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MOMENTS OF A MARKOV-MODULATED,
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Abstract

We study a network of fluid queues in which exogenous arrivals are modulated by a
continuous-time Markov chain. Service rates in each queue are proportional to the queue
size, and the network is assumed to be irreducible. The queue levels satisfy a linear, vector-
valued differential equation. We obtain joint moments of the queue sizes recursively, and
deduce the Laplace transform of the queue sizes in the stationary regime.
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1. Introduction and notation

In this paper, we consider a network consisting of N fluid queues of infinite capacity. The
study of such networks is motivated by, among other things, high-speed telecommunications
networks, where a possible application is a communications network in which large incoming
messages are broken up into small packets (cells) and sent from origin to destination. For some
literature about stochastic fluid networks, see [2, Chapter 7] for a thorough account, [4] and [7]
for stability of such networks, and [6] and [8] for some calculations on the stationary regime
of the network.

Let Q1(t), . . . , QN(t) be the fluid content at time t . Fluid arrives in queue j at a rate
λj (X(t)), where X(t) is a continuous-time Markov chain, and is processed at a rate,
µj (Qj (t)), depending on the state. A reasonable assumption would be that µj (·) is a non-
decreasing function, i.e. the bigger the size of the queue, the bigger the service rate. In fact,
we suppose in this paper that µj (Qj (t)) is of the form µjQj (t) for µj > 0; the service rate
is then linear with respect to the queue size. After being processed, a fraction pji of fluid goes
from queue j to queue i (i ∈ {1, . . . , N}). Thus, 1 − ∑

i �=j pji is, in particular, less than 1 and
greater than 0, and represents the fraction of fluid leaving the network from queue j .

Stochastic properties of a network of fluid queues where service or arrival rate depend on
the fluid level and the state of an underlying Markov process have already been studied (see,
e.g. [5]). However, our fluid network model is specifically the one studied in [8] and [6],
with some minor differences. More precisely, in [8] the input rate is given by a general
N -dimensional, nondecreasing process A(t) = (A1(t), . . . , AN(t)) (of which increments in
our situation would thus be given by dAj(t) = λj (X(t)) dt). In [6] an even more general
model, featuring Lévy inputs modulated by a Markov chain, was studied.

The model here is also different in that the fractions of fluid pij, i, j ∈ {1, . . . , N}2, and the
µj , j ∈ {1, . . . , N}, do not, unlike in [6], depend on X(t). Processing and routeing within the
network is thus deterministic, the only random part being the exogenous arrivals. This could
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Irreducible fluid network 511

be illustrated in applications by a network within which random fluctuations occur on a shorter
time scale than do the random fluctuation in the external inputs. In fact, introducing randomness
in the pij and the µj would make the analysis and formulae even more complicated.

However, in this paper we give an explicit recursion of all joint moments of the queue sizes
in the stationary regime under an irreducibility assumption on the network, unlike in [8] and [6],
where at best the first and second moments were given.

The model described here can be seen as the generalization of the single-fluid queue with
linear service rate described in [1], [11], and [10], although [1] deals with a Lévy arrival
process and the model in [10] features a white noise factor. More precisely, the vector of queue
levels, Q(t) = (Q1(t), . . . , QN(t))� (the superscript ‘�’ denoting transposition), satisfies the
differential equation

dQ(t) = (λ(X(t)) − (I − P �)DµQ(t)) dt

(see [8] and [6]), where λ(X(t)) = (λ1(X(t)), . . . , λN(X(t)))� is the vector of arrival rates,
Dµ = diag(µ1, . . . , µN), P = (pij)(i,j)∈{1,...,N}2 is commonly called the routeing matrix, and
I is the identity matrix. We let

A := (I − P �)Dµ = (aij)(i,j)∈{1,...,N}2 ,

implying that Q(t) satisfies

dQ(t) = (λ(X(t)) − AQ(t)) dt. (1.1)

Now we give some assumptions and notation. We suppose the following to hold.

• The routeing matrix, P , is substochastic, i.e. P n → 0 as n → ∞, or, equivalently, I −P

is an M-matrix, i.e. is invertible with nonnegative inverse (see [2, p. 164]). This can be
expressed by the sum of the coefficients in each row of P being less than or equal to 1,
and the sum of the coefficients in at least one row of P being less than 1.

• µj > 0 for all j = 1, . . . , N .

• {X(t), t ∈ R} is a stationary ergodic Markov chain on a finite state space S = {1, . . . , K}
and has generator matrix Q = (qij )i,j∈S×S and distribution π = (π1, . . . , πK).

We also introduce the reversed Markov chain X∗(t) = X((−t)−), whose infinitesimal genera-
tor, Q∗ = (q∗

ij )ij∈S×S , satisfies q∗
ij = qjiπj /πi .

One of the advantages of our model is that it yields explicit expressions for the queue content
as well as for the random variable towards which it converges in distribution. More precisely,
we have the following proposition.

Proposition 1.1. The solution, (Q(t))t≥0, of (1.1) satisfies

Q(t) = exp(−At)Q(0) +
∫ t

0
exp(−A(t − s))λ(X(s)) ds.

Furthermore, Q(t) converges in distribution, independently of the initial conditions, to

W = (W1, . . . , WN)� :=
∫ 0

−∞
exp(As)λ(X(s)) ds,
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which, by making the change of variable s → −s, equals

W =
∫ ∞

0
exp(−As)λ(X∗(s)) ds. (1.2)

Proof. The expressions for Q(t) and W are standard and come, for example, from Theo-
rem 4.3 of [8]. The fact that the convergence in distribution holds independently of the value
of Q(0) comes from Theorem 4.2 of [8].

We define the Laplace transform of W given X∗(0) as follows: for all i ∈ S and u =
(u1, . . . , uN)� ∈ (−∞, 0]N ,

φi(u) := E(exp(u�W) | X∗(0) = i) = E

(
exp

( N∑
k=1

ukWk

) ∣∣∣∣ X∗(0) = i

)
.

Let φ(u) := (φ1(u), . . . , φK(u))�. We also let

�(l) := diag(λ1(l), . . . , λN(l)) for all l ∈ S.

Furthermore, by P ∗ we denote the transition probability matrix of the uniformized discrete-time
Markov chain associated with X∗. We then have P ∗ = I +Q∗/ν, where ν is the uniformization
rate, satisfying ν ≥ max{−q∗

i,i , i ∈ S}. Finally, we let N := {1, . . . , N}. Recall that N is the
number of queues in the network and is fixed throughout the paper.

The paper is organized in the following way. In Section 2 we give an integral and a differential
equation satisfied by the Laplace transform of W , using the Markov nature of X(t). In Section 3
we more specifically suppose that P is irreducible, i.e. that a part of the fluid leaving from one
queue travels through the network to reach any other queue. We then obtain the joint moments
of the queue sizes, W1, . . . , WN , in the stationary regime; the Laplace transform is then easily
deduced.

2. Equations satisfied by the Laplace transform

Similarly to the method used in [1] and [6], we give an integral equation satisfied by the
Laplace transform of W . This is done using a uniformization technique for the Markov
chain X(t). Let us recall that ν is greater than max{−q∗

i,i , i ∈ S} and can be taken to be
as large as we want.

Proposition 2.1. For u ∈ (−∞, 0]N , φ satisfies

φ(u) =
∫ ∞

0
�(u, x)P ∗φ(exp(−A�x)u)ν exp(−νx) dx, (2.1)

where �(u, x) is the diagonal K × K matrix defined by

�(u, x) = diag(exp(u�(I − exp(−Ax))A−1λ(1)), . . . , exp(u�(I − exp(−Ax))A−1λ(K))).

The integral equation satisfied by φ can be compared with Equation (5) of [6].

Proof of Proposition 2.1. Let T1 be the first instant of jump of the uniformized Markov
chain. T1 is exponentially distributed with rate ν, and we have

dP(X∗(T1) = j, T1 = x | X∗(0) = i) = p∗
ij ν e−νx dx.
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Given T1 and X∗(T1) (the value of the Markov chain after it has changed state for the first time),
we write

φi(u) =
∑
j∈S

∫ ∞

0
E(exp(u�W) | T1 = x, X∗(T1) = j, X∗(0) = i)

× dP(X∗(T1) = j, T1 = x | X∗(0) = i)

=
∑
j∈S

∫ ∞

0
E(exp(u�W) | T1 = x, X∗(T1) = j, X∗(0) = i)ν exp(−νx)p∗

ij dx. (2.2)

Let �(x, j, i) = E(exp(u�W) | T1 = x, X∗(T1) = j, X∗(0) = i). Using the expression of
W , from the Markov property of X∗ we have

�(x, j, i) = E

(
exp

(
u�

∫ x

0
exp(−As)λ(X∗(s)) ds + u�

∫ ∞

x

exp(−As)λ(X∗(s)) ds

)
∣∣∣∣ T1 = x, X∗(T1) = j, X∗(0) = i

)

= exp(u�(I − exp(−Ax))A−1λ(i))

× E

(
exp

(
u�

∫ ∞

x

exp(−As)λ(X∗(s)) ds

) ∣∣∣∣ X∗(x) = j

)
.

Now, by the homogeneity of X∗,

�(x, j, i) = exp(u�(I − exp(−Ax))A−1λ(i))

× E

(
exp

(
u� exp(−Ax)

∫ ∞

0
exp(−As)λ(X∗(s + x)) ds

) ∣∣∣∣ X∗(x) = j

)

= exp(u�(I − exp(−Ax))A−1λ(i))

× E

(
exp

(
[exp(−A�x)u]�

∫ ∞

0
exp(−As)λ(X∗(s)) ds

) ∣∣∣∣ X∗(0) = j

)

= exp(u�(I − exp(−Ax))A−1λ(i))φj (exp(−A�x)u).

Combining this equality with (2.2) yields (2.1).

Proposition 2.1 yields the differential equation satisfied by φ, as follows.

Proposition 2.2. The Laplace transform φ satisfies the following differential equation for u ∈
(−∞, 0]N :

∇φ(u)A�u = (F (u) + Q∗)φ(u), (2.3)

where F(u) := diag(u�λ(1), . . . , u�λ(K)) and ∇φ(u) is the gradient of φ, i.e. the K × N

matrix whose (i, j)th element, i ∈ S, j ∈ N , is ∂jφi(u).

Proof. Since P ∗ = I + Q∗/ν, (2.1) can be written as

ν

(
φ(u) −

∫ ∞

0
�(u, x)φ(exp(−A�x)u)ν exp(−νx) dx

)

=
∫ ∞

0
�(u, x)Q∗φ(exp(−A�x)u)ν exp(−νx) dx,
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which, by changing variable according to x → x/ν, reads

ν

(
φ(u) −

∫ ∞

0
�

(
u,

x

ν

)
φ

(
exp

(
−A� x

ν

)
u

)
exp(−x) dx

)

=
∫ ∞

0
�

(
u,

x

ν

)
Q∗φ

(
exp

(
−A� x

ν

)
u

)
exp(−x) dx. (2.4)

However, (2.4) reads

ν

(
φ(u) −

∫ ∞

0
φ

(
exp

(
−A� x

ν

)
u

)
exp(−x) dx

)

− ν

∫ ∞

0

(
�

(
u,

x

ν

)
− I

)
φ

(
exp

(
−A� x

ν

)
u

)
exp(−x) dx

=
∫ ∞

0
�

(
u,

x

ν

)
Q∗φ

(
exp

(
−A� x

ν

)
u

)
exp(−x) dx. (2.5)

Letting ν → ∞ in (2.5), from standard convergence results we obtain
∫ ∞

0
∇φ(u)A�ux exp(−x) dx −

∫ ∞

0
∂2�(u, 0)xφ(u) exp(−x) dx = Q∗φ(u), (2.6)

where ∂2�(u, 0) denotes the derivative of � with respect to the second variable, evaluated
at (u, 0). Since

∂2�(u, 0) = diag(u�λ(1), . . . , u�λ(K)) = F(u) and
∫ ∞

0
x exp(−x) dx = 1,

(2.6) yields (2.3).

3. Distribution of the queue levels in the stationary regime

Neither (2.1) nor (2.3) has a unique solution in general, at least not without imposing further
conditions on φ. However, we can obtain the moments of W from (2.3).

We suppose in this section that the routeing matrix of the network P is irreducible. In other
words, it is possible for some fluid leaving any queue i to reach any other queue j . The reason
for this assumption will become clear in the computation of the moments of W .

Before studying the limiting distribution, we need some more notation. First, for all n ∈ N,
(l1, . . . , ln) ∈ {1, . . . , N}n = N n, and i ∈ S, we let

mn
i (l1, . . . , ln) := E(Wl1 · · · Wln | X∗(0) = i).

We also let
mn(l1, . . . , ln) := (mn

1(l1, . . . , ln), . . . , m
n
K(l1, . . . , ln))

�

and
mn := {mn(l1, . . . , ln), (l1, . . . , ln) ∈ N n}.

The latter is a family of column vectors indexed in {1, . . . , N}n, and represents the joint moments
of W of order n. For instance, mn(j, . . . , j) is the nth moment of queue j :

mn(j, . . . , j) = (E(Wn
j | X∗(0) = 1), . . . , E(Wn

j | X∗(0) = K)).
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The definition of mn is not valid for n = 0; however, in what follows m0 will be identified
with the column K-vector (1, . . . , 1)� (corresponding to the moment of W given X∗(0) = i,
i = 1, . . . , K , of order 0).

Furthermore,

A(n) =
(
a

(n)
(l1,...,ln),(k1,...,kn)

)
((l1,...,ln),(k1,...,kn))∈N n×N n

is the Nn × Nn matrix defined by

a
(n)
(l1,...,ln),(k1,...,kn) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=1

ali li if (l1, . . . , ln) = (k1, . . . , kn),

aliki
if lj = kj , j �= i, and li �= ki,

0 otherwise,

(3.1)

and for all n ∈ N we define the (Nn × K) × (Nn−1 × K) block matrix

�(n) =
(
b

(n)
(l1,...,ln),(k1,...,kn−1)

)
((l1,...,ln),(k1,...,kn−1))∈N n×N n−1

,

where each b
(n)
(l1,...,ln),(k1,...,kn−1)

is a K × K matrix defined by

b
(n)
(l1,...,ln),(k1,...,kn−1)

:=

⎧⎪⎨
⎪⎩

diag(λki (1), . . . , λki (K)) if lp = kp for p = 1, . . . , i − 1

and lp+1 = kp for p = i, . . . , n − 1,

0 otherwise.

Finally, by IS and IN n we respectively denote the K × K and Nn × Nn identity matrices.

Remark 3.1. The matrix A(n) has the property that on one of its rows, row (l1, . . . , ln) say,
the only entries which can be different from 0 are those corresponding to columns (k1, . . . , kn)

equal (in index) to (l1, . . . , ln) and to columns (k1, . . . , kn) where one (and only one) of the ki

differs from the corresponding li .

Let us also remember that if M = (mij) is a d × d matrix and N is a p × p matrix, their
Kronecker product, M ⊗ N , is the (d × p) × (d × p) matrix

M ⊗ N =
⎛
⎜⎝

m11N · · · m1dN
...

. . .
...

md1N · · · mddN

⎞
⎟⎠

(see, e.g. [3, Chapter 3])
In the following we say that a matrix R satisfies condition (C1) if

• R = DR − CR , where DR is a diagonal matrix with positive diagonal elements and CR

is a matrix with 0s on its diagonal and nonnegative off-diagonal elements; and

• the sum of the elements in each row of R is nonnegative and the sum of the elements in
at least one row is positive.
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Thus, if R satisfies condition (C1), it can be interpreted as the infinitesimal generator matrix
of an irreducible, continuous-time Markov chain with an absorbing state. We will say that R

satisfies condition (C2) if

• R satisfies (C1), and

• CR is irreducible.

In what follows, for any matrix, R, with the decomposition R = DR−CR , we will sometimes
say (in an abuse of terminology) that R is irreducible, instead of saying that CR is irreducible,
as no confusion is possible.

Let us recall the graphical interpretation of the irreducibility of a matrix. The matrix CR

is irreducible if its corresponding graph G is connex. Let us recall that if CR = (cij) is a
nonnegative d × d matrix, we define its corresponding graph G on {1, . . . , d} by joining two
points, i and j, i �= j , in {1, . . . , d}, if and only if cij > 0. Thus, if CR is irreducible, there
exists between any i and j in {1, . . . , d} a path,

i = p0 → p1 → · · · → pl−1 → pl = j,

of length l, where p1, . . . , pl−1 are in {1, . . . , d} and satisfy

pk �= pk+1, cpk,pk+1 > 0.

A property of irreducible matrices is that a matrix CR is irreducible if and only if its transpose
is irreducible.

We can now present the following lemma, which is proved in, e.g. Lemma 2.2.1 of [9].

Lemma 3.1. Let R be a matrix satisfying condition (C2). Then R is invertible.

We will give the different moments of W in two cases. First, we will consider the particular
case in which A satisfies condition (C1). Note that since P is a routeing matrix in this paper,
only A� = Dµ(I − P) satisfies condition (C1), not A (unless P is symmetric). Moreover,
let us remark that since P is irreducible from now on, if A satisfies condition (C1) then it also
satisfies condition (C2). However, it is the assumption on the sum of the rows of A that is
important, which is why we will talk about condition (C1) rather than about condition (C2)
in this context. The moments of W will be given in the general case in Section 3.2, in which
results from Section 3.1 will be extensively used.

3.1. A satisfies condition (C1)

Lemma 3.2. Let us suppose that A satisfies condition (C1). Then A(n) satisfies condition (C2).
In particular, A(n) is invertible, by Lemma 3.1.

Proof. Let us first consider the matrix A, and remember that I − P is an M-matrix. It is
easy to check that A = (I − P �)Dµ has the decomposition A = DA − CA of condition (C1),
with DA = Dµ and CA = P �Dµ. The matrix CA is irreducible because P is irreducible.
Now, since A satisfies condition (C1), the sum of the elements in each row of A is nonnegative
and the sum of the elements in at least one row is positive. Denoting by i0 this particular row,
we have ∑

k∈N

aik ≥ 0, i �= i0,

∑
k∈N

ai0k > 0.
(3.2)
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Let us now consider A(n). From (3.1), it is easy to check that A(n) is a matrix with positive
diagonal elements and nonpositive off-diagonal elements (remember that in (3.1), ali li > 0 and
aliki

≤ 0 if li �= ki). We then have the decomposition A(n) = DA(n) − CA(n) of condition (C1).
From (3.1) we see that if (l1, . . . , ln) and (k1, . . . , kn) are in N n, then

a
(n)
(l1,...,ln),(k1,...,kn) = 0

if (k1, . . . , kn) is not equal to (l1, . . . , ln) or differs in more than one component. Thus, by
summing the elements of row (l1, . . . , ln) of A(n), from (3.1) we obtain

∑
(k1,...,kn)∈N n

a
(n)
(l1,...,ln),(k1,...,kn) =

n∑
i=1

ali li +
n∑

i=1

∑
ki �=li

aliki

=
n∑

i=1

(
ali li +

∑
ki �=li

aliki

)

=
n∑

i=1

( ∑
ki∈N

aliki

)
. (3.3)

Now, from (3.2) we have
∑

ki∈N aliki
≥ 0 for all li . Thus,

∑
(k1,...,kn)∈N n

a
(n)
(l1,...,ln),(k1,...,kn) ≥ 0.

Moreover, from (3.2) and (3.3) we see that

∑
(k1,...,kn)∈N n

a
(n)
(l1,...,ln),(k1,...,kn) > 0

whenever one of the lj is equal to i0. It follows that A(n) satisfies condition (C1).
To prove that A(n) satisfies condition (C2), it remains to prove that CA(n) is irreducible. This

amounts to showing that the graph on N n associated to CA(n) , GA(n)
, is connex. We know that

CA is irreducible, i.e. that the graph, G, on N associated to CA is connex. Hence, from any
point k ∈ N there is a path

k = p0 → p1 → p2 → · · · → pd−1 → pd = l

along G that leads to any point l in N , where the pi are in N and pi−1 �= pi . The path satisfies
api−1pi

> 0 for i = 1, . . . , d. It is then easy to construct a path along G(n) from any point
(k1, . . . , kn) ∈ N n to any other point (l1, . . . , ln) ∈ N n. We start by constructing a path from
(k1, . . . , kn) to (l1, k2, . . . , kn) using the irreducibility of CA. Let

k1 = p0 → p1 → p2 → · · · → pd−1 → pd = l1

be a path along G leading from k1 to l1 in N . Then api−1pi
> 0 for i = 1, . . . , d. From (3.1)

we then see that

a
(n)
(pi−1,k2,...,kn),(pi ,k2,...,kn) = api−1pi

> 0, i = 1, . . . , d.
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Hence, the path

(k1, . . . , kn) = (p0, k2, . . . , kn) → (p1, k2, . . . , kn) → · · ·
→ (pd−1, k2, . . . , kn) → (pd, k2, . . . , kn)

= (l1, k2, . . . , kn)

links (k1, . . . , kn) to (l1, k2, . . . , kn) along G(n).
We build similar paths from (l1, k2, . . . , kn) to (l1, l2, k3, . . . , kn), etc., and finally from

(l1, . . . , ln−1, kn) to (l1, . . . , ln). The path from (k1, . . . , kn) to (l1, . . . , ln) along G(n) is the
concatenation of all these paths.

Thus, CA(n) is irreducible and A(n) satisfies condition (C2). This completes the proof.

The following theorem gives an expression for the mn when A satisfies condition (C1)
(which, as was remarked before, is equivalent to A satisfying condition (C2)). The general case
will be obtained in the next section, based on further analysis of the matrix A.

Theorem 3.1. Suppose that A satisfies condition (C1). Then (mn)n∈N is determined recursively
by the relation

mn = (A(n) ⊗ IS − IN n ⊗ Q∗)−1�(n)mn−1, (3.4)

with m0 = (1, . . . , 1)�.

Proof. Note that, for all u = (u1, . . . , uN)� ∈ R
N and j ∈ S, (2.3) reads

∑
p∈N

(∑
k∈N

akpuk

)
∂pφj (u) =

(∑
i∈N

uiλ
i(j)

)
φj (u) +

∑
k∈S

q∗
jkφk(u). (3.5)

Differentiating (3.5) with respect to the li th variable, i = 1, . . . , n, and evaluating the expres-
sion at u = (0, . . . , 0)�, yields

∑
p∈N

n∑
i=1

alip∂l1 · · · ∂li−1∂p∂li+1 · · · ∂lnφj (0) =
n∑

i=1

λli (j)∂l1 · · · ∂li−1∂li+1 · · · ∂lnφj (0)

+
∑
k∈S

q∗
jk∂l1 · · · ∂lnφk(0).

Since φj (u) = E(exp(
∑N

k=1 ukWk) | X∗(0) = j), we have

∂l1 · · · ∂li−1∂p∂li+1 · · · ∂lnφj (0) = E(Wl1 · · · Wli−1WpWli+1 · · · Wln | X∗(0) = j)

= mn
j (l1, . . . , li−1, p, li+1, . . . , ln).

In the same way,

∂l1 · · · ∂li−1∂li+1 · · · ∂lnφj (0) = mn−1
j (l1, . . . , li−1, li+1, . . . , ln),

∂l1 · · · ∂lnφk(0) = mn
k(l1, . . . , ln).

Thus, we have

∑
p∈N

n∑
i=1

alipmn
j (l1, . . . , li−1, p, li+1, . . . , ln) =

n∑
i=1

λli (j)mn−1
j (l1, . . . , li−1, li+1, . . . , ln)

+
∑
k∈S

q∗
jkm

n
k(l1, . . . , ln).
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This can be written in matrix form in the following way:

(A(n) ⊗ IS)mn = �(n)mn−1 + (IN n ⊗ Q∗)mn. (3.6)

In order to obtain the final result, (3.4), it remains to show that the (Nn × K) × (Nn × K)

matrix M(n) := A(n) ⊗ IS − IN n ⊗ Q∗ is invertible.
From Lemma 3.2, A(n) satisfies condition (C2). This clearly implies that A(n) ⊗ IS satisfies

condition (C1). Let A(n) ⊗ IS = DA(n)⊗IS
− CA(n)⊗IS

be the decomposition of A(n) ⊗ IS .
The matrix IN n ⊗ Q∗ has negative diagonal elements and nonnegative off-diagonal elements.
We let −(IN n ⊗ Q∗) = DIN n⊗Q∗ − CIN n⊗Q∗ be the decomposition of −(IN n ⊗ Q∗).

Since Q∗ is the generator of a continuous-time Markov chain, we can easily check that the
sum of the elements in any row of IN n ⊗ Q∗ is equal to 0. Thus, since the sum of the elements
in any row of A(n) ⊗ IS is nonnegative and the sum of the elements in one row of A(n) ⊗ IS is
positive, M(n) has the same property.

The matrix M(n) has the decomposition M(n) = DM(n) − CM(n) , with

DM(n) = DA(n)⊗IS
+ DIN n⊗Q∗ , CM(n) = CA(n)⊗IS

+ CIN n⊗Q∗ .

Let us now show that

CM(n) :=
(
c
(n)

(l1,...,ln,j),(l′1,...,l′n,j ′)

)
((l1,...,ln,j),(l′1,...,l′n,j ′))∈(N n×S)2

,

where

c
(n)

(l1,...,ln,j),(l′1,...,l′n,j ′) =

⎧⎪⎨
⎪⎩

a
(n)

(l1,...,ln),(l′1,...,l′n)
if j = j ′,

q∗
jj ′ if (l1, . . . , ln) = (l′1, . . . , l′n) and j �= j ′,

0 otherwise,

(3.7)

is irreducible. Let us pick two distinct elements, (r1, . . . , rn, k) and (s1, . . . , sn, k
′), in N n ×

S and prove that we can construct a path from (r1, . . . , rn, k) to (s1, . . . , sn, k
′) along the

graph, GM(n)
, corresponding to CM(n) . We begin by constructing a path from (r1, . . . , rn, k) to

(s1, . . . , sn, k) of the form

(r1, . . . , rn, k) → (p1
1, . . . , p

1
n, k) → (p2

1, . . . , p2
n, k) → · · ·

→ (pd−1
1 , . . . , pd−1

n , k) → (s1, . . . , sn, k).

This is possible because

c
(n)

(l1,...,ln,k),(l′1,...,l′n,k)
= a

(n)

(l1,...,ln),(l′1,...,l′n)

in (3.7) and because A(n) is irreducible. If k = k′ then we construct the path from
(r1, . . . , rn, k) to (s1, . . . , sn, k

′); otherwise, we finish by constructing a path from (s1, . . . ,

sn, k) to (s1, . . . , sn, k
′) of the form

(s1, . . . , sn, k) → (s1, . . . , sn, p1) → (s1, . . . , sn, p2) → · · ·
→ (s1, . . . , sn, ph−1) → (s1, . . . , sn, k

′).
This is possible because

c
(n)

(l1,...,ln,j),(l1,...,ln,j ′) = q∗
jj ′

in (3.7) and because Q∗ is irreducible. Thus, CM(n) is irreducible.
The matrix M(n) then satisfies condition (C2). This implies that M(n) is invertible. We then

easily recover (3.4) from (3.6). This completes the proof.
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3.2. A is a general matrix

Theorem 3.1 deals with the case in which the sum of entries of a row of A is nonnegative. We
remove this strong assumption in this section. We thus again suppose that A = (I − P �)Dµ,
where P is just an irreducible routeing matrix. There is then no reason why A should satisfy
condition (C1) or condition (C2). However, we will find all of the moments of W using results
of Section 3.1.

Lemma 3.3. There exists a diagonal matrix, H = diag(ν1, . . . , νN) with νi > 0 for all i =
1, . . . , N , such that Â := H−1AH satisfies condition (C2).

The key thing to prove in this lemma is that Â satisfies condition (C1). The fact that Â

satisfies condition (C2) is deduced from the fact that P is irreducible.

Proof of Lemma 3.3. Let us remember that A = (I −P �)Dµ. As was assumed in Section 1,
P is a substochastic matrix, i.e. the sum of the entries in each row of P is less than or equal to
1 and the sum of the entries in one row of P is less than 1. It is thus easy to verify that the sum
of the entries in each row of A� = Dµ(I −P) is nonnegative and the sum of the entries in one
row of A� is positive.

Let J be the diagonal matrix defined from A� in the following way: an entry on the diagonal
of J is equal to the sum of the entries in the corresponding row of A�. Let L be the difference
between J and A�, i.e.

A� = J − L.

Since P is substochastic, J is a diagonal matrix with nonnegative coefficients and at least one
positive coefficient, and L is a matrix with nonpositive diagonal elements and nonnegative off-
diagonal elements, with the sum of the coefficients in each row being equal to 0. Furthermore,
L may be seen as the generator matrix of a continuous-time Markov chain, say {Y (t), t ∈ R}.
Moreover, L is irreducible because P is irreducible. Thus, {Y (t), t ∈ R} is ergodic and
converges in distribution to some probability vector ν = (ν1, . . . , νN) with νi > 0.

Let L∗ be the generator matrix of the reversed chain, {Y ∗(t), t ∈ R}, of {Y (t), t ∈ R} (de-
fined by Y ∗(t) := Y ((−t)−)). Then L∗ satisfies L∗ = H−1L�H , with H = diag(ν1, . . . , νN).

Since J , H , and H−1 are diagonal matrices, we have H−1JH = H−1HJ = J , whence

A = J − L� = J − HL∗H−1 = H(J − L∗)H−1.

Now, L∗ is, in particular, a generator matrix, and, thus, the sum of the entries in each of its
rows is equal to 0. Hence, Â := J −L∗ = H−1AH has the property that the sum of the entries
in each of its rows is nonnegative and the sum of the entries in one of its rows is positive.
Moreover, Â is irreducible because L∗ is irreducible. Hence, Â satisfies condition (C2).

Let us define the function λ̄ : {1, . . . , K} → (0, ∞)N by

λ̄(i) = (λ̄1(i), . . . , λ̄N (i))� = H−1λ(i).

For all n ∈ N, and similarly to �(n), let �̄(n) be the (Nn ×K)× (Nn−1 ×K) matrix defined
blockwise by

�̄(n) =
(
b̄

(n)
(l1,...,ln),(k1,...,kn−1)

)
((l1,...,ln),(k1,...,kn−1))∈N n×N n−1

,
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where each b̄
(n)
(l1,...,ln),(k1,...,kn−1)

is a K × K matrix defined, similarly to b(n), by

b̄
(n)
(l1,...,ln),(k1,...,kn−1)

:=

⎧⎪⎨
⎪⎩

diag(λ̄ki (1), . . . , λ̄ki (K)) if lp = kp for p = 1, . . . , i − 1

and lp+1 = kp for p = i, . . . , n − 1,

0 otherwise.

The following lemma is proved in the same way as Lemma 3.2, using Lemma 3.3.

Lemma 3.4. The matrix Â(n), defined in terms of Â as A(n) is in terms of A (see (3.1)), satisfies
condition (C2).

Lemma 3.3 yields the following theorem, which is the central result of this paper.

Theorem 3.2. For all n ∈ N and (l1, . . . , ln) ∈ N n, we have

mn(l1, . . . , ln) = 1∏n
i=1 νli

m̂n(l1, . . . , ln)

where the m̂n are defined by the recursion

m̂n = (Â(n) ⊗ IS − IN n ⊗ Q∗)−1�̄(n)m̂n−1,

with m̂0 = (1, . . . , 1)�.

Proof. From (1.2) we have

W =
∫ ∞

0
exp(−As)λ(X∗(s)) ds

=
∫ ∞

0
exp(−HÂH−1s)λ(X∗(s)) ds

=
∫ ∞

0
H exp(−Âs)H−1λ(X∗(s)) ds

= HŴ,

where

Ŵ =
∫ ∞

0
exp(−Âs)H−1λ(X∗(s)) ds =

∫ ∞

0
exp(−Âs)λ̄(X∗(s)) ds.

From Lemma 3.4, Â satisfies the assumption of Lemma 3.1. Let

m̂n(l1, . . . , ln) := (m̂n
1(l1, . . . , ln), . . . , m̂

n
K(l1, . . . , ln))

�

where m̂n
i (l1, . . . , ln) := E(Ŵl1 · · · Ŵln | X∗(0) = i). From Theorem 3.1, the m̂n satisfy

m̂n = (Â(n) ⊗ IS − IN n ⊗ Q∗)−1�̄(n)m̂n−1,

with m̂0 = (1, . . . , 1)�. Since

mn(l1, . . . , ln) = m̂n(l1, . . . , ln)∏n
i=1 νli

,

the proof is complete.
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To finish, we give the expression of the Laplace transform of W .

Proposition 3.1. For all u = (u1, . . . , uN) ∈ R
N , we have

φ(u) =
∞∑

n=0

∑
(l1,...,ln)∈N n

1

l1! · · · ln!πmn(l1, . . . , ln)ul1 · · · uln .

Proof. The proof follows simply from the fact that

exp

( N∑
i=1

uiWi

)
=

∞∑
n=0

∑
(l1,...,ln)∈N n

1

l1! · · · ln!Wl1 · · · Wlnul1 · · · uln,

and taking expectations in this equality.
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