xprim�o; m�

w�z� � 1 :

Proof. The assertion (iii) is obvious. The other assertions are immediate
consequences of Section 8.1 and Lemma 8.3. &

8.5. Combining Proposition 7.5 and Proposition 8.4, we have proved Theorem 6.4.
We can prove Theorem 6.6 in a similar manner.

9. Irreducible Decomposition: The Case dK=F > 0

9.1. In this section, we suppose that dK=F > 0 and prove Theorem 6.4 and Theorem
6.6 in this case. For mX 0 and z 2 K�, we put

Im�z� � 1
2

X
w2Xprim�o; 2�m�dK=F ��

w�z� �9:1�

and

Jm�z� � 1
2

X
w2Xprim�o; 2�m�dK=F ��

w�k� e�w;cK � � w�z� : �9:2�
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We also put

I 0�z� � 1
2

X
w2Xprim�o; 2dK=Fÿ1�

w�z� �9:3�

and

J 0�z� � 1
2

X
w2Xprim�o; 2dK=Fÿ1�

w�k� e�w;cK � � w�z� : �9:4�

Then we haveX
w2X�prim�o; 2�m�dK=F ��

w�z� � Im�z� � Jm�z�

and X
w2X�prim�o; 2dK=Fÿ1�

w�z� � I 0�z� � J 0�z� :

In view of Proposition 7.6, Proposition 7.7 and the equalities above, the proofs of
Theorem 6.4 and Theorem 6.6 are reduced to the following result.

9.2. PROPOSITION. Let mX 0 and z � x� yy 2 K�.

(i) We have

Im�z� �
qm�dK=F �1ÿ qÿ1�o�x� � � � u�z�X m� dK=F ;

ÿqm�dK=Fÿ1 o�x� � � � u�z� � m� dK=F ÿ 1 ;

0 � � � u�z�W m� dK=F ÿ 2

8>><>>: �9:5�

and

Jm�z� � qm�dK=F =2 lK �c�ÿ1 o yÿ y
k

y
� �

� � � u�z� � m ;

0 � � � u�z� 6� m :

8<: �9:6�

(ii) We have

I 0�z� �
qdK=Fÿ1 o�x� � � � u�z�X dK=F ÿ 1 ;

0 � � � u�z� < dK=F ÿ 1

(
�9:7�

and

J 0�z� �
0 � � � u�z�X 0 ;

q�dK=Fÿ1�=2 lK �c�ÿ1 o yÿ y
k

y
� �

� � � u�z� < 0 :

8<: �9:8�
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9.3. For l 2 Z; l > 0, we put

GK �l� � F� �1�Pl
K � : �9:9�

To prove Proposition 9.2, we need the following elementary fact, the proof of which
is omitted.

9.4. LEMMA. Let z 2 K� and l > 0.

(i) We have u�z� � l () z 2 GK �2l � 1� ÿ GK �2l � 2�.
(ii) We have

#�K�=GK �l�� � 2� ql=2 � � � l is even ;
q�lÿ1�=2 � � � l is odd ;

(

#�GK �l�=GK �l � 1�� � 1 � � � l is even ;
q � � � l is odd :

�
9.5. Proof of (9.5) and (9.7). First suppose that m > 0. Take w0 2 X�o; 2�m�
dK=F ÿ 1��. Then we have

Xprim�o; 2�m� dK=F �� � fw0 x j x 2 G^; xjH 6� 1g ;

where G � K�=GK �2�m� dK=F �� and H � GK �2�m� dK=F ÿ 1��=GK �2�m� dK=F ��.
The equality (9.5) now follows from Lemma 8.3, Lemma 9.4 and the fact that
w0�z� � o�x� if u�z�X m� dK=F ÿ 1. Next suppose that m � 0. In this case, we have

Xprim�o; 2dK=F � � fw00 x j x 2 G^; xjH 6� 1g ;

where w00 is an element of X�o; 2dK=F ÿ 1�; G � K�=GK �2dK=F � and H �
GK �2dK=F ÿ 1�=GK �2dK=F �. Then (9.5) is proved similarly as in the case m > 0.
The equality (9.7) is proved similarly as (9.5). &

9.6. Proof of (9.6) and (9.8). Put a � TrK=F �y� and b � NK=F �y�. Then ordF aX 1
and ordF b � 1 (cf. Section 5.1). We take a prime element p of F with
o�p� � 1 and put c � pm�dK=F�nc �yÿ y�. Then, for w 2 X prim�o; 2�m� dK=F ��, we
have

e�w;cK � � qm�dK=F w�c�
Z
O�K

wÿ1�u�cK
u
c

� �
dOK u :

It follows that, for z � x� yy 2 K�, we have

Jm�z� � qm�dK=F o ÿyÿ y
k

� � Z
O�K

Im�zu�cK
u
c

� �
dOK u �9:10�

(note that Im�NK=F �w�z� � Im�z� for w 2 K�). We ¢rst show that Jm�z� � 0 if
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u�z� � ordF �y=x� < 0. For u � s� yt 2 O�K , we have

u�zu� � ordF
sÿ tx=y

bt� �s� at� x=yW ÿ 1;

since s 2 O�F ; t 2 OF . In view of (9.5), we see that Im�zu� � 0, which proves our claim.
Suppose now that u�z�X 0. Then xÿ1z � 1� yy=x 2 O�K . Changing the variable u
into �1� yy=x�u in the integral in (9.10), we have

Jm�z� � qm�dK=F o ÿyÿ y
k

x
� � Z

O�K
Im�u�cK

�1� yy=x�u
c

� �
dOK u

� qm�dK=F o ÿyÿ y
k

x
� � Z

O�F
ds
Z
OF

dt Im�s� yt�cK
�1� yy=x��s� yt�

c

� �
:

Changing the variable t into st and using Lemma 3.3 (ii), we obtain

Jm�z� � qm�dK=F o ÿ yÿ y
k

x
� � Z

OF

Z
O�F

o�s�c s
y=xÿ t

pm�dK=F�nc

� �
ds

( )
Im�1� yt� dt

� qm�dK=F =2 lK �c�o ÿyÿ y
k

x
� �

J 0m�z� ;

where

J 0m�z� �
Z
OF ; ordF �tÿy=x��m

o
y
x
ÿ t

� �
Im�1� ty� dt:

It follows from (9.5) that, if u�z� 6� m, we have J 0m�z� � 0 and hence Jm�z� � 0. Finally
suppose that u�z� � m and put Z � ÿy=pmx 2 O�F . Then we have

J 0m�z� � qÿm
Z
O�F

o�ÿt0� Im�1� pm�t0 ÿ Z�y� dt0 :

By (9.5), we obtain

J 0m�z� � qÿmo�ÿ1�
Z
O�F ; ordF �t0ÿZ��dK=Fÿ1

�ÿqm�dK=Fÿ1�o�t0� dt0
(

�
Z
O�F ; ordF �t0ÿZ�X dK=F

�1ÿ qÿ1�qm�dK=F o�t0� dt0
)

� qÿmo�ÿ1�f�ÿqm�dK=Fÿ1��ÿqÿdK=Fo�Z�� � �1ÿ qÿ1� qm�dK=F � qÿdK=Fo�Z�g
� o

y
x

� �
:
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We thus have

Jm�z� � qm�dK=F =2 lK �c�o ÿyÿ y
k

y
� �

� qm�dK=F =2 lK �c�ÿ1 o yÿ y
k

y
� �

;

which proves (9.6). The equality (9.8) is proved similarly (in this case, we take
c � pdK=F�nc �yÿ y�=y). &

10. The Inner Structure of V�aa�
10.1. The object of this section is to show that each element of V �a� can be written
as a sum of a primitive theta function and `shifts' of primitive ones of `lower index'.
Note that the results of this section were essentially proven in [Sh].

For r 2 F�, put cr�t� � c�rt�. Let L�r� be a lattice of K self-dual with respect to
cr�h ; i� satisfying �l � l�=2 2 L�r� for l 2 L�r�. Let �V �r�; r�r�� be the lattice model
with respect to L�r� (cf. Section 1.5). The following fact, which was proven in [Sh]
in the global setting, is crucial in the later discussion. We postpone its proof until
the end of this section.

10.2. PROPOSITION. For b 2 K�, there exists a linear isomorphism I�r�b of
V �r=N�b�� and V �r� satisfying

I�r�b � r�r=N�b���bw;N�b�t� � r�r��w; t� � I �r�b ��w; t� 2 H� : �10:1�

Remark. By the Stone^von Neumann theorem, I�r�b is uniquely determined by
(10.1) up to scalar multiples. This implies that, for b; b0 2 K�, we have
I�r�b � I�r=N�b��b0 � c�r��b; b0� � I �r�bb0 with c�r��b; b0� 2 C�.

10.3. For an ideal a of K , we let V �r��a� � V �r� and P�r�a 2 End�V �r�� as in Section 5.
Note that V �r��a� � f0g unless m�r�a :� nc � ordF �rk=�yÿ y�� � ordF N�a�X 0. When
m�r�a X 0, we de¢ne the primitive part V �r�prim�a� of V �r��a� as in Section 5.7. By (10.1),
we have

I�r�b � P�r=N�b��ba � P�r�a � I�r�b : �10:2�

In what follows, we often write V �a�;Pa; ma and Ib for V �1��a�;P�1�a ; m�1�a and I�1�b
respectively.

10.4. LEMMA. Let b be a nonzero element of OK with ma ÿ ordF N�b�X 0.

(i) We have Ib�V �1=N�b���a�� � V �a�.
(ii) If b0 2 OK and b=b0 2 O�K, we have Ib�V �1=N�b��prim �a�� � Ib0 �V �1=N�b

0��
prim �a��.

Proof. The lemma follows from (10.2) and Lemma 5.4 (i). &

298 ATSUSHI MURASE AND TAKASHI SUGANO

https://doi.org/10.1023/A:1002051017269 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002051017269


10.5. For an integral ideal b of K with ma ÿ ordF N�b�X 0, we de¢ne a subspace
Vb�a� of V �a� by

Vb�a� � Ib�V �1=N�b��prim �a��; �10:3�

where b � bOK . Note that the right-hand side of (10.3) is independent of the choice
of b by Lemma 10.4 (ii). Observe that VOK �a� � Vprim�a� and that

dimVb�a� � dimV �1=N�b��prim �a� : �10:4�

10.6. LEMMA. Let b; b0 be integral ideals of K with

b 6� b0; ma ÿ ordF N�b�X 0 and ma ÿ ordF N�b0�X 0 :

If ordF N�b� 6� ordF N�b0� or ordF N�b� � ordF N�b0� < ma, then we have Vb�a� ?
Vb0 �a�.

Proof. Let b � bOK and b0 � b0OK with b; b0 2 OK , and let F 2 V �1=N�b��prim �a�;
F0 2 V �1=N�b

0��
prim �a�. First consider the case where K is a ¢eld. We may (and do) suppose

that b0=b 2 OK ÿO�K . By (10.2), we have

�IbF; Ib0F0� � �IbF; Ib0 P�1=N�b
0��

a F0� � �IbF;Pb0ÿ1aIb0F0�
� �Pb0ÿ1aIbF; Ib0F0� � �IbP�1=N�b��b0ÿ1ba

F; Ib0F0� ;

which vanishes by the primitivity of F. Next consider the case where K � F � F and
put P1 � �p; 1�;P2 � �1; p�. Observe that, for j 2 Z with ma ÿ ordF N�b�ÿ
�j � 1�X 0, we have

P�1=N�b��
Pÿ11 Pÿj2 a

F � P�1=N�b��
Pÿj1 Pÿ12 a

F � 0 �F 2 V �1=N�b��prim �a�� : �10:5�

This fact is easily veri¢ed and we omit its proof. We may (and do) suppose that
b � Pk

1P
l
2 and b0 � Pk0

1 P
l0
2 �k; l; k0; l0X 0� with k� l < k0 � l0W ma or k� l �

k0 � l0 < ma. First consider the case k0 > k. By (10.5), we have

�IbF; Ib0F0� � �IbF; Ib0P�1=N�b
0��

Pk0ÿkÿ1
1 a

F0� � �IbP�1=N�b��Pÿ11 Plÿl0
2 a

F; Ib0F0� � 0 ;

since �ma ÿ kÿ l� ÿ �l0 ÿ l � 1�X 0. The assertion in the case k0W k is proved simi-
larly as above. &

10.7. LEMMA. Suppose that K � F � F and put P1 � P1OK ;P2 � P2OK. Then

W �
Xma
k�0

V
Pk

1 P
maÿk
2
�a� �10:6�
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is a direct sum and hence

dimW � ma � 1 : �10:7�

Proof. For simplicity, we write m for ma. Observe that V �1=p
m��a� �

V �1=p
m�

prim �a� � C � F0 (F0 6� 0�. We now show that fIPk
1P

mÿk
2

F0g0W kW m is linearly
independent, which implies the lemma. Since the claim is trivial when m � 0, we
assume m > 0. Suppose that there exists a nontrivial linear relation

Xm
k�0

ak IPk
1P

mÿk
2

F0 � 0

with ak 2 C; a0 � � � � � alÿ1 � 0; al 6� 0. For b 2 K�, we write I0b for I�1=pl�1�b to
simlify the notation. Apply I0Pÿlÿ11

to both sides of the above equality. In view
of the Remark to Proposition 10.2, we obtain

I0
Pÿ11 Pmÿl

2
F0 �

Xm
k�l�1

bk I0Pkÿlÿ1
1 Pmÿk

2
F0 �bk 2 C� : �10:8�

Since the right-hand side of (10.8) is H�a�-invariant, we have

I0
Pÿ11 Pmÿl

2
F0 � P�1=pl�1�a I0

Pÿ11 Pmÿl
2
F0 � I0Pÿ11 Pmÿl

2
P�1=pm�

Pÿ11 Pmÿl
2 a

F0:

Since I0
Pÿ11 Pmÿl

2
is a bijection, we have F0 � P�1=p

m�
Pÿ11 Pmÿl

2 a
F0 � 0, which is a con-

tradiction. &

Remark. The sum (10.6) is not necessarily an orthogonal sum.

We now state the main result of this section.

10.8. THEOREM ([Sh]).

(i) If K � F � F, we have an orthogonal decomposition V �a� �Lb Vb�a� �W ;

where b runs over the integral ideals of K with ma ÿ ordF N�b� > 0.
(ii) If K is a ¢eld, we have an orthogonal decomposition V �a� �Lb Vb�a�; where b

runs over the integral ideals of K with ma ÿ ordF N�b�X 0.

Proof. By Lemma 10.6, the sum is an orthogonal direct sum in both cases. By
Proposition 5.10, (10.4) and (10.7), we see that dimV �a� is equal to the dimension
of the direct sum in both cases, which proves the theorem. &

10.9. From now on, we ¢x r 2 F� and b 2 K�, and show the existence of I�r�b
satisfying the condition of Proposition 10.2. For simplicity, we write c0;L0 and
�V 0; r0� for cr=N�b�;L�r=N�b�� and �V �r=N�b��; r�r=N�b���, respectively. De¢ne
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R 2 End�V 0� by

R �
Z
L�r�

cr
1
4
hl; li

� �
r0�bl; 0� dl :

The following lemma can be proved similarly as in Section 5 and we omit its proof.

10.10. LEMMA.

(i) We have R2 � R.
(ii) There exists an ideal a0 of K such that, for any ideal a � a0, we have

RV 0�a� � V 0�a� and Tr�RjV 0�a�� � 1.

10.11. COROLLARY. There exists a nonzero element F0b of V 0 (unique up to scalar
multiples) satisfying

r0�bl; 0�F0b � c ÿ1
4
hl; li

� �
F0b �l 2 L�r�� :

10.12. Proof of Proposition 10.2. Take F0b as in Corollary 10.11. For F0 2 V 0, we
put

I�r�b F0�z� � �r0�bz; 0�F0;F0b� �z 2 K� : �10:9�

It is easily veri¢ed that I�r�b F0 2 V �r� and that

I�r�b � r0�bw;N�b�t� � r�r��w; t� � I �r�b ��w; t� 2 H� : �10:10�

To prove the bijectivity of I�r�b , we have only to show that I�r�b 6� 0 in view of (10.10)
and the Stone^von Neumann theorem. Let F00 be the element of V 0 given by

F00�z� � c0
1
4
hz; zi

� �
� � � z 2 L0

0 � � � otherwise :

8><>:
Then I�r�b F00�z� � �r0�bz; 0�F00;F0b� � F0b�ÿbz� (cf. Lemma 1.7) and hence
I�r�b F00 6� 0, which completes the proof of Proposition 10.2.
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