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We present a numerical analysis of the lateral movement and equilibrium radial positions
of red blood cells (RBCs) with major diameter 8 μm under a Newtonian fluid in a
circular channel with 50 μm diameter. Each RBC, modelled as a biconcave capsule whose
membrane satisfies strain-hardening characteristics, is simulated for different Reynolds
numbers Re and capillary numbers Ca, the latter of which indicates the ratio of the fluid
viscous force to the membrane elastic force. The effects of initial orientation angles and
positions on the equilibrium radial position of an RBC centroid are also investigated. The
numerical results show that depending on their initial orientations, RBCs have bistable
flow modes, so-called rolling and tumbling motions. Most RBCs have a rolling motion.
These stable modes are accompanied by different equilibrium radial positions, where
tumbling RBCs are further away from the channel axis than rolling ones. The inertial
migration of RBCs is achieved by alternating orientation angles, which are affected
primarily by the initial orientation angles. Then the RBCs assume the aforementioned
bistable modes during the migration, followed by further migration to the equilibrium
radial position at much longer time periods. The power (or energy dissipation) associated
with membrane deformations is introduced to quantify the state of membrane loads. The
energy expenditures rely on stable flow modes, the equilibrium radial positions of RBC
centroids, and the viscosity ratio between the internal and external fluids.
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1. Introduction

Particle migration at a finite channel (or particle) Reynolds number Re (Rep) in
microchannels has been studied intensively not only from the viewpoint of pure physics,
but also in terms of bioengineering applications such as label-free cell alignment, sorting,
and separation techniques (Martel & Toner 2014; Warkiani et al. 2016; Zhou et al.
2019). Such microfluidic techniques allow us to reduce the complexity and costs of
clinical applications by using small amounts of blood samples. While a number of
studies have analysed the inertial migration of rigid spherical particles using a variety
of approaches, such as analytics (Ho & Leal 1974; Schonberg & Hinch 1989; Asmolov
1999), numerical simulations (Feng, Hu & Joseph 1994; Yang et al. 2005; Bazaz et al.
2020) and experimental observations (Karnis, Goldsmith & Mason 1966; Matas, Morris
& Guazzelli 2004; Di Carlo 2009), the inertial migration of biological cells, which can
be assumed to be deformable particles consisting of the internal fluid enclosed by a thin
membrane, has not yet been fully described.

Red blood cells (RBCs) are a major component of human blood cells, with volume
fraction 45 % (the other 55 % is plasma) and density ∼5 million ml−1. The behaviour of
individual RBCs subject to finite Re is of paramount importance in manipulating cells
or quantifying cell state. Due to their unique biconcave shape and high deformability,
it is expected that the problem of inertial migration of RBCs is made more complex
in comparison with rigid spherical particles originally reported by Segré & Silberberg
(1962), where the particles exhibit lateral movement and flow in the equilibrium position
away from the channel centre as a consequence of the force balance between the
shear-induced and wall-induced lift forces, the so-called ‘inertial migration’ or ‘tubular
pinch effect’ (Segré & Silberberg 1962). Jeffery (1922) speculated that an ellipsoid may
alter its orientation so that the viscous energy dissipation of the system becomes minimal.
However, this is not true for soft particles with large deformation. Although many former
studies have examined the dynamics of a non-spherical capsule, e.g. in Omori et al. (2012),
none of them have fully answered this question.

The behaviour of a single, almost inertialess RBC in a microchannel whose scale is
comparable to the cell size has been well investigated, e.g. in Fedosov, Peltomäki &
Gompper (2014), Guckenberger et al. (2018), Noguchi & Gompper (2005) and Takeishi
et al. (2021). These studies have revealed velocity-dependent transitions in RBC shapes.
Tomaiuolo et al. (2009) found parachutes at smaller velocity (∼0.11 cm s−1) and slippers
at higher velocity (∼3.6 cm s−1) in circular channels of 10 μm diameter. Cluitmans et al.
(2014) detected croissants at lower velocities (≤5 mm s−1) and slippers at higher velocities
(≥10 mm s−1) in square channels with widths ≤10 μm. Using the same parameters as
Cluitmans et al. (2014), Quint et al. (2017) found a stable slipper and a metastable
croissant in a rectangular channel of size 25 μm × 10 μm. The shape transition from
croissant/parachute to slipper shape was also identified in a more recent study by
Guckenberger et al. (2018) that used a rectangular channel of size 12 μm × 10 μm. The
slipper shape was associated with an off-centre position (Guckenberger et al. 2018),
which is counter to traditional knowledge about the axial focusing of spherical deformable
particles toward the channel axis (Karnis, Goldsmith & Mason 1963). Hereafter, we call
this phenomenon ‘axial migration’. A more recent numerical study showed further that
compared to the parachute shape, the off-centre slipper shape had low energy expenditure

952 A35-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

93
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.936


Inertial migration of RBC under a Newtonian fluid

associated with membrane deformations, and the equilibrium radial positions of these two
RBC centroids correlated well with the energy expenditure (Takeishi et al. 2021). Despite
these insights, it is still uncertain whether the aforementioned stable shapes of RBCs
persist even under finite inertia in larger microchannels with diameters of several dozen
micrometres, and whether the equilibrium radial positions can be described by the energy
expenditure. Therefore, the objective of this study was to clarify the relationship between
the stable flow mode of RBCs, equilibrium radial position, and energy expenditure
associated with membrane deformations in several dozen circular microchannels for finite
Re.

So far, inertial migration of rigid spherical particles has been well investigated, e.g. in
Martel & Toner (2014), Morita, Itano & Sugihara-Seki (2017), Nakagawa et al. (2015)
and Nakayama et al. (2019). Under moderate Rep, the rigid particles align in an annulus
at a radius of about 0.6R, where R is the channel wall radius (Segré & Silberberg 1962).
The radius of the equilibrium annulus increases with Rep because of the increase in the
shear-induced inertial lift force (Matas et al. 2004; Matas, Morris & Guazzelli 2009).
The equilibrium position 0.6R was observed for Re = 2RV̄/ν = O(1) and shifted to larger
radius for larger Re, where V̄ was the average axial velocity (Matas et al. 2004).

Studies of inertial migration of biological cells have attracted particular attention
recently (Warkiani et al. 2016; Zhou et al. 2019). For instance, Hur et al. (2011) investigated
experimentally the inertial migration of various cell types (including RBCs, leukocytes,
and cancer cells such as a cervical carcinoma cell line, breast carcinoma cell line,
and osteosarcoma cell line) with a cell-to-channel size ratio 0.1 ≤ d/W ≤ 0.8, using a
rectangular channel with a high aspect ratio W/H ≈ 0.5, where d, W and H are the cell
diameter, channel width and height, respectively. Their results showed that the cells could
be separated according to their size and (elastic) deformability (Hur et al. 2011).

The experimental results can be described qualitatively by a spherical capsule model
(Kilimnik, Mao & Alexeev 2011) and a droplet model (Chen et al. 2014). In a more recent
experiment by Hadikhani et al. (2018) involving bubbles in rectangular microchannels
and different bubble-to-channel size ratios 0.48 ≤ d/W ≤ 0.84, the authors investigated
the effect of bubble diameter Re (1 < Re < 40) and capillary number Ca (0.1 < Ca < 1)
on the lateral equilibrium, where Ca is the ratio between the fluid viscous force and the
membrane elastic force. The equilibrium position of such soft particles results from the
competition between Re and Ca, because at high Re, the flow pushes the particles towards
the wall, while at high Ca, i.e. high deformability, particles can move towards the channel
centre.

Numerical analysis showed more clearly that ‘deformation-induced lift force’ became
stronger as the particle deformation increased (Raffiee, Dabiri & Ardekani 2017; Schaaf
& Stark 2017). Although numerical analysis of inertia migration has been investigated
intensively in recent years mostly for spherical particles (Bazaz et al. 2020), equilibrium
positions of soft particles are still debated owing to the complexity of the phenomenon.
Shin & Sung (2011) investigated the equilibrium position of a two-dimensional spherical
capsule in the range 1 ≤ Re ≤ 100 for different capsule-to-channel size ratios 0.1 ≤
d/H ≤ 0.4. Their numerical results showed that the equilibrium position peaked in the
Re range between 30 and 40 for d/H ≤ 0.3, while the capsule migrated to the channel
centreline regardless of Re for d/H = 0.4 (i.e. small channel) (Shin & Sung 2011).
On the other hand, in a numerical analysis using a three-dimensional spherical capsule
model, Kilimnik et al. (2011) showed that the equilibrium peak position in a rectangular
microchannel with d/H = 0.2 tended to increase with channel Re in the range between
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1 and 100. Schaaf & Stark (2017) also performed numerical simulations of spherical
capsules in a square channel for 0.1 ≤ d/H ≤ 0.4 and 5 ≤ Re ≤ 100 without viscosity
contrast (i.e. λ = 1), and showed that the equilibrium position was nearly independent
of Re (Schaaf & Stark 2017). In a more recent numerical analysis by Alghalibi, Rosti &
Brandt (2019), simulations of a spherical hyperelastic particle in a circular channel with
d/D = 0.2 were performed with 100 ≤ Re ≤ 400 and Weber number 0.125 ≤ We ≤ 4.0,
the latter of which is the ratio of the inertial effect to the elastic effect acting on the
particles. Their numerical results showed that regardless of Re, the final equilibrium
position of a deformable particle was the centreline, and harder particles (i.e. with lower
We) tended to migrate rapidly towards the channel centre (Alghalibi et al. 2019).

Although the equilibrium positions of non-spherical rigid particles have been
investigated by both experimental observations (Masaeli et al. 2012) and a numerical
simulation (Huang & Lu 2017), the inertial migration of biconcave capsules that model
RBCs has not been fully described yet. Numerical analyses have investigated the
behaviour of RBCs under small Re in small microchannels, with simulations performed
for a viscosity ratio λ = 1 and circular microchannels with 0.3 < d/D < 0.8 (Fedosov
et al. 2014), and for a physiologically relevant viscosity ratio λ = 5 and a rectangular
microchannel with d/H = 0.8 (Guckenberger et al. 2018). Despite these efforts, there has
been no comprehensive analysis of the inertial migration of RBCs in large microchannels
with diameters of several dozen micrometres, d/D ∼ 0.1.

Aiming for the precise description of the inertial migration of RBCs in a microchannel,
we thus performed numerical simulations for individual RBCs with major diameter
d = 8 μm, subject to various Ca in a circular microchannel with D = 50 μm (i.e. d/D =
0.16). Each RBC is modelled as a biconcave capsule, whose membrane follows the
Skalak constitutive (SK) law (Skalak et al. 1973). Since this problem requires heavy
computational resources, we resort to graphics processing unit (GPU) computing, using
the lattice Boltzmann method (LBM) for the inner and outer fluids, and the finite element
method (FEM) to analyse the deformation of the RBC membrane. This model has been
applied successfully to the analysis of multi-RBC interactions in circular microchannels
(Takeishi et al. 2014, 2015, 2019b; Takeishi & Imai 2017).

The remainder of this paper is organised as follows. Section 2 gives the problem
statement and numerical methods. Section 3 presents the numerical results for single
RBCs, and § 4 presents a discussion, followed by a summary of the main conclusions in
§ 5. Precise descriptions of the numerical set-up and membrane mechanics are presented
in Appendices A and B, respectively.

2. Problem statement

2.1. Flow and cell models
We consider a cellular flow consisting of an external fluid (plasma), an internal fluid
(cytoplasm), and RBC with major diameter d0 (= 2a0 = 8 μm) and maximum thickness
2 μm (= a0/2) in a circular channel of diameter D (= 2R = 50 μm), with a resolution of
16 fluid lattices per major radius of RBC (= a0). The channel length is set to be 20a0,
following previous numerical studies (Fedosov et al. 2014; Takeishi et al. 2021). To show
that the channel length is adequate for investigating the behaviour of an RBC that is subject
to inertial flow, we preliminarily assessed the effect of this length on the lateral movement
of an RBC in Appendix A. The RBC is modelled as a biconcave capsule, or a Newtonian
fluid enclosed by a thin elastic membrane.
952 A35-4
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Inertial migration of RBC under a Newtonian fluid

The membrane is modelled as an isotropic and hyperelastic material following the SK
law (Skalak et al. 1973). The strain energy w of the SK law is given by

w = Gs

4

(
I2
1 + 2I1 − 2I2 + CI2

2

)
, (2.1)

where Gs is the surface shear elastic modulus, C is a coefficient representing the area
incompressibility, I1 (= λ2

1 + λ2
2 − 2) and I2 (= λ2

1λ
2
2 − 1 = J2

s − 1) are the first and
second invariants of the Green–Lagrange strain tensor, λi (i = 1, 2) are the two principal
in-plane stretch ratios, and Js = λ1λ2 is the Jacobian, which expresses the ratio of the
deformed to reference surface areas. In this study, we set C = 102 (Barthés-Biesel, Diaz
& Dheni 2002). Bending resistance is also considered (Li et al. 2005), with bending
modulus kb = 5.0 × 10−19 J (Puig-de-Morales-Marinkovic et al. 2007). These membrane
parameters successfully reproduced the deformation of RBCs in shear flow (Takeishi
et al. 2014, 2019b), and also the thickness of the cell-depleted peripheral layer in circular
channels (Takeishi et al. 2014). We define the initial shape of an RBC as a biconcave shape.

Neglecting inertial effects on the membrane deformation, the static local equilibrium
equation of the membrane is given by

∇s · T + q = 0, (2.2)

where ∇s (= (I − nn) · ∇) is the surface gradient operator, n is the unit normal outward
vector in the deformed state, q is the load on the membrane, and T is the in-plane elastic
tension that is obtained from the SK law (2.1). A more precise description of membrane
mechanics is presented in Appendix B.

It is known that the usual distribution of the haemoglobin concentration in individual
RBCs ranges from 27 to 37 g dl−1, corresponding to an internal fluid viscosity μ1 =
5–15 cP (= 5–15 mPa s) (Mohandas & Gallagher 2008), while the normal plasma
viscosity is μ0 = 1.1–1.3 cP (= 1.1–1.3 mPa s) for plasma at 37 ◦C (Harkness &
Whittington 1970). Hence the physiologically relevant viscosity ratio can be taken as
λ (= μ1/μ0) = 4.2–12.5 if the plasma viscosity is set to be μ0 = 1.2 cP. In our study,
therefore, the physiologically relevant viscosity ratio is set to be λ = 5. Unless otherwise
specified, we show the results obtained with λ = 5.

The fluids are modelled as an incompressible Navier–Stokes equation, with a governing
equation of fluid velocity v:

ρ

(
∂v

∂t
+ v · ∇v

)
= ∇ · 𝞼 f + ρf , (2.3)

∇ · v = 0 (2.4)

and
𝞼 f = −pI + μ

(∇v + ∇vT)
, (2.5)

where 𝞼 f is the total stress tensor of the flow, p is the pressure, ρ is the fluid density, f
is the body force, and μ is the viscosity of liquids, which is expressed using a volume
fraction of the inner fluid α (0 ≤ α ≤ 1) as

μ = {1 + (λ− 1) α}μ0. (2.6)
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The dynamic condition requires the load q to be equal to the traction jump (𝞼 f
out − 𝞼

f
in)

across the membrane:

q =
(
𝞼

f
out − 𝞼

f
in

)
· n, (2.7)

where the subscripts ‘out’ and ‘in’, respectively, represent the outer and internal regions
of the capsule, and n is the unit normal outward vector in the deformed state.

The problem is characterised by Reynolds number Re and capillary number Ca:

Re = ρD V∞
max

μ0
, (2.8)

Ca = μ0γ̇ma0

Gs
= μ0 V∞

max

Gs

a0

4R
, (2.9)

where V∞
max (= 2V∞

m ) is the maximum plasma velocity in the absence of any cells, and
γ̇m (= V∞

m /D) is the mean shear rate. Increasing Re under constant Ca corresponds to
increasing Gs, namely, a harder RBC.

2.2. Numerical simulation and set-up
The governing equations for the fluid are discretised by the LBM based on the D3Q19
model (Chen & Doolen 1998). We track the Lagrangian points of the membrane material
points x(X , t) over time, where X is a material point on the membrane in the reference
state. Based on the virtual work principle, the above strong-form equation (2.2) can be
rewritten in weak form as ∫

S
û · q dS =

∫
S
𝟄̂ : T dS, (2.10)

where û and 𝟄̂ = (∇sû + ∇sû
T
)/2 are the virtual displacement and virtual strain,

respectively. The FEM is used to solve (2.10) and obtain the load q acting on the membrane
(Walter et al. 2010). The velocity at the membrane node is obtained by interpolating the
velocities at the fluid node using the immersed boundary method (Peskin 2002). The
membrane node is updated by Lagrangian tracking with the no-slip condition. The explicit
fourth-order Runge–Kutta method is used for the time integration. The volume-of-fluid
method (Yokoi 2007) and front-tracking method (Unverdi & Tryggvason 1992) are
employed to update the viscosity in the fluid lattices. A volume constraint is implemented
to counteract the accumulation of small errors in the volume of the individual cells (Freund
2007): in our simulation, the volume error is always maintained lower than 1.0 × 10−3 %,
as tested and validated in our previous study of cell flow in circular channels (Takeishi
et al. 2016). All procedures were fully implemented on a GPU to accelerate the numerical
simulation. More precise explanations are provided in our previous work (see also Takeishi
et al. 2019b).

The channel flow is generated by a pressure gradient. Periodic boundary conditions are
imposed on flow direction (z-direction). No-slip conditions are employed for the walls
(radial direction). The resolution that we set has been shown to represent successfully
single- and multi-cellular dynamics (Takeishi et al. 2014, 2019b, 2021); the mesh size
of the LBM for the fluid solution was set to be 250 nm, and that of the finite elements
describing the membrane was approximately 250 nm (an unstructured mesh with 5120
elements was used for the FEM). This resolution has been shown to represent successfully
single- and multi-cellular dynamicsn (Takeishi et al. 2014).
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Flow

(a) (b)

(c)

Time

8 μm

25 μm

y
yx

x
z

z

Ψ

Figure 1. (a) Representative snapshot of the RBC orientation angle Ψ on the cross-sectional area of the
channel, where Ψ is the angle between the radial direction towards the RBC centroid and the normal vector
at the initial concave node point. (b,c) Snapshots of representative (b) stable rolling motion with |Ψ∞| ∼ π/2,
and (c) tumbling motion with |Ψ∞| ∼ 0 and π, where green dots represent material points at the initial concave
node point, and blue dots represent those at the initial edge node point. Flow direction is from left to right.

2.3. Analysis
To quantify the effects of the radial position of the RBC centroid and the shape of the
deformed cell on fluid flow, the power (or energy dissipation) associated with membrane
deformations is considered, and is given by

δWmem =
∫

q̂ ·
(
v(m) − V ∞(r)

)
dS, (2.11)

δWmem = μ0D V∞2
max

2

∫
q̂∗ ·

(
v(m)∗ − V ∞∗(r)

)
dS∗

= μ0D V∞2
max

2

∫ [
q̂∗

xv
(m)∗
x + q̂∗

yv
(m)∗
y + q̂∗

z

(
v(m)∗

z − V∞∗
z (r)

)]
dS∗, (2.12)

δW∗
mem = δWmem/

(
μ0D V∞2

max/2
)

, (2.13)

where V ∞(r) = (0, 0, V∞
max[1 − (r/R)2]) is the fluid flow velocity without cells, q̂ is

the load acting on the membrane and includes the contribution of bending rigidity, r is
the membrane distance from the channel centre, v(m) is the interfacial velocity of the
membrane, and S is the membrane surface area. Here, non-dimensional variables are
defined as q̂∗ = q̂/(μ0γ̇m), v(m)∗ = v(m)/V∞

max, V ∞∗ = V ∞/V∞
max and S∗ = S/D2.

For the following analysis, the behaviour of RBCs in the channel is quantified by an
orientation angle Ψ on the cross-sectional area of the channel as shown in figure 1(a),
where Ψ is the angle between the radial direction towards the RBC centroid and the normal
vector at the initial concave node point. Following previous numerical studies (Takeishi
et al. 2019b, 2021), we define two types of RBC flow modes depending on equilibrium
orientation angle Ψ∞. If Ψ orients perpendicular to the radial direction, i.e. |Ψ∞| ∼ π/2,
showing a wheel-like configuration, then the flow mode is defined as a rolling motion (see
figure 1b). On the other hand, if Ψ orients parallel to the radial direction, i.e. |Ψ∞| ∼ 0
and π, showing a flipping motion, then the flow mode is defined as a tumbling motion
(see figure 1c). More detailed transitions of Ψ in each mode are described in below (see
figure 2). Time averaging starts after the orientation angle and radial position of RBC
reach their final values, and the time averaging size is usually set to be γ̇mt ≥ 102.
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r0/R = 0.25 r0/R = 0.25

Ψ0 = π /32, Ca = 0.05 Ψ0 = π /32, Ca = 0.05
Ψ0 = π /16, Ca = 1.2

Ψ0 = π /8, Ca = 1.2
Ψ0 = π /16, Ca = 1.2
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0.5

0

0 π /32 π /16 3π /32 π /8

1.20

0.80

0.40

Tumbling

(cyclic |Ψ∞| ∼ 0 and π)

Tumbling (cyclic |Ψ∞| ∼ 0 and π)

Rolling (|Ψ∞| ∼ π /2)

Rolling (|Ψ∞| ∼ π /2)

0.10

0.05
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a m
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/a
0

Ca Ca

1.20

0.80

0.40

0.10

0.05

|Ψ
|/π

150 0 50 100 150

Ψ0

0 π /32 π /16 3π /32 π /8

Ψ0

γ
.
mt γ

.
mt

Figure 2. (a) Time history of the orientation angle |Ψ |/π on the cross-sectional (x–y) plane for different
initial orientation angles Ψ0 (= π/32 and π/16) and different Ca (= 0.05 and 1.2), where the dashed line and
dash-dotted line represent |Ψ | = π/2 and |Ψ | = π, respectively (see supplementary movies 1 and 2 available
at https://doi.org/10.1017/jfm.2022.936). (b) Time history of the deformation index amax/a0 for different Ψ0
(= π/32, π/16 and π/8) and different Ca (= 0.05 and 1.2). The results are obtained with low Re (= 0.2). (c,d)
Diagrams of the final stable orientation of the RBC subject to different Ca for different initial orientations Ψ0.
The results for Re = 0.2 and 10 are reported in (c,d), respectively. The RBC images represent the steady state of
the RBC at the equilibrium orientation |Ψ∞|. Circles denote stable rolling motion (|Ψ∞| ∼ π/2), and squares
denote stable tumbling motion (cyclic |Ψ∞| ∼ 0 and π). All results are obtained with r0/R = 0.25 and λ = 5.

3. Results

3.1. Effect of initial orientation angle Ψ0 on stable flow mode
We first investigate the equilibrium orientation angle Ψ∞ on the cross-sectional (x–y)
plane depending on the initial orientation angle Ψ0. Simulations are started from a slightly
off-centre radial position, with the radial position of the RBC centroid set as r0/R = 0.25,
where r0 is the distance from the channel centre to the RBC centroid on the cross-sectional
plane. The time history of Ψ for different initial orientation angles Ψ0 (= π/32 and π/16)
and different Ca (= 0.05 and 1.2) are shown in figure 2(a). The results are obtained with
low Re (= 0.2), and can be assumed to be almost inertialess (Takeishi et al. 2019b, 2021).
An RBC that is subject to low Ca (= 0.05) and that is only slightly tilted, with Ψ0 = π/32,
gradually orients parallel to the radial plane, showing a wheel-like configuration, the
so-called rolling motion with |Ψ∞| ∼ π/2 (blue line in figure 2a) (see supplementary

952 A35-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

93
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.936
https://doi.org/10.1017/jfm.2022.936


Inertial migration of RBC under a Newtonian fluid
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Figure 3. (a) Snapshots of a rolling RBC (|Ψ∞| ∼ π/2) subject to different Ca (= 0.05, 0.2, 0.5 and 1.2) in
Re = 10, where results are at γ̇mt = 1500 for Ca = 0.05 and 0.2, and at γ̇mt = 2000 for Ca = 0.5 and 1.2. The
RBCs start from the near-wall position r0/R = 0.8. The temporal changes corresponding to these snapshots
are shown in supplementary movies: movie 3 for Ca = 0.05, movie 4 for Ca = 0.2, and movie 5 for Ca = 1.2,
respectively. (b) Time history of the radial position of the RBC centroid r/R, where the RBC images represent
snapshots of the axial view of an RBC subject to Ca = 0.2 (at γ̇mt = 0, 100 and 1500). (c) Time history of the
powers associated with membrane deformation δW∗

mem.

movie 1). In contrast, an RBC that is subject to high Ca (= 1.2) and that is further tilted,
with Ψ0 = π/16, immediately shows a flipping motion, with cyclic |Ψ∞| ∼ 0 and π,
the so-called tumbling motion (red line in figure 2a) (see supplementary movie 2). The
characteristic time histories in these modes persist even when Re increases from 0.2 to 10
(data not shown). The results show further that the aforementioned two different types of
modes have completed at relatively early time periods O(γ̇mt) ≤ 102 (see also figure 3b).
Oriented RBCs, however, are still migrating towards the radial direction in each stable
mode.

The degree of cell deformation is quantified by the maximal radius amax of deformed
RBCs, and is obtained from the eigenvalues of the inertia tensor of an equivalent ellipsoid
approximating deformed RBCs (Ramanujan & Pozrikidis 1998). The time history of
amax/a0 is shown in figure 2(b). The tumbling RBC exhibits large cyclic extension with
the same period as its rotations (figure 2(b), red solid line), while the rolling RBC has
relatively small fluctuations in amax/a0 (figure 2(b), blue solid line). For the same Ca
(= 1.2), the rolling RBC exhibits greater extension than the tumbling RBC (figure 2(b),
red dashed line).

The stable orientation Ψ∞ of RBCs is investigated for different initial orientation
angles Ψ0, different Ca (= 0.05–1.2), and different Re (= 0.2 and 10), and the results are
summarised in figures 2(c) and 2(d). At low Re (= 0.2), RBCs subject to low Ca (= 0.05)
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have a rolling motion (|Ψ∞| ∼ π/2) for Ψ0 ≥ π/32 (figure 2c). This result suggests that
most RBCs tend to have a rolling motion. As Ca increases, RBCs tend to have a tumbling
motion, for Ψ0 ≤ π/16 (figure 2c). Since the rolling motion of RBCs subject to Ca = 1.2
is observed at least for Ψ0 ≥ 3π/32, the dominant flow mode is still a rolling motion even
at high Ca (figure 2c).

At high Re (= 10), all RBCs have a rolling motion even at low Ca (= 0.05), as shown in
figure 2(d). Hence finite inertia imposes disturbances on the membrane, which potentially
allows RBCs to have a stable rolling motion. For higher Ca (= 1.2), the final stable mode
depends on initial orientation angle Ψ0 but remains the same as in the case with almost no
inertia (Re = 0.2), where the tumbling motion appears for 0 ≤ Ψ0 ≤ π/16, and the rolling
motion is seen for Ψ0 ≥ 3π/32 (figure 2d). Comparing with the case of low Re = 0.2, the
higher Re conditions impede the tumbling motion (figures 2c,d).

3.2. Effect of capillary number Ca on equilibrium radial position
Next, we investigate the equilibrium radial position of an RBC centroid at Re = 10
for different Ca. Figure 3(a) shows snapshots of stable rolling RBCs (|Ψ∞| ∼ π/2),
each subject to different Ca, when they have reached each equilibrium radial position
(figure 3b). All RBCs start from the near-wall position r0/R = 0.8 with the initial
orientation angle Ψ0 = π/4. As Ca increases, the RBCs are extended to the flow direction
(figure 3a). Figure 3(b) is the time history of the RBC centroid for different Ca, where
RBC images represent snapshots of the axial view of an RBC subject to low Ca (= 0.2)
at specific time points γ̇mt = 0, 100 and 1500 (see supplementary movie 4). At low Ca
(= 0.2), the RBC exhibits a stable rolling motion within a relatively early time period
γ̇mt ≤ 100 (see RBC images in figure 3b), and then the RBC attains the radial position
r/R ≈ 0.2. At the highest Ca (= 1.2) in this paper, the RBC is still migrating towards the
channel centre even after time γ̇mt = 2000 (figure 3b) (see supplementary movie 5). Note
that the volumetric flow rate, which is inversely proportional to the apparent viscosity,
remains almost the same independent of the equilibrium radial position (data not shown),
i.e. the flow resistances are not changed significantly by RBC deformation.

The time histories of powers associated with membrane deformations δW∗
mem are shown

in figure 3(c). The result shows that powers δW∗
mem tend to decrease as Ca increases.

Although δW∗
mem is still decreasing at the highest Ca (= 1.2), the power basically retains

the same order of magnitude for each Ca (figure 3c) after the onset of stable rolling motion.
Figure 4(a) shows the time average of the radial position 〈r〉/R as a function of

Ca, where the error bars represent standard deviations along the time axis (i.e. time
fluctuation). Hereafter, 〈·〉 denotes the time average. As Ca increases, RBCs tend to
migrate towards the channel centre, thus inertial migration is impeded by deformability
(figure 4a). Since the RBC subject to the highest Ca (= 1.2) is still in axial migration, the
average radial position 〈r〉/R is obtained with data from γ̇mt = 1500–2000. Figure 4(b)
indicates the time average of deformation index 〈amax〉/a0, and shows that 〈amax〉/a0
increases with Ca.

The powers 〈δW∗
mem〉 as a function of Ca are shown in figure 4(c). The powers

〈δW∗
mem〉 decrease as Ca increases, which is similar in tendency to the radial position

〈r〉/R (figure 4a) and is opposite to that of the maximum radius 〈amax〉/a0 (figure 4b).
The relationship between 〈δW∗

mem〉 and 〈r〉/R is replotted in figure 4(d). The order of
magnitude of the power 〈δW∗

mem〉 decreases as the equilibrium radial position 〈r〉/R
decreases (figure 4d).
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Figure 4. (a) Time average of the radial position 〈r〉/R of an RBC centroid, (b) maximum length 〈amax〉/a0
of a deformed RBC, (c) powers 〈δW∗

mem〉 associated with membrane deformations occurring with a stable
rolling motion (|Ψ∞| ∼ π/2) – all presented as functions of Ca. (d) Replotted data of 〈δW∗

mem〉 as a function of
equilibrium radial position 〈r〉/R for different Ca. Results at Ca = 1.2 are for an RBC in transit (still migrating
towards the channel centre), represented by shaded triangles. All results are obtained with Re = 10 and r0/R =
0.8.

3.3. Effects of flow modes and initial positions r0/R on equilibrium radial position
To clarify how the aforementioned flow modes affect the equilibrium radial positions of
RBC centroids, we investigate the effect of the stable flow modes of RBCs on equilibrium
radial positions 〈r〉/R as well as the power 〈δW∗

mem〉 under specific Re = 10 and Ca = 1.2.
The effects of the initial radial position r0 on 〈r〉/R and 〈δW∗

mem〉 are also investigated. Two
different stable modes are controlled by the initial orientation angle Ψ0, as seen in figure 2.

Figures 5(a) and 5(b) show snapshots of flowing RBCs subject to the highest Ca (= 1.2)
for different initial orientation angles Ψ0 (= 0 and π/4) at the initial state (γ̇mt = 0) and
the final time point (γ̇mt = 1500). The RBC starting from Ψ0 = 0 exhibits a flipping
or tumbling motion, and assumes a flattened croissant-like shape that is convex at the
front and concave at the rear (figure 5a). This tumbling motion allows the RBC to
migrate towards the wall from the initial near-centre position r0/R = 0.16 to r/R =
0.2812 (figure 5(c), green solid line). The RBCs initially placed near a centre position
(r0/R = 0.04) with Ψ0 = 0 require a long period of time to reach this r/R threshold
(= 0.2812) (figure 5(c), blue solid line). The RBC starting from Ψ0 = π/4 exhibits an
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Figure 5. Snapshots of RBCs at initial state (γ̇mt = 0) and during fully developed tumbling and rolling motions
(γ̇mt = 1500), where the initial orientation angles are set to (a) Ψ0 = 0, and (b) Ψ0 = π/4, respectively. The
upper and lower snapshots show the top view and side view, respectively. (c) Time history of the radial position
of RBC centroids for different r0/R and Ψ0. Solid lines indicate Ψ0 = 0, and dashed lines indicate Ψ0 = π/4.
The dash-dotted line represents the equilibrium radial position of tumbling RBCs with r/R = 0.2812. The
results are obtained with Re = 10 and Ca = 1.2.

elongated rolling motion, as shown in figure 5(b), and tends to migrate towards the channel
centre (figure 5(c), green dashed line). Such equilibrium radial positions are basically
independent of the initial radial position r0/R, except for the case r0/R = 0, where the
RBC starting from Ψ0 = 0 remains almost on the channel axis, O(r/R) = 10−3, without
an obvious tumbling motion (figure 5(c), black solid line). Travel on the channel axis
is also observed in the case with r0/R = 0.04 and Ψ0 = π/4 (figure 5(c), blue dashed
line). Considering a linear estimation for the speed of axial migration, corresponding to
the gradient of the time history of radial positions of RBC centroids, using data between
γ̇mt = 1500 and γ̇mt = 2000, rolling RBCs starting from r0/R = 0.8 and 0.16 will reach
the near-centre position O(r/R) ≤ 10−2 at γ̇mt = 4500 and 3800, respectively.

Figure 6(a) shows the time average of the radial position 〈r〉/R as a function of the
initial radial position r0/R for different initial orientation angles Ψ0 (= 0 and π/4). As
described above, tumbling RBCs reach the threshold value r/R = 0.2812, while rolling
RBCs exhibit axial migration (figure 6a). Since rolling RBCs are elongated in the flow
direction, their maximal radius amax in the deformed shape tends to be greater than that of
tumbling RBCs (figure 6b). Due to the large cyclic extension of tumbling RBCs, as shown
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Figure 6. (a) Time average of the radial position 〈r〉/R of an RBC centroid, (b) maximum length 〈amax〉/a0 of
a deformed RBC, and (c) powers 〈δW∗

mem〉 associated with membrane deformations – all shown as functions of
the initial radial position r0/R and initial orientation angles Ψ0 (= 0 and π/4). (d) Replotted data of 〈δW∗

mem〉
as a function of equilibrium radial position 〈r〉/R. Rolling RBCs starting from Ψ0 = π/4 and r0/R ≥ 0.16 are
in transit (still migrating toward the channel centre), and are represented by grey-shaded triangles. All results
are obtained with Re = 10 and Ca = 1.2.

in figure 2(b), the time-dependent fluctuation in amax/a0 is greater in tumbling RBCs than
in rolling ones.

Figure 6(c) shows the powers 〈δW∗
mem〉 as a function of the initial radial position

r0/R for different initial orientation angles Ψ0. Since RBCs flowing near the channel
axis are associated with low energy expenditure independently of Ψ0, it is expected that
rolling RBCs with 0.16 ≤ r0/R ≤ 0.8 (grey-shaded triangles in figure 6c) will also reach
a small order of magnitude of the powers O(〈δW∗

mem〉) ≤ 10−3. The results of 〈δW∗
mem〉

are replotted as a function of 〈r〉/R (figure 6d). The result suggests that the orders of
magnitude of the powers 〈δW∗

mem〉 correlate with the (equilibrium) radial position, which
in turn is associated with stable flow mode.

3.4. Effect of Re on equilibrium radial position
The effect of Re on the equilibrium radial positions of RBC centroids is also investigated
for specific Ca = 1.2 and initial radial position r0/R = 0.16. Representative snapshots of
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Figure 7. (a) Snapshots of RBCs subject to Ca = 1.2 for different Re at the equilibrium radial position: γ̇mt =
750 for Re = 3, and γ̇mt = 1500 for Re = 15, 20 and 30. (b) Time history of radial positions of RBC centroids
for different Re. All RBCs exhibit rolling motion (|Ψ∞| ∼ π/2). The results are obtained with Ca = 1.2 and
r0/R = 0.16.

RBCs at each equilibrium radial position are shown in figure 7(a). Off-centred rolling of
RBCs is seen clearly for Re ≥ 15, while the axially migrated RBC under Re = 3 does
not exhibit a characteristic flow mode because of the low shear rate region (figure 7a).
Figure 7(b) shows the time history of RBC centroids r/R for different Re. The inertial
migration of rolling RBCs subject to Ca = 1.2 requires at least Re ≥ 15 (figure 7b). The
speed of axial migration increases as Re (≤ 10) decreases (figure 7b). For RBCs at lower
Re ≤ 1, axial speeds estimated linearly using data between γ̇mt = 0 and γ̇mt = 200 predict
axial migration (O(〈r〉/R) ≤ 10−2) within γ̇mt = 500. Complete axial migration at such
low Re cannot be confirmed practically due to heavy computational load. Instead, we
perform a simulation at Re = 0.2 in a smaller channel with D = 20 μm, and find that
RBCs exhibit axial migration regardless of Ca (see figure 12, in Appendix A). In the
time-averaged results, data are shown only for cases in which RBCs have reached each
equilibrium radial position (i.e. Re = 3, 15, 20 and 30).

Figure 8(a) shows the time average of the radial position 〈r〉/R as a function of Re.
RBCs flowing at large 〈r〉/R experience high shear stress, resulting in large deformation
amax/a0 as shown in figure 8(b).

Figure 8(c) shows the powers 〈δW∗
mem〉 as a function of Re. Although axially

migrated RBCs are associated with low energy expenditure O(〈δW∗
mem〉) = 10−3,

inertially migrated RBCs are associated with high energy expenditure O(〈δW∗
mem〉) =

10−2 (figure 8c), which is consistent with the results in figure 6(c). The relationship
between 〈δW∗

mem〉 and Re remains the same even when the data are replotted as a function
of 〈r〉/R, where 〈δW∗

mem〉 increases with increased Re or 〈r〉/R increases (figure 8d).
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Figure 8. (a) Time average of the radial position 〈r〉/R of an RBC centroid, (b) maximum length 〈amax〉/a0 of
a deformed RBC, and (c) powers 〈δW∗

mem〉 associated with membrane deformations – all are shown as functions
of Re. (d) Replotted data of 〈δW∗

mem〉 as a function of equilibrium radial position 〈r〉/R for different Re. Results
are obtained with Ca = 1.2 and r0/R = 0.16.

3.5. Effect of viscosity ratio λ on equilibrium radial position
To clarify the impact of the physiologically relevant viscosity ratio λ (= 5 in this study) on
the equilibrium radial positions of RBC centroids, we simulate the behaviour of RBCs
with λ being unity. The time histories of radial position r/R obtained with λ = 1 are
added in figures 3(b) and 7(b), and are shown in figures 9(a) and 9(b), respectively.
When λ decreases from 5 to 1, the RBCs under Re = 10 immediately migrate towards
the channel centre, and the equilibrium radial position is decreased at each Ca (= 0.05
and 1.2; figure 9a). In particular, at the highest Ca = 1.2, the RBC exhibits complete
axial migration with γ̇mt = 1500. The decrease in the equilibrium radial positions of RBC
centroids is consistent even for large Re, as shown in figure 9(b). However, the RBC
subject to Ca = 1.2 still exhibits inertial migration, at least for Re ≥ 20, even for λ = 1
(figure 9b). For the additional runs with λ = 1, the stable flow mode remains the rolling
motion. Overall, the low λ (= 1) condition impedes inertial migration (figures 9a,b).

The relationship between 〈r〉/R and 〈δWmem〉 obtained with λ = 1 is superimposed on
the results for λ = 5 (figures 4(d) and 8(d)), and the results are plotted on an estimated
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Figure 9. Time histories of the radial position of an RBC centroid for different (a) Ca and (b) Re, where the
results obtained with λ = 1 are added to figures 3(b) and 7(b). The RBC images show snapshots of a flowing
RBC at each equilibrium position for Re = 30 and λ = 1 and 5. Replotted data of 〈δW∗

mem〉 as a function
of equilibrium radial position 〈r〉/R for different (c) Ca and (d) Re. All RBCs exhibit stable rolling motion
(|Ψ∞| ∼ π/2).

curve obtained with λ = 5, as shown in figures 9(c) and 9(d). The tendency remains the
same even at low λ (= 1).

3.6. Equilibrium radial position of a spherical capsule
To clarify whether the equilibrium radial positions of a biconcave capsule with the initial
position r0 shown in figure 5(c) can also be predicted using a spherical capsule, simulations
are performed with a spherical capsule whose radius is defined to yield the same volume as
the biconcave capsule (i.e. asphere = 2.71 μm). Representative snapshots of the spherical
capsule starting with r0/R = 0.8 are shown in figure 10(a), where the viscosity ratio λ is
set to be the same as with the biconcave capsule (λ = 5). The capsule gradually migrates
towards the centre, exhibiting a tank-treading motion, and reaches r/R = 0.2665 at γ̇mt =
1000, which is almost the same value as that obtained with the tumbling motion of the
biconcave capsule (r/R = 0.2812; figure 5c). A spherical capsule initially placed on the
channel axis r0/R = 0 remains in the initial radial position, which is consistent with the
result obtained with a biconcave capsule (figure 5c). The spherical capsule with λ = 1
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(a)
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Tumbling-like RBC

r0/R = 0.80, λ = 1
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r0/R = 0.80

r0/R = 0

Tumbling-like RBC

Figure 10. (a) Snapshots of a spherical capsule with λ = 5 initially placed at r0/R = 0.8 for Ca = 1.2 and
Re = 10 at specific time points γ̇mt = 0 (left), γ̇mt = 100 (centre) and γ̇mt = 1000 (right). (b) Time history
of the radial positions of spherical capsules for different r0/R (= 0 and 0.8) and different λ = 1 and 5. The
RBC images show snapshots of spherical capsules at each equilibrium position. The equilibrium radial position
(r/R = 0.2812) obtained with a tumbling RBC with λ = 5 (figure 5b) is also displayed as a black dashed line.

reaches r/R = 0.2552 at γ̇mt = 1000, which is still close to the threshold obtained with
the RBC (figure 10b).

4. Discussion

In contrast to a large number of previous studies of RBC flow mode, especially under shear
flow, little is known about inertial migration of non-spherical (biconcave) capsules in a
channel flow. Furthermore, it is still uncertain what is the relationship between those stable
flow modes and the equilibrium radial position of an RBC centroid on the cross-sectional
area of the channel. We address these issues by numerical simulations in the present study.

The dynamics of single RBCs has been well investigated experimentally, in particular
under simple shear flow fields. For instance, RBCs subjected to a low shear rate
exhibit rigid-body-like flipping, the so-called tumbling motion (Schmid-Schönbein &
Wells 1969; Fischer 2004; Dupire, Abkarian & Viallat 2010), and wheel-like rotation,
the so-called rolling motion (Dupire, Socol & Viallat 2012; Lanotte et al. 2016).
Meanwhile, RBCs subjected to high shear rates exhibit the so-called tank-treading motion
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(Schmid-Schönbein & Wells 1969; Fischer, Stöhr-Liesen & Schmid-Schönbein 1978;
Fischer 2004). The swinging motion was introduced by Abkarian, Faivre & Viallat (2007)
as an oscillating orientation of tank-treading motion in the case of relatively low viscosity
λ ∼ 0.5. Despite these reports, it is still difficult to control the initial angle of RBCs under
flow by experimental techniques. In the experiment by Dupire et al. (2012), they focused
more specifically on the cells for which the initial angle of the cell axis of revolution is
in the shear plane. Although previous numerical results showed that a trajectory of RBC
orientation angles depends on initial orientations (Dupire et al. 2010; Lanotte et al. 2016),
there is no precise description about bistable flow modes of RBCs under finite Re. The
stable configurations of flowing RBCs especially under low Re (< 1) in microchannels
smaller than a dozen micrometres have been investigated intensively both experimentally
(Skalak & Branemark 1969; Gaehtgens, Dührssen & Albrecht 1980; Tomaiuolo et al.
2009; Guckenberger et al. 2018) and in numerical simulations (Freund & Orescanin
2011; Freund 2014; Guckenberger et al. 2018; Takeishi et al. 2019a, 2021). For instance,
using a two-dimensional droplet model, the numerical studies in Kaoui, Biros & Misbah
(2009) clearly showed that the shape transition in an unbounded Poiseuille flow occurred
when a dimensionless vesicle deflation number, representing shape stability, fell below a
certain value. The effect of degree of confinement d/W (= 0.1–0.8, where d is the vesicle
diameter, and W is the channel width) on the vesicle mode was investigated in Kaoui et al.
(2011). The three-dimensional capsule behaviours following neo-Hookean constitutive
law in small channels were investigated numerically by Hu, Salsac & Barthés-Biesel
(2012). The study revealed that the spherical capsule is more deformed in a circular
cross-section channel than in a square one, even under the same size ratio and flow
rate (Hu et al. 2012). Those numerical analyses were performed in the Stokes regime.
Although these attempts have revealed velocity-dependent transitions in RBC shapes, it is
still uncertain whether stable RBC shapes in such small microchannels can be reproduced
even in larger microchannels. Furthermore, much is still unknown, in particular about
the relationship between the stable flow mode of RBCs, equilibrium radial position, and
energy expenditure associated with membrane deformations. To clarify these issues, we
performed numerical simulations of the lateral movement of RBCs under a Newtonian
fluid in a circular channel with diameter D = 50 μm. Simulations are performed under
a wide range of Re (0.2 ≤ Re ≤ 30) and Ca (0.05 ≤ Ca ≤ 1.2), as well as with various
initial orientation angles Ψ0 and radial positions r0/R.

Our numerical results demonstrate that instead of the parachute and slipper shapes
observed in a microchannel with D = 15 μm (Takeishi et al. 2021), RBCs have bistable
flow modes, specifically the so-called rolling and tumbling motion, that depend on the
initial orientation angles Ψ0 (figure 2). Most RBCs exhibit a rolling motion (figures 2c,d),
which is consistent with the results of a previous numerical study of rigid oblate ellipsoidal
particles (Huang & Lu 2017). Especially for low Ca conditions, rolling RBCs notably
appear rather than tumbling RBCs (figures 2c,d). Figure 2(c) explains quantitatively
the shape distribution observed in experiments using a microtube of diameter 50 μm
(Lanotte et al. 2016), where the tumbling-to-rolling transition is observed at low shear
rates γ̇ < 40 s−1, corresponding to Ca = 0.05 at Re = 0.2 in this study if the surface
shear elastic modulus is considered as Gs = 4 μN m−1. Our numerical results further
show that higher Re conditions impede tumbling motion (figures 2c,d). These modes
are associated with different equilibrium radial positions, where tumbling motions result
in more off-centre positions than rolling ones (figure 5c). In particular, the equilibrium
radial positions of tumbling RBCs can be estimated by spherical capsules (figure 10b).
Such equilibrium radial positions are basically independent of initial radial positions
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r0/R, except for the case with r0/R = 0, where an RBC starts exactly on the channel
centre (r0/R = 0) and remains almost on the channel axis, O(〈r〉/R) = 10−3, without
exhibiting the aforementioned characteristic modes (figure 5c). The equilibrium radial
coordinates become greater both with decreases in Ca (i.e. stiffer cases; figure 4a) and
with increases in Re (figure 8a). Stiffer RBCs tend to reach their equilibrium radial
positions quickly (figure 3b), which is qualitatively consistent with a previous numerical
study of a spherical hyperelastic particle (Alghalibi et al. 2019). On the other hand,
softer RBCs tend to exhibit axial migration, i.e. inertial migration is impeded by finite
deformability (figure 4a); this is qualitatively consistent with previous numerical analyses
of spherical capsules in a rectangular channel under Newtonian fluid (Schaaf & Stark
2017) and also in polymeric fluid modelled using an Oldroyd-B constitutive equation
(Raffiee et al. 2017). By simulating multi-spherical-capsule interactions at finite channel
Re (= 3–417) in a planar Poiseuille flow considering the SK law, Krüger, Kaoui & Harting
(2014) also concluded that the Segré–Silberberg effect (Segré & Silberberg 1962) is
suppressed upon an increase of the particle deformability. Considering the effects of initial
orientations (figures 2 and 3b) and initial radial positions (figure 5c) on equilibrium radial
positions, the initial shear stress acting on the cell membrane induces cell deformation and
alteration of orientation angles (figures 2a,b). The change in cell orientation is affected
primarily by the initial orientation angle (figure 5c), and subsequently, the cell achieves
a stable tumbling or rolling motion during radial migration (figure 3b), with migration
towards the equilibrium radial position occurring much later (figure 3b). Comparison with
experimental and numerical results of stable RBC flow mode is our future study. At the
moment, inertial focusing of RBCs in a square capillary tube of width 50 μm has been well
investigated experimentally (Tanaka & Sugihara-Seki 2022). In the future study, based on
this technique, we will confirm the aforementioned stable flow mode and mode-depending
equilibrium radial position.

To clarify whether the equilibrium radial position minimises the energy expenditure
associated with membrane deformations 〈δW∗

mem〉, the powers are calculated in (2.13).
Overall, off-centre RBCs demonstrate a large velocity gradient (or shear stress), resulting
in large energy dissipation as shown in figures 4(d), 6(d) and 8(d). The order of magnitude
of powers in axially migrated RBCs is relatively small, O(〈δWmem〉) ∼ 10−4, while the
powers of off-centre RBCs increase by two orders of magnitude, O(〈δWmem〉) ∼ 10−2

(figures 6(d), 9(c) and 9(d)). Although the knowledge that large off-centre deformable
particles associated with large energy expenditure can be derived by rigid spherical
particles, this tendency is counter to that obtained in a small microchannel with D =
15 μm and almost no inertia (Re = 0.2) (Takeishi et al. 2021), where powers 〈δW∗

mem〉
instead decrease as the off-centre radial position increases. The tendency obtained with
λ = 5 remains the same even at low λ (= 1; figures 9(c,d)). The results suggest that
the aforementioned bistable flow modes in a large microchannel (D = 50 μm) and their
equilibrium radial positions cannot be determined simply by the energy expenditure
〈δW∗

mem〉. The results show further that low λ (= 1) conditions impede inertial migration
not only for biconcave capsules (non-spherical capsules) but also for spherical capsules
(figure 10b). Despite these insights, we are unsure what factors cause RBCs to adopt a
stable shape. Considering the results observed with powers 〈δW∗

mem〉 shown in figures 9(c)
and 9(d), the stable orientations and equilibrium radial positions of RBCs cannot be
explained by the minimum energy dissipation. The powers 〈δW∗

mem〉, however, rely
on stable flow modes, equilibrium radial position of RBC centroids, and viscosity
ratios λ.
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Considering that the equilibrium radial positions of rolling RBCs subject to high Ca
(= 1.2) increase with Re ≥ 15 (figure 8a), a certain level of inertial Re is required in
inertial migration of RBCs. Since the major diameter of rolling RBCs increases by almost
80 % under 15 ≤ Re ≤ 30 (figure 8b), the cell state after inertial migration should be taken
into consideration for applications such as cell-sorting techniques. If the orientation angle
of individual RBCs flowing in channels can be manipulated so that the majority of RBCs
assume a stable tumbling state, e.g. by mean of an optical cell rotator (Kreysing et al.
2014), then these tumbling RBCs will accumulate near the wall even under relatively low
Re with smaller deformations (figures 6a,b). Given that the transition can be controlled
by adjusting the cell orientation as well as background flow strength, the results obtained
here can be utilised for label-free cell alignment/sorting/separation techniques to diagnose
precisely patients with haematologic disorders, or for the analysis of anticancer drug
efficacy in cancer patients. Our numerical results form a fundamental basis for further
studies on cellular flow mechanics.

5. Conclusion

We investigate numerically the lateral movement of RBCs with major diameter 8 μm under
a Newtonian fluid in a circular channel of diameter 50 μm. Simulations are performed
for a wide range of Re and Ca, as well as various initial orientation angles and radial
positions. The RBCs are modelled as a biconcave capsule, whose membrane follows the
SK law. The problem is solved by the LBM for the inner and outer fluids, and the FEM
is used to follow the deformation of the RBC membrane. The numerical results show that
RBCs have bistable flow modes, the so-called rolling motion and tumbling motion, which
depend on the initial cell orientations and which are established soon after flow onset.
The vast majority of RBCs exhibit the rolling motion. Furthermore, higher Re conditions
impede tumbling motion. These modes are associated with different equilibrium radial
positions, with tumbling RBCs flowing much further away from the channel axis than
rolling ones. RBCs subject to high Ca (i.e. large deformability) tend to exhibit axial
migration even for finite Re, but inertial migrations are enhanced over a certain value
of Re. The inertial migration of RBCs involves the alternation of orientation angles,
which are affected primarily by the initial orientation angles. The RBCs then adopt the
aforementioned bistable modes during the migration, followed by further migration to
the equilibrium radial position at much later time periods. The stable orientations and
equilibrium radial positions of RBC centroids do not minimise the energy expenditure
associated with membrane deformations. The energy expenditure, however, relies on stable
flow modes, the equilibrium radial positions of RBCs, and viscosity ratios.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2022.936.
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Figure 11. Time history of the radial position r/R of an RBC centroid with D = 50 μm for different channel
lengths L (= 10a0, 15a0 and 20a0). The results are obtained with Re = 10, Ca = 0.05, π/4 ≤ Ψ0 ≤ π/2, and
r0/R = 0.8.

Appendix A. Numerical set-up

We have tested the channel length L, and investigated its effect on the radial positions of
RBC centroids. Although previous numerical studies of deformable particles have set a
variety of computational lengths depending on Re (e.g. Alghalibi et al. 2019; Kilimnik
et al. 2011; Raffiee et al. 2017; Schaaf & Stark 2017), we tested the trajectory of the radial
positions of RBC centroids for different channel lengths L (= 10a0, 15a0 and 20a0). The
results of the time history of the radial position of RBC centroid r are compared between
these different channel lengths in figure 11, where the centroid position r is normalised by
the channel radius R. The results are consistent among all cases, hence the results presented
in this study are all obtained with the channel length L = 20a.

We have also confirmed the axial migration for a relatively small channel with D =
20 μm (i.e. d/D = 0.2), where the channel length remains the same as L = 20a0. Figure 12
shows the time history of r/R for different Ca (= 0.05 and 1.2). Although a highly
deformable RBC (i.e. large Ca = 1.2) takes much longer to migrate towards the channel
centre than a stiffer RBC (i.e. small Ca = 0.05), both RBCs finally complete the axial
migration. This result also indicates that the axial migration of RBCs will occur even in
high Ca (= 1.2) at least for d/D ≤ 0.2, instead of off-centre slipper shapes of RBCs at
d/D ≈ 0.53 (d = 8 μm and D = 15 μm; Takeishi et al. 2021).

Appendix B. Membrane mechanics

Since the RBC membrane is very thin relative to its major diameter, we can consider the
deformation of its median surface in the absence of bending resistance. Furthermore, the
stress can be integrated across the thickness and be replaced by tensions, i.e. forces per
unit length. Consider a material point on the surface of a two-dimensional membrane. Let
x be the position of the material point in a deformed state. In fixed Cartesian coordinates,
it is defined as

x = xiei, (B1)
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Figure 12. Time history of the radial position r/R of an RBC centroid with D = 20 μm for different
Ca (= 0.05 and 1.2). The results are obtained with Re = 0.2, π/4 ≤ Ψ0 ≤ π/2, and r0/R = 0.55. The RBC
images represent snapshots of cross-sectional area of RBCs subject to each Ca at specific times: γ̇mt = 0 (initial
state), 500 and 1500, respectively.

where ei (i = 1, 2, 3) is the Cartesian basis. We also introduce local curvilinear coordinates
on the membrane (ξ1, ξ2, ξ3), and the local covariant bases are defined by

G1 = ∂X
∂ξ1 , G2 = ∂X

∂ξ1 , G3 = n, (B2a–c)

g1 = ∂x
∂ξ1 , g2 = ∂x

∂ξ1 , g3 = n, (B3a–c)

where X and x are material points on the membrane in the reference and deformed states,
respectively, and n is the unit normal outward vector, which is calculated as

g3 = g1 × g2

|g1 × g2|
= g3 = g1 × g2

|g1 × g2| = n. (B4)

The associated contravariant bases are defined as gi · gj = δi
j , where δ is the Kronecker

delta. The covariant and contravariant metric tensors can be written as

gij = gji = gi · gj, gij = gji = gi · g j, (B4a,b)

where gi3 = δi3 and gi3 = δi3. The local, in-plane deformation of the membrane can be
measured by the Green–Lagrange strain tensor E given by

E = 1
2

(
gαβ − Gαβ

)
(α, β ∈ {1, 2}). (B5)

The two invariants of the strain tensor are given by

I1 = gαβGαβ − 2, I2 = |gαβ | |Gαβ | − 1, (B6a,b)

where |gαβ | (= g11g22 − g12g21) is the determinant of the metric tensor (similarly for the
reference state, |Gαβ |). The contravariant expression of the Cauchy tensor T is then given
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by

T = 2
Js

∂w
∂I1

Gαβ + 2Js
∂w
∂I2

gαβ, (B7)

where w is the surface strain energy function, and Js is the Jacobian, which expresses the
area dilation ratio. In this study, the SK law (2.1) is considered for w.
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