MEROMORPHIC FUNGTIONS
 WITH ONE DEFICIENT VALUE

S. M. SHAH ${ }^{\text {i }}$

(Received 14 February 1968, revised 25 July 1968)

1. Introduction

Let $f(z)$ be a meromorphic function and write

$$
\delta(a, f)=1-\lim _{r \rightarrow \infty} \frac{N(r, a)}{T(r, f)}, \quad \Delta(a, f)=1-\liminf _{r \rightarrow \infty} \frac{N(r, a)}{T(r, f)} .
$$

Here $N(r, a)$ and $T(r, f)$ have their usual meanings (see [4], [5]) and $0 \leqq|a| \leqq \infty$. If $\delta(a, f)>0$ then a is said to be an exceptional (or deficient) value in the sense of Nevanlinna (N.e.v.), and if $\Delta(a, f)>0$ then a is said to be an exceptional value in the sense of Valiron (V.e.v.). The Weierstrass $p(z)$ function has no exceptional value N or V. Functions of zero order can have atmost one N.e.v. [4, p. 114], but may have more than one V.e.v. (see [6], [8]). In this note we consider functions satisfying some regularity conditions and having one and only one exceptional value V.

2. Functions of zero order

Theorem 1. Let $f(z)$ be a meromorphic function such that, as $r \rightarrow \infty$,

$$
\begin{equation*}
T(r, f)=O\left((\log r)^{2}\right) \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
N(r, a)=o(T(r, f)) \tag{1.2}
\end{equation*}
$$

for some a, finite or infinite.
Then

$$
\begin{equation*}
N(r, b) \sim T(r, f) \tag{1.3}
\end{equation*}
$$

for every $b \neq a$.
Proof. If (1.1) holds then [9, p. 30] for $a \neq b$

$$
\begin{equation*}
\max \{N(r, a), N(r, b)\}=(1+o(1)) T(r, f) . \tag{1.4}
\end{equation*}
$$

${ }^{1}$ Research supported by the National Science Foundation under Grant GP-7544.

But the left hand expression

$$
\leqq N(r, a)+N(r, b) \leqq N(r, b)+o(T(r, f))
$$

and (1.3) follows.
For functions f not satisfying (1.1) but the condition (1.5) below, Theorem 2 below gives the same conclusion. The proof of Theorem 2 is similar to that of Theorem 1 of [7] and will be omitted.

Theorem 2. Let $f(z)$ be a non-constant meromorphic function. Let $\Psi(r)$ and $\theta(r)$ be two functions tending to ∞ with r, and let $\phi(r)$ be any function tending to ∞, however slowly, with r. Let $\Psi(r \theta(r))=O(\Psi(r))(r \rightarrow \infty)$, and suppose that for all large $r, \Psi(r)$ and $\theta(r)$ are non-decreasing functions of r.
If ultimately

$$
\begin{equation*}
\frac{\Psi(r) \phi(r)}{\log \theta(r)} \leqq T(r, f) \leqq \Psi(r) \tag{1.5}
\end{equation*}
$$

and if

$$
\begin{equation*}
N(r, a)=o(T(r, f)) \tag{1.6}
\end{equation*}
$$

for some a finite or infinite, then

$$
\begin{equation*}
N(r, b) \sim T(r, f) \tag{1.7}
\end{equation*}
$$

for every $b \neq a$, and

$$
\begin{equation*}
n(r, b)=o(T(r, f)) \tag{1.8}
\end{equation*}
$$

for every b.

3. Functions with no finite deficient value

The results given in theorem 1 of [7] and in the above theorems cannot in general be extended to functions of positive order (cf.: [7]). However it can be proved that there exists an entire function with asymptotically prescribed growth and having no finite deficient value. If for any entire function $f, \log M(r, f) \sim T(r, f)$ and $T(r, f)$ satisfies a growth regularity condition, then also f has no finite deficient value. More precisely we have

Theorem 3. Let $\Lambda(r)$ be an increasing function of r and a convex function of $\log r$ with $A(r) \neq O(\log r)$. Assume further that

$$
\begin{equation*}
A(r)=O\left(r^{k}\right) \tag{3.1}
\end{equation*}
$$

for some $k>0$. Then there exists an entire function $f(z)$ of finite order such that

$$
\begin{equation*}
\log M(r, f) \sim A(r) \sim T(r, f) \sim N(r, a) \quad(r \rightarrow \infty) \tag{3.2}
\end{equation*}
$$

for every finite a.

Theorem 4. Let $f(z) \not \equiv 0$ be entire and let there exist constants $\sigma>1$, $B>1$ such that

$$
\begin{equation*}
T(\sigma r, f)<B T(r, f) \quad\left(x \geqq r_{0}\right) . \tag{3.3}
\end{equation*}
$$

Suppose also that

$$
\begin{equation*}
\log M(r, f) \sim T(r, f) . \tag{3.4}
\end{equation*}
$$

Then $\log M(r, f) \sim N(r, a)$ for every finite a.
These two theorems 3 and 4 are due to Professor Albert Edrei. If we do not assume (3.1), then f, in theorem 3, may not be of finite order. (See [1], [2].)

Proof of Theorem 3. Let $F(z)$ be an entire function such that $T(r, F) \sim A(r) \sim \log M(r, F)$. (See theorem 1 of [3].) Let $f(z)=F(z)-\alpha z$ and select the constant α so that

$$
\lim _{r \rightarrow \infty} N(r, 1 /(f-\tau)) / T(r, f)=1
$$

for every finite fixed τ. This is possible by the proposition on p. 386 of [3]. Since f and F are not polynomials,

$$
\log M(r, f) \sim \log M(r, F), T(r, f) \sim T(r, F)
$$

and the theorem is proved.
Proof of Theorem 4. It is known [3; pp. 393-4] that if $f(z)$ be entire and c any complex number, then for $1<r<R$,

$$
m\left(r, \frac{1}{f-c}\right) \leqq \frac{11 R}{R-r} T\left(R, \frac{1}{f-c}\right) \mu(r)\left\{1+\log ^{+} \frac{1}{\mu(r)}\right\} .
$$

Here $\mu(r)$ is the measure of θ for which $\left|f\left(r e^{i \theta}\right)-c\right|<1$. Hence

$$
\begin{equation*}
m\left(r, \frac{1}{f-c}\right) \leqq \frac{12 R}{R-r} T(R, f) \mu(r)\left(1+\log ^{+} \frac{1}{\mu(r)}\right) \quad\left(r_{0}<r<R\right) . \tag{3.5}
\end{equation*}
$$

Now

$$
2 \pi T(r, f) \leqq \mu(r) \log (1+|c|)+(2 \pi-\mu(r)) \log M(r, f)
$$

and so

$$
\mu(r)\left\{1-\frac{\log (1+|c|)}{\log M(r)}\right\} \leqq 2 \pi\left\{1-\frac{T(r, f)}{\log M(r)}\right\} .
$$

Hence by (3.4), $\mu(r)=o(1)$. Choose in (3.5), $R=\sigma r$. Then we have

$$
\begin{aligned}
m\left(r, \frac{1}{f-c}\right) & \leqq \frac{12 \sigma}{|1-\sigma|} T(\sigma r, f) \mu(r)\left(1+\log ^{+} \frac{1}{\mu(r)}\right) \\
& <\frac{12 \sigma B}{|1-\sigma|} T(r, f) o(1)
\end{aligned}
$$

Hence

$$
m\left(r, \frac{l}{f-c}\right) \leqq o(T(r, f))
$$

and the result follows.

In conclusion I must thank Professor A. Edrei for allowing me to include theorems 3 and 4.

References

[1] J. Clunie, 'On integral functions having prescribed asymptotic growth', Canadian J. Math. 17 (1965), 396-404.
[2] J. Clunie and T. Kovari, 'On integral functions having prescribed asymptotic growth II', Canadian J. Math. 20 (1968), 7—20.
[3] A. Edrei and W. H. J. Fuchs, 'Entire and meromorphic functions with asymptotically prescribed characteristic', Canadian J. Math. 17 (1965), 383--395.
[4] W. K. Hayman, Meromorphic Functions (Oxford Univ. Press, New York, 1964).
[5] R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes Gauthier-Villars, Paris, 1930).
[6] S. M. Shah, 'Note on a theorem of Valiron and Collingwood', Proc. National Acad. of Sci. (India) 12 (1942), 9—12.
[7] S. M. Shah, 'Entire functions with no finite deficient value', Archive for Rational Mechanics and Analysis 26 (1967), 179-187.
[8] D. F. Shea, 'On the Valiron deficiencies of meromorphic functions of finite order', Trans. Amer. Math. Soc. 124 (1966), 201—227.
[9] Georges Valiron, 'Sur les valeurs déficientes des fonctions algébroides meromorphes d'ordre nul', J. d'Analyse Math., 1 (1951), 28-42.

University of Kentucky
Lexington, Kentucky, U.S.A.

