RANGES OF LYAPUNOV TRANSFORMATIONS FOR OPERATOR ALGEBRAS

by J. KYLE

(Received 1 December, 1976)

1. Introduction. In this paper we shall extend results obtained in [5] to the W*-algebra setting.

Let \mathscr{A} be a C^{*}-algebra and let \mathscr{A}^+ denote the set of positive elements in \mathscr{A} . Given a fixed element A in \mathscr{A} , the Lyapunov transformation L_A corresponding to A is the mapping of \mathscr{A} into itself which sends X to $AX + XA^*$. We are interested in characterizing those B in \mathscr{A} for which $L_B(\mathscr{A}^+) = L_A(\mathscr{A}^+)$.

Loewy in [6] and [7] examined the case when \mathcal{A} is the algebra of all $n \times n$ complex matrices, and in [5] the case when $\mathcal{A} = L(H)$, for any Hilbert space H, was treated. As in [5], [6] and [7] we shall concentrate on non-singular Lyapunov transformations, and throughout this paper L_A and L_B will always be assumed to be invertible. Proof of the following may be found in [4].

PROPOSITION 1.1. Let A belong to the W^* -algebra \mathcal{A} . Then L_A has a bounded inverse if and only if the spectrum of A does not intersect the imaginary axis.

Let $\mathcal{A} = L(H)$ for some Hilbert space H. Then the main result of [5] is that the following are equivalent:

(i) $L_{\mathbf{A}}(\mathcal{A}^+) = L_{\mathbf{B}}(\mathcal{A}^+),$

(ii) $B = (a_1 + ia_2 A)(a_3 A + ia_4)^{-1}$, where a_i are real scalars with $a_1 a_3 + a_2 a_4 = 1$.

In this paper we will show that a similar result holds when \mathcal{A} is any W^{*}-algebra, and the scalars a_i are replaced by appropriate central elements of \mathcal{A} . Before examining the general W^{*}-algebra, we will show that exactly the same equivalence holds for irreducible C^{*}-algebras.

2. The irreducible C*-case. Let \mathscr{A} be any C*-algebra, and let U denote the universal representation of \mathscr{A} , with H denoting the Hilbert space on which U acts. It is known that the second dual $U(\mathscr{A})^{**}$ of $U(\mathscr{A})$ is a W*-algebra, and as such is isomorphic to the weak closure $U(\mathscr{A})$ of $U(\mathscr{A})$ in L(H). A proof of this may be found in [8]. However, for our purposes it is sufficient to notice that the map Φ which implements this isomorphism is obtained as follows.

For F in $U(\mathscr{A})^{**}$ and f in $U(\mathscr{A})^{*}$ we know that $f = \omega_{x,y}$ for some x, y in H. $(\omega_{x,y}(X) = \langle Xx, y \rangle$.) Hence the map $(x, y) \rightarrow F(f) = F(\omega_{x,y})$ defines a sequilinear form on H, and so by the Riesz representation of such forms, there is a unique bounded linear operator T_F such that $F(\omega_{x,y}) = \langle T_F x, y \rangle$. That T_F lies in $U(\mathscr{A})$ is established via the double commutant theorem.

It follows easily from this that the positive cone in $U(\mathcal{A})^{**}$ is precisely the second

Glasgow Math. J. 19 (1978) 129-134

J. KYLE

dual cone of $U(\mathcal{A})^+$, and that $\Phi(\hat{U}(X)) = U(X)$ for all X in \mathcal{A} . (Here denotes the canonical map into the second dual.)

Furthermore, routine calculations with the Arens' products show that

$$(U \circ L_A \circ U^{-1})^{**} = L_{U(A)}$$

and so

$$\Phi(U \circ L_{A} \circ U^{-1})^{**} \Phi^{-1} = \bar{L}_{U(A)}.$$

(The bar indicates the natural extension of $L_{U(A)}$ to $\overline{U(\mathcal{A})}$.) Having established this notation, the next lemma follows easily.

LEMMA 2.1. Suppose A and B belong to the C*-algebra \mathcal{A} and that U is the universal representation of \mathcal{A} . Then if $L_A(\mathcal{A}^+) = L_B(\mathcal{A}^+)$ we also have

$$\overline{L}_{U(A)}(\overline{U(\mathcal{A})}^+) = \overline{L}_{U(B)}(\overline{U(\mathcal{A})}^+).$$

Proof. Clearly by the preceding remarks

$$\bar{L}_{U(A)}(\overline{U(\mathcal{A})}^+) = \bar{L}_{U(B)}(\overline{U(\mathcal{A})}^+)$$

if and only if

$$L_{U(A)}(U(\mathcal{A})^{**+}) = L_{U(B)}(U(\mathcal{A})^{**+}).$$

Now suppose that $F \in U(\mathcal{A})^{**+}$, $G \in U(\mathcal{A})^{**}$ and $L_{U(A)}(G) = L_{U(B)}(F)$. Then $L_{U(A)}^{**}(G) = L_{U(B)}^{**}(F)$ and so $G(L_{U(A)}^*(f)) = F(L_{U(B)}^*(f))$, for any f in $U(\mathcal{A})^*$. Thus if $\omega_x(=\omega_{x,x})$ is any positive functional in $U(\mathcal{A})^*$,

$$G(\omega_{\mathbf{x}}) = F(L^{*}_{U(B)}L^{*-1}_{U(A)}(\omega_{\mathbf{x}})).$$

Finally since $L_A(\mathscr{A}^+) = L_B(\mathscr{A}^+)$, we see that $L_{U(B)}L_{U(A)}^{-1}$ maps $U(\mathscr{A})^+$ onto $U(\mathscr{A})^+$, and so $L_{U(B)}^*L_{U(A)}^{*-1}(\omega_x)$ is also a positive functional. Thus $F(L_{U(B)}^*L_{U(A)}^{*-1}(\omega_x)) \ge 0$ and so G lies in $U(\mathscr{A})^{**+}$, as required.

PROPOSITION 2.2 Let \mathcal{A} be a C^* -algebra, and let π be any *-representation of \mathcal{A} . Suppose that $L_A(\mathcal{A}^+) = L_B(\mathcal{A}^+)$. Then

$$L_{\pi(A)}(\overline{\pi(\mathscr{A})}^+) = L_{\pi(B)}(\overline{\pi(\mathscr{A})}^+).$$

Proof. If U is the universal representation of \mathscr{A} , we can apply Lemma 2.1 to conclude that $\overline{L}_{U(A)}(\overline{U(\mathscr{A})}^+) = \overline{L}_{U(B)}(\overline{U(\mathscr{A})}^+)$. Furthermore, given any *-representation π , we can find a W*-isomorphism α of $\pi(A)$ onto $\overline{U(A)}Q$, where Q is some projection in the centre of $\overline{U(\mathscr{A})}$, such that $\alpha(\pi(X)) = U(X)Q$ for all X in \mathscr{A} . Now if $L_{U(A)Q}$ denotes the "cut-down" map of $\overline{L}_{U(A)}$ to the algebra $\overline{U(\mathscr{A})}Q$ (i.e. the map which sends XQ to $(U(A)X + XU(A)^*)Q$, for all X in $\overline{U(\mathscr{A})}$), we see that $L_{U(A)Q}(\overline{U(\mathscr{A})}^+Q) = L_{U(B)Q}(\overline{U(\mathscr{A})}^+Q)$. Finally, since $L_{\pi(A)} = \alpha^{-1}L_{U(A)Q}\alpha$ and $L_{\pi(B)} = \alpha^{-1}L_{U(B)Q}\alpha$, we conclude that $L_{\pi(A)}(\overline{\pi(\mathscr{A})}^+) = L_{\pi(B)}(\overline{\pi(\mathscr{A})}^+)$.

130

- (i) $L_A(\mathcal{A}^+) = L_B(\mathcal{A}^+),$
- (ii) $B = (a_1 + ia_2 A)(a_3 A + ia_4)^{-1}$ for some real scalars a_i with $a_1 a_3 + a_2 a_4 = 1$.

Proof. Let π be any faithful irreducible *-representation of \mathscr{A} and let H_{π} denote the Hilbert space on which π acts. Then if $L_A(\mathscr{A}^+) = L_B(\mathscr{A}^+)$, it follows from Proposition 2.2 that $L_{\pi(\mathcal{A})}(\overline{\pi(\mathscr{A})}^+) = L_{\pi(\mathcal{B})}(\overline{\pi(\mathscr{A})}^+)$ i.e. $L_{\pi(\mathcal{A})}(L(H_{\pi})^+) = L_{\pi(\mathcal{B})}(L(H_{\pi})^+)$ (since π is irreducible). Thus, by Theorem 3.2 of [5], we can find real scalars a_i such that $a_1a_3 + a_2a_4 = 1$ and

$$\pi(B) = (a_1 + ia_2\pi(A))(a_3\pi(A) + ia_4)^{-1}.$$

Now (ii) follows since π is faithful.

Conversely, if B satisfies (ii), then by the same theorem quoted above

$$L_{\pi(A)}(L(H_{\pi})^{+}) = L_{\pi(B)}(L(H_{\pi})^{+})$$

and, since $L_{\pi(A)}^{-1}L_{\pi(B)}$ maps $\pi(\mathscr{A})$ onto itself, (i) follows, again since π is faithful.

3. The W^{*}-case. In this section \mathscr{A} will denote a W^{*}-algebra with centre Z. Ω will denote the maximal ideal space of Z. For any ω in Ω let $J(\omega)$ denote the smallest norm-closed two sided ideal in \mathscr{A} which contains ω . $\mathscr{A}(\omega)$ will denote the quotient C^{*}-algebra $\mathscr{A}/J(\omega)$, and $A(\omega)$ will denote the image of A in $\mathscr{A}(\omega)$.

It has been shown in [2] that

$$\|A\| = \sup\{\|A(\omega)\| : \omega \in \Omega\}$$
(1)

and that the mapping $\omega \to ||A(\omega)||$ is continuous. Also

$$Sp(A) = \bigcup \{Sp(A(\omega)) : \omega \in \Omega\}.$$
 (2)

 $(Sp(\cdot) \text{ denotes the spectrum. A proof may be found in [4].})$

Before proving the main result, we need a bound for the scalars.

LEMMA 3.1. Let A, B in A implement the Lyapunov transformations L_A and L_B . Suppose that for each ω in Ω there are real scalars $a_i(\omega)$ such that $a_1(\omega)a_3(\omega) + a_2(\omega)a_4(\omega) = 1$ and

$$B(\omega) = [a_1(\omega) + ia_2(\omega)A(\omega)][a_3(\omega)A(\omega) + ia_4(\omega)]^{-1}.$$

Then the $a_i(\omega)$ are uniformly bounded by some number K, which depends only on A and B.

Proof. First notice that since $A(\omega)$ and $B(\omega)$ commute, we can find a maximal abelian subalgebra $C(\omega)$ of $\mathcal{A}(\omega)$ in which both lie. Also $Sp(A(\omega))$ and $Sp(B(\omega))$ remain unaltered by passing to $C(\omega)$.

For any multiplicative linear functional ϕ on $C(\omega)$, let $a = \phi(A(\omega))$ and $b = \phi(B(\omega))$. Write $a = x_1 + ix_2$ and $b = y_1 + iy_2(x_i, y_i \in \mathbb{R})$. Clearly

$$a_1(\omega) + ia_2(\omega)a = b(a_3(\omega)a + ia_4(\omega))$$
(3)

and so

$$[a_1(\omega)+ia_2(\omega)a][a_3(\omega)\bar{a}-ia_4(\omega)]=b|a_3(\omega)a+ia_4(\omega)|^2,$$

from which we see that

$$a_1(\omega)a_3(\omega)x_1 + a_2(\omega)a_4(\omega)x_1 = y_1 |a_3(\omega)a + ia_4(\omega)|^2,$$

which reduces to

$$x_1 = y_1 |a_3(\omega)a + ia_4(\omega)|^2.$$
 (4)

From here it is a routine matter to show that

$$|a_3(\omega)| \leq (|x_1| \cdot |y_1|)^{-1/2},$$
 (5)

$$|a_4(\omega)| \leq (|x_1| \cdot |y_1|^{-1})^{1/2} + (|x_1| \cdot |y_1|)^{-1/2} |x_2|.$$
(6)

Using (3) and (4) we obtain

$$|a_{1}(\omega) + ia_{2}(\omega)a| \leq |b| (|x_{1}| \cdot |y_{1}|^{-1})^{1/2}, |a_{2}(\omega)| \leq |b| (|x_{1}| \cdot |y_{1}|)^{-1/2},$$
(7)

$$|a_1(\omega)| \le |b| \{ (|x_1| \cdot |y_1|^{-1})^{1/2} + (|x_1| \cdot |y_1|)^{-1/2} |x_2| \}.$$
(8)

Now in the formulae (5)–(8), where $|x_i|$ appears without inversion, we may replace it with the spectral radius of $A(\omega)$ and so by $||A(\omega)||$, without disturbing the inequalities. Finally (1) shows that we may also substitute ||A||. Similarly $|y_1|$ (but not, of course, $|y_1|^{-1}$) may be replaced by ||B||, and in (7) and (8), |b| may be replaced by ||B||.

It remains to find upper bounds for $|x_1|^{-1}$ and $|y_1|^{-1}$. Since these represent the real parts of points in the spectra of $A(\omega)$ and $B(\omega)$, Proposition 1.1 together with (2) shows that $|x_1|$ and $|y_1|$ are bounded below by some positive number δ (which depends only on A and B). Thus we may substitute δ^{-1} for $|x_1|^{-1}$ and $|y_1|^{-1}$ in (5)...(8), and maintain the inequalities. In this way we can find a uniform bound for the scalars $a_i(\omega)$.

We are now in a position to prove our main result.

THEOREM 3.2. Let A and B belong to the W^{*}-algebra \mathcal{A} . Then the following are equivalent:

(i) $L_A(\mathscr{A}^+) = L_B(\mathscr{A}^+),$

(ii)
$$B = (Z_1 + iAZ_2)(AZ_3 + iZ_4)^{-1}$$
,

where Z_i are self-adjoint elements of the centre of \mathcal{A} satisfying $Z_1Z_3 + Z_2Z_4 = I$.

Proof. (i) \Rightarrow (ii). Clearly L_A and L_B map each ideal $J(\omega)$ into itself and so induce the Lyapunov transformations $L_{A(\omega)}$ and $L_{B(\omega)}$ on each $\mathscr{A}(\omega)$. Thus we see that if (i) holds, then $L_{A(\omega)}(\mathscr{A}(\omega)^+) = L_{B(\omega)}(\mathscr{A}(\omega)^+)$ for each ω in Ω . Also it follows from Proposition 1.1 and (2) that these induced Lyapunov transformations are non-singular.

Now in [3] Halpern has shown that each $\mathcal{A}(\omega)$ is a primitive C^{*}-algebra. Thus each $\mathcal{A}(\omega)$ has a faithful irreducible *-representation. Corollary 2.3 then shows that we can find real scalars $a_i(\omega)$ with $a_1(\omega)a_3(\omega) + a_2(\omega)a_4(\omega) = 1$ such that

$$B(\omega) = [a_1(\omega) + ia_2(\omega)A(\omega)][a_3(\omega)A(\omega) + ia_4(\omega)]^{-1}.$$

https://doi.org/10.1017/S0017089500003517 Published online by Cambridge University Press

132

Lemma 3.1 shows that we can also find a constant K, independent of ω , such that $|a_i(\omega)| \leq K$ for i = 1, ..., 4, and ω in Ω .

We now consider the set

 $\Sigma = \{(\omega, a, b, c, d) : B(\omega) = [a + ibA(\omega)][cA(\omega) + id]^{-1}; ac + bd = 1 \text{ and } a, b, c, d \text{ bounded by } K\}.$

Then Σ is a non-empty subset of $\Omega \times [-K, K]^4$ whose projection onto the first coordinate is Ω .

Also Σ is closed. For suppose $(\omega_i, a_i, b_i, c_i, d_i)$ is a net in Σ which converges to (ω, a, b, c, d) in $\Omega \times [-K, K]$. Then

$$\begin{split} \|B(\omega) - [a + ibA(\omega)][cA(\omega) + id]^{-1}\| \\ &= \|[B - (a + ibA)(cA + id)^{-1}](\omega)\| \\ &= \lim_{i} \|[B - (a + ibA)(cA + id)^{-1}](\omega_{i})\| \\ &= \lim_{i} \|B(\omega_{i}) - (a_{i} + ib_{i}A(\omega_{i}))(c_{i}A(\omega_{i}) + id_{i})^{-1}\| = 0; \end{split}$$

i.e. (ω, a, b, c, d) lies in Σ . Thus Σ is a non-empty compact Hausdorff space.

Let p_i denote the projection onto the *i*th coordinate. Then p_i is a continuous map of Σ onto Ω and, since Ω is extremally disconnected, we may appeal to [1] to find a continuous selection for p_1 . That is, we can find a continuous function g mapping Ω into Σ such that $p_1 \circ g(\omega) = \omega$ for all ω in Ω . (In [1] Gleason shows that in the category of all compact Hausdorff spaces and all continuous maps, the projective objects are precisely the extremally disconnected spaces.)

Thus each $Z_{i-1} = p_i \circ g(i = 2, ..., 5)$ defines a continuous bounded real-valued function on Ω , and so defines a self-adjoint element of Z. Clearly, it follows from our choice of Σ that $B(\omega) = [Z_1 + iAZ_2][AZ_3 + iZ_4]^{-1}(\omega)$ and $(Z_1Z_3 + Z_2Z_4)(\omega) = 1$, for all ω in Ω . Thus $B = (Z_1 + iAZ_2)(AZ_3 + iZ_4)^{-1}$ with $Z_1Z_3 + Z_2Z_4 = I$ as required.

(ii) \Rightarrow (i). Suppose A and B are related as in (ii). Then $A(\omega)$ and $B(\omega)$ are related as in (ii) of Corollary 2.3, and so $L_{A(\omega)}(\mathscr{A}(\omega)^+ = L_{B(\omega)}(\mathscr{A}(\omega)^+)$ for all ω in Ω . Thus if H is in \mathscr{A}^+ and $K = L_A^{-1}L_B(H)$ we have $K(\omega) = L_{A(\omega)}^{-1}L_{B(\omega)}(H(\omega)) \ge 0$ for all ω in Ω ; i.e. $K \ge 0$. Similarly $L_B^{-1}L_A(\mathscr{A}^+) \subseteq \mathscr{A}^+$ and (i) follows.

Since a C^* -algebra may have no centre at all, there can be no direct generalization of Theorem 3.2 in that direction. Nonetheless we can prove the following result.

COROLLARY 3.3. Let A and B belong to the C^{*}-algebra \mathcal{A} , and suppose that $L_A(\mathcal{A}^+) = L_B(\mathcal{A}^+)$. Then if π is any *-representation of \mathcal{A} we can find self-adjoint elements Z_i in the centre of $\pi(A)$ such that

$$\pi(B) = (Z_1 + i\pi(A)Z_2)(\pi(A)Z_3 + iZ_4)^{-1}.$$

Proof. This follows easily from Proposition 2.2 and Theorem 3.2.

J. KYLE

REFERENCES

1. A. M. Gleason, Projective topological spaces, Illinois J. Math. 2 (1958) 482-489.

2. J. G. Glimm, A Stone-Weierstrass theorem for C*-algebras, Ann. of Math. 72 (1960) 216-244.

3. H. Halpern, Irreducible module homomorphisms of a von Neumann algebra into its centre, Trans. Amer. Math. Soc. 140 (1969) 195-221.

4. J. Kyle, Norms, spectra and numerical ranges of derivations, Ph.D thesis, University of Newcastle upon Tyne (1974).

5. J. Kyle, Ranges of Lyapunov transformations for Hilbert space, Glasgow Math. J. 19 (1978) 99-101.

6. R. Loewy, On ranges of Lyapunov transformations IV, Glasgow Math. J., 17 (1976) 112-118.

7. R. Loewy, On ranges of Lyapunov transformations III, SIAM J. Appl. Math., 30 (1976) 687-702.

8. Z. Takeda, Conjugate spaces of operator algebras, Proc. Japan. Acad. 28 (1954) 90-95.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TECHNOLOGY, LOUGHBOROUGH.

PRESENT ADDRESS DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF BIRMINGHAM, P.O. Box 363, BIRMINGHAM B15 277.