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ON A ‘REPLICATING CHARACTER STRING’ MODEL

RICHARD C. BRADLEY,∗ Indiana University

Abstract

In Chaudhuri and Dasgupta’s 2006 paper a certain stochastic model for ‘replicating
character strings’ (such as in DNA sequences) was studied. In their model, a random
‘input’ sequence was subjected to random mutations, insertions, and deletions, resulting
in a random ‘output’ sequence. In this paper their model will be set up in a slightly
different way, in an effort to facilitate further development of the theory for their model.
In their 2006 paper, Chaudhuri and Dasgupta showed that, under certain conditions,
strict stationarity of the ‘input’ sequence would be preserved by the ‘output’ sequence,
and they proved a similar ‘preservation’ result for the property of strong mixing with
exponential mixing rate. In our setup, we will in spirit slightly extend their ‘preservation
of stationarity’ result, and also prove a ‘preservation’ result for the property of absolute
regularity with summable mixing rate.
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1. Introduction

Chaudhuri and Dasgupta [8] formulated and studied a certain stochastic model for ‘replicat-
ing character strings’. In that paper, they cited numerous references where other related models
had been studied, and, in particular, they cited the book by Waterman [19] for the possible
application of central limit theory under strong mixing conditions in the use of such models
for the statistical analysis of data from biology (e.g. involving DNA sequences). In this paper
we shall contribute further results and techniques to the theory for the particular model in [8],
and suggest a way of setting up their model that may allow slightly easier handling of certain
technical details.

Let N and Z respectively denote the set of all positive integers and the set of all integers.
The model studied by Chaudhuri and Dasgupta [8] can be briefly described as follows. It

starts with an ‘input’ sequence X := (Xk, k ∈ N) of random variables taking values in some
finite ‘alphabet’—for example, the set {A, C, G, T } of letters that represent the nucleotides in
a DNA sequence. There is another sequence Z := (Zk, k ∈ N) of random variables taking
values in the set {M, I, D}—to indicate that at a given ‘time’ (or ‘location’) k, there should be a
‘mutation’(M), ‘insertion’(I), or ‘deletion’(D). (This sequence Z is informally referred to below
as the ‘MID sequence’.) Probabilities are assigned for what letter of the alphabet is inserted
when an insertion occurs, or what letter of the alphabet results from a mutation. (The—perhaps
high—probability of ‘no mutation’ is formally represented in this scheme as the probability
of ‘replacing a letter by itself’ when a mutation occurs.) At the end, the result is an output
sequence Y := (Yk, k ∈ N) of random variables, with the same alphabet (e.g. {A, C, G, T })
as the ‘input’ sequence X.
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On a ‘replicating character string’ model 513

In their paper, Chaudhuri and Dasgupta [8, Theorems 3.1 and 3.2] established certain
conditions under which certain properties of the input sequence—specifically, strict stationarity,
and strong mixing with exponential mixing rate—would be retained by the output sequence.
Chaudhuri and Dasgupta [8] set up their model using (‘one-sided’) random sequences indexed
by N, as described above. In Section 3 we will set up their model again, but using (‘two-sided’)
random sequences indexed by Z. This will hopefully make it a little easier to handle various
technical details, such as keeping track of relevant σ -fields when estimating mixing rates.

In the statements of their main results (though not exclusively in the initial formulation of
their model), Chaudhuri and Dasgupta [8] dealt with the case where the MID sequence is an
(irreducible, aperiodic) Markov chain that is independent of the ‘input’ sequence. We shall
retain that ‘independence’ assumption, but allow the MID sequence itself to satisfy a somewhat
more flexible dependence assumption than a ‘Markov’ property.

Instead of studying the mixing rates for the input and output sequences for the strong mixing
condition, we shall do so for the absolute regularity condition, which is stronger than strong
mixing. This will provide an opportunity to illustrate the use of a particularly handy ‘coupling’
property (due to Berbee [1]) that is possessed by the absolute regularity condition but not by
the strong mixing condition. However, along the way, we shall also give information that may
be relevant to the further development of the theory for this model under the strong mixing
condition.

Instead of studying the case of exponential mixing rates (for strong mixing) as in [8], we
shall focus on a certain slower (‘summable’) mixing rate (for absolute regularity) that is natural
in central limit theory for bounded random variables (under either strong mixing or absolute
regularity).

In the model in [8], one somewhat tricky facet of keeping track of relevant σ -fields was
keeping track of the changes in the ‘clock’resulting from deletions. We will adopt an alternative
technical procedure—switching to a new probability measure based on conditioning on a certain
event—in the hope of slightly simplifying that task.

In their model, Chaudhuri and Dasgupta [8] assumed a finite state space (for the input and
output sequences), as described above. That is the case of primary interest; but, for convenience,
we shall relax that assumption and allow the input and output sequences to consist in essence
of real-valued random variables. We shall actually treat those random variables as taking their
values in (0, ∞) (think of ‘coding’ a real number x by the positive number ex), and in an
intermediate stage reserve the value 0 as a temporary ‘place holder’ where an insertion will
ultimately occur.

The model in [8] directly involved probability mass functions for what happens when a
mutation or insertion occurs. As a measure-theoretic convenience, we shall handle that in a
slightly different way, using independent random variables uniformly distributed on the unit
interval as ‘randomizers’.

In making these modifications, we will not change the actual model studied by Chaudhuri
and Dasgupta [8] in any significant way. The modifications here only involve how their model
is set up. Our aim is in part to facilitate further development of the theory for their model.
There is of course the practical question, not addressed here, of to what extent inaccuracy may
occur when, say, a ‘long but finite’ DNA sequence is modeled as a two-sided random sequence.

In Section 2, some preliminary information on both the strong mixing and absolute regularity
conditions will be given. In Section 3, the model in [8] will be presented with the modifications
in the setup described above. Then in Section 4, the main result of this paper will be stated and
proved.

https://doi.org/10.1239/jap/1402578640 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1402578640


514 R. C. BRADLEY

2. Preliminary information on two mixing conditions

In the development of the material in Sections 3 and 4, we will start with a probability space
and then switch to a new probability measure (on the same measurable space) obtained by
conditioning on a certain key event. Accordingly, in the notation used in the definitions below,
the relevant probability measure will be specified explicitly. If only one probability measure,
say P, is specified, then the notation E(·) will be tacitly understood to mean the expected value
with respect to that particular probability measure P.

Suppose that (�, F ) is a measurable space. Suppose that W := (Wi, i ∈ I ) is a random
variable/vector or stochastic process indexed by a nonempty set I—that is, W : � → R

I is a
function which is measurable with respect to the σ -field F on � and the Borel σ -field on R

I .
The σ -field (a subset of F ) of subsets of � generated by W will be denoted by σ(W) or σ(Wi,

i ∈ I ).

Definition 2.1. Suppose that (�, F ) is a measurable space, and that P is a probability measure
on (�, F ).

For any two σ -fields A and B that are subsets of F , define the following two measures of
dependence:

α(A, B; P) := sup
A∈A,B∈B

|P(A ∩ B) − P(A)P(B)|,

β(A, B; P) := sup
1

2

I∑
i=1

J∑
j=1

|P(Ai ∩ Bj ) − P(Ai)P(Bj )|. (2.1)

In (2.1) the supremum is taken over all pairs of partitions {A1, A2, . . . , AI } and {B1, B2, . . . ,

BJ } of � such that Ai ∈ A for each i and Bj ∈ B for each j . It is easy to see that, for any two
σ -fields A and B, we have

α(A, B; P) ≤ β(A, B; P). (2.2)

Suppose that X := (Xk, k ∈ Z) is, with respect to P, a strictly stationary sequence of
random variables. For each n ∈ N, define the dependence coefficients

α(X, n; P) := α(σ(Xk, k ≤ 0), σ (Xk, k ≥ n); P), (2.3)

and β(X, n; P) := β(σ(Xk, k ≤ 0), σ (Xk, k ≥ n); P).

One trivially has that each of the sequences of numbers (α(X, n; P), n ∈ N) and (β(X, n; P),

n ∈ N) is nonincreasing. Also, by (2.2), α(X, n; P) ≤ β(X, n; P) for every positive integer n.
The sequence X is (with respect to the probability measure P) ‘strongly mixing’ [16] if
α(X, n; P) → 0 as n → ∞, and ‘absolutely regular’ [18] if β(X, n; P) → 0 as n → ∞.
By (2.2), absolute regularity implies strong mixing.

To motivate the results later in this paper, we will state a classic theorem of Ibragimov, from
Ibragimov and Linnik [12, Theorem 18.5.4].

Theorem 2.1. (Ibragimov.) Suppose that on a probability space (�, F , P), X := (Xk,

k ∈ Z) is a strictly stationary sequence of bounded, centered random variables such that∑∞
n=1 α(X, n; P) < ∞. Then σ 2 := EX2

0 + 2
∑∞

n=1 EX0Xn exists in [0, ∞), with this sum
being absolutely convergent. If further σ 2 > 0 then (X1 + X2 + · · · + Xn)/(n

1/2σ) converges
in distribution to the N(0, 1) law as n → ∞.

Theorem 2.1 will not be used anywhere in what follows, but it will provide the motivation
for the mathematical development in this paper. For example, in a statistical analysis of DNA
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data, one might deal with indicator functions ({0, 1}-valued random variables) marking the
locations of a particular pattern of nucleotides along a DNA sequence. Thus, if strong mixing
is assumed as part of the statistical model then it might be natural to apply a central limit theorem
for bounded strongly mixing sequences of random variables, such as Theorem 2.1. Now the
(summable) mixing rate in Theorem 2.1 is practically sharp. This was shown to be true even
under absolute regularity, by counterexamples in [9, Example 2] and [4]. The counterexample
in the latter paper is a strictly stationary, three-state sequence that satisfies absolute regularity
with (‘not quite summable’) mixing rate β(X, n; P) = O(1/n). Theorem 2.1 seems natural
to use when either strong mixing or absolute regularity is assumed in the modeling of DNA
sequences; it is the summable mixing rate in that theorem that we will focus on in this paper.

It is worth noting that Merlevède and Peligrad [13] proved (as a special case of the main
result in their paper) a modified, refined version of Theorem 2.1 with the barely slower mixing
rate α(X, n; P) = o(1/n) and an explicit extra assumption on the rate of growth of the variances
of partial sums.

As mentioned in Section 1, instead of dealing with the strong mixing condition, we will
deal with absolute regularity. This will provide an opportunity to illustrate the use—in steps 5
and 6 of the proof of Lemma 4.4 in Section 4—of a handy ‘coupling’ property (from [1]) of
the absolute regularity condition. This property does not exist, at least in as strong a form,
under just strong mixing. The next three lemmas will facilitate that particular application of
the coupling property.

Lemma 2.1. Suppose that (�, F , P) is a probability space, N is a positive integer, An and
Bn, n ∈ {1, 2, . . . , N}, are σ -fields that are subsets of F , and that the σ -fields An ∨ Bn, n ∈
{1, 2, . . . , N}, are independent (under P). Then

β

( N∨
n=1

An,

N∨
n=1

Bn; P

)
≤

N∑
n=1

β(An, Bn; P).

In one form or another, this lemma has long been part of the folklore; see, e.g. [14, p. 73].
One reference for the particular formulation here is [5, Theorem 6.2]. (The same theorem in
[5] also gives the exactly analogous inequality for the dependence coefficient α(·, ·).)

The next lemma has also long been part of the folklore, but a reference for it seems hard to
find. In this lemma, the random variables X and Y are not assumed to be identically distributed,
and the term ‘Borel space’ means a measurable space (S, S) that is bimeasurably isomorphic to
the space (R, R), where R denotes the Borel σ -field on R. It is well known that R

N (or R
Z),

accompanied by its Borel σ -field, is a Borel space.

Lemma 2.2. Suppose that (S, S) is a Borel space. Suppose that (�, F , P) is a probability
space, X and Y are random variables on this space which take values in (S, S), and that A is
a σ -field that is a subset of F . Then

|β(A, σ (X); P) − β(A, σ (Y ); P)| ≤ 2P(X 
= Y ).

Proof. By symmetry, it suffices to prove that β(A, σ (X); P) ≤ β(A, σ (Y ); P) + 2P(X 
=
Y ). Suppose that{A1, A2, . . . , AI } and {B1, B2, . . . , BJ } are each a partition of �, with Ai ∈ A
for each i and Bj ∈ σ(X) for each j . It suffices to show that

1

2

I∑
i=1

J∑
j=1

|P(Ai ∩ Bj ) − P(Ai)P(Bj )| ≤ β(A, σ (Y ); P) + 2P(X 
= Y ). (2.4)
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By a well-known measure-theoretic fact (a standard elementary generalization of [2, The-
orem 20.1]), there exists a partition {S1, S2, . . . , SJ } of S with Sj ∈ S for each j such that
Bj = {X ∈ Sj } for each j .

For any event A,

J∑
j=1

|P(A ∩ {X ∈ Sj }) − P(A ∩ {Y ∈ Sj })|

≤
J∑

j=1

|P(A ∩ {X ∈ Sj } ∩ {X = Y }) + P(A ∩ {X ∈ Sj } ∩ {X 
= Y })

− P(A ∩ {Y ∈ Sj } ∩ {X = Y }) − P(A ∩ {Y ∈ Sj } ∩ {X 
= Y })|

=
J∑

j=1

|P(A ∩ {X ∈ Sj } ∩ {X 
= Y }) − P(A ∩ {Y ∈ Sj } ∩ {X 
= Y })|

≤ 2P(A ∩ {X 
= Y }).
Applying that with A = Ai and then also with A = �, we have

I∑
i=1

J∑
j=1

|P(Ai ∩ Bj ) − P(Ai)P(Bj )|

≤
I∑

i=1

J∑
j=1

|P(Ai ∩ {X ∈ Sj }) − P(Ai ∩ {Y ∈ Sj })|

+
I∑

i=1

J∑
j=1

|P(Ai ∩ {Y ∈ Sj }) − P(Ai)P(Y ∈ Sj )|

+
I∑

i=1

J∑
j=1

|P(Ai)P(Y ∈ Sj ) − P(Ai)P(X ∈ Sj )|

≤
[ I∑

i=1

2P(Ai ∩ {X 
= Y })
]

+ 2β(A, σ (Y ); P)

+
I∑

i=1

[
P(Ai)

J∑
j=1

|P(Y ∈ Sj ) − P(X ∈ Sj )|
]

≤ 2P(X 
= Y ) + 2β(A, σ (Y ); P) +
I∑

i=1

[P(Ai)2P(X 
= Y )]

= 4P(X 
= Y ) + 2β(A, σ (Y ); P).

Thus, (2.4) holds. This completes the proof.

The following lemma, the final item of Section 2 here, will play a key role (in Section 4)
in the comparison of the mixing rates for the input and output sequences in the model in [8].
It will be applied for absolute regularity, but it holds under strong mixing (as stated and proved
here) as well.

Lemma 2.3. Suppose that (H(0), H(1), H(2), H(3), . . . ) is a nonincreasing sequence of
nonnegative numbers such that

∑∞
n=0 H(n) < ∞. Suppose that on some probability space
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(�, F , P), X := (Xk, k ∈ Z) is a nondegenerate, strictly stationary sequence of random
variables taking only the values 0 and 1 such that

∑∞
n=1 α(X, n; P) < ∞. Then

∞∑
n=1

EH(X1 + X2 + · · · + Xn) < ∞. (2.5)

Proof. Referring to the hypothesis (of Lemma 2.3), define the number

p := P(X0 = 1) = EX0 > 0. (2.6)

Define the constant random variable S0 := 0, and, for each positive integer n, define the
partial sum Sn := X1 + X2 + · · · + Xn. By the hypothesis (of Lemma 2.3), the sequence X

is strongly mixing and, hence, ergodic. Hence, from (2.6), Sn → ∞ (monotonically) almost
surely as n → ∞. For technical convenience, without loss of generality (redefining the random
variables Xk on a P-null set if necessary), we assume that this happens at literally every ω ∈ �.

For each nonnegative integer j , define the random variable ηj := card{n ∈ N : Sn = j}.
Then, for every integer J ≥ 0,

J∑
j=0

ηj = max{n ≥ 0 : Sn = J }. (2.7)

In what follows, for any real number x, let [x] denote the greatest integer less than or equal
to x. Also, in the calculations below, by the hypothesis (of Lemma 2.3), all sums and summands
(‘numerical’or random) take their values in [0, ∞] := [0, ∞)∪{∞}, and, hence, we can change
the orders of summations arbitrarily.

Recall that, for any nonnegative integer-valued random variable W , EW = ∑∞
n=1 P(W ≥

n). For each integer J ≥ 0, by (2.7) and the trivial inequality P(Sn ≤ J ) ≤ 1, we have

E

( J∑
j=0

ηj

)
=

∞∑
n=1

P

( J∑
j=0

ηj ≥ n

)
=

∞∑
n=1

P(Sn ≤ J ) ≤ 2J

p
+

∞∑
n=[2J/p]+1

P(Sn ≤ J ). (2.8)

Let us examine the last sum in (2.8). For each integer J ≥ 0 and each integer n > 2J/p,
we have J < np/2 and, hence, J − np < −np/2. Hence, for each integer J ≥ 0,

∞∑
n=[2J/p]+1

P(Sn ≤ J ) ≤
∞∑

n=[2J/p]+1

P

(
Sn − np ≤ −np

2

)

≤
∞∑

n=[2J/p]+1

P

(
|Sn − np| ≥ np

2

)

≤
∞∑

n=[2J/p]+1

(
np

2

)−4

E(Sn − np)4

≤ 16

p4

∞∑
n=1

n−4
E(Sn − np)4. (2.9)

Extend definition (2.3) to include n = 0. Then, for each positive integer n,

E(Sn − np)4 ≤ (20 000)n

n−1∑
m=0

(m + 1)2α(X, m; P) + 24n2
[n−1∑

m=0

α(X, m; P)

]2

. (2.10)
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This is a simple direct application of [6, Theorem 14.63], which in turn is a convenient but
crude version of a much sharper and more general inequality due to Rio [15, Theorem 2.1].
Keep in mind that, since the random variables Xk take only the values 0 and 1, the (‘upper-tail’)
quantile functions in those particular statements in both references take only the values 0 and 1.
Equation (2.10) can also be obtained directly, in a sharper form, from a careful calculation from
Ibragimov’s proof in [12, Theorem 18.5.4] of Theorem 2.1 (examine carefully the argument
for [12, Lemma 18.5.2]).

Our next task is to use (2.10) to show that the last sum in (2.9) is finite. From simple calculus,
let C1 be a positive number such that

∑∞
n=q n−3 ≤ C1q

−2 for every positive integer q. By the
hypothesis (of Lemma 2.3),

∞∑
n=1

[
n−4n

n−1∑
m=0

(m + 1)2α(X, m; P)

]
=

∞∑
m=0

∞∑
n=m+1

n−3(m + 1)2α(X, m; P)

≤
∞∑

m=0

C1α(X, m; P)

< ∞.

Also, trivially by the hypothesis,
∑∞

n=1[n−4n2[∑n−1
m=0 α(X, m; P)]2] < ∞. Applying those

two inequalities to (2.10), we find that the last sum in (2.9) is finite.
Accordingly, defining the finite numbers C2 := (16/p4)

∑∞
n=1 n−4

E(Sn − np)4 and C3 :=
2/p + C2, we have, by (2.8) and (2.9), for every integer J ≥ 0,

E

( J∑
j=0

ηj

)
≤ 2J

p
+ C2 ≤ C3(J + 1). (2.11)

Now refer to the function H in the statement of Lemma 2.3. By the hypothesis, H(n) ↓ 0
as n → ∞. Using the notation S(n) for Sn in subscripts, we have the equality of nonnegative
random variables (possibly taking the value ∞)

∞∑
n=1

H(Sn) =
∞∑

j=0

∑
{n∈N : S(n)=j}

H(j)

=
∞∑

j=0

H(j)ηj

=
∞∑

j=0

∞∑
i=j

ηj [H(i) − H(i + 1)]

=
∞∑
i=0

i∑
j=0

[H(i) − H(i + 1)]ηj .

Hence, by (2.11),

E

∞∑
n=1

H(Sn) ≤
∞∑
i=0

[[H(i) − H(i + 1)]C3(i + 1)]

= C3

∞∑
i=0

i∑
j=0

[H(i) − H(i + 1)]
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= C3

∞∑
j=0

∞∑
i=j

[H(i) − H(i + 1)]

= C3

∞∑
j=0

H(j)

< ∞.

Thus, (2.5) holds. This completes the proof of Lemma 2.3.

3. The model of Chaudhuri and Dasgupta, in two-sided form

In this section we will describe, step by step, the ‘replicating character string’ model studied
by Chaudhuri and Dasgupta [8]. As explained in Section 1, essentially the only changes here
will be in the ‘style’: (i) the use of (two-sided) random sequences indexed by Z, rather than
(one-sided) random sequences indexed by N, and (ii) the trivial allowing of the alphabet or
‘state space’ to be (0, ∞) instead of just a finite set. In the presentation here, the essential
mathematical substance of their model will not be changed at all. Much of the notation listed
below will be taken directly from their paper. For convenient reference, the stages in this
construction will be referred to as paragraphs (P1), (P2), etc.

(P1) Suppose that (�, F , P) is a probability space. All the random variables defined below
will be understood to be defined on this space.

(P2) Suppose that X := (Xk, k ∈ Z) is (under P) a strictly stationary sequence of random
variables taking their values in the open half-line (0, ∞). (This is the input sequence, as in the
model in [8].)

(P3) Suppose that Z := (Zk, k ∈ Z) is (under P) a strictly stationary, ergodic sequence of
random variables taking values in the set {M, I, D}, with this sequence Z being independent
of the sequence X. Assume further that P(Z0 = s) > 0 for all three elements s ∈ {M, I, D}.
For technical convenience, without loss of generality (by ergodicity), assume that, for every
ω ∈ � and all three elements s ∈ {M, I, D}, Zk(ω) = s for infinitely many negative integers k

and infinitely many positive integers k. (Again, the letters M , I , and D stand for mutation,
insertion, and deletion; Z is the MID sequence, as in [8].)

(P4) Define the strictly increasing sequence ζ := (ζj , j ∈ Z) of integer-valued random
variables as follows. For every ω ∈ �,

· · · < ζ−2(ω) < ζ−1(ω) < ζ0(ω) ≤ 0 < 1 ≤ ζ1(ω) < ζ2(ω) < ζ3(ω) < · · ·
and {j ∈ Z : Zj (ω) ∈ {M, D}} = {ζk(ω) : k ∈ Z}. (3.1)

The random variables ζk will sometimes be written ζ(k) for typographical convenience.

(P5) Define the sequence X̄ := (X̄k, k ∈ Z) of random variables (taking their values in the
closed half-line [0, ∞)) as follows. For every ω ∈ �,

X̄ζ(k)(ω)(ω) := Xk(ω) for all k ∈ Z and X̄j (ω) := 0 for all j /∈ {ζk(ω) : k ∈ Z}.
(3.2)

The state 0 is used here only as a ‘temporary placeholder’ for a spot where an insertion
will eventually occur (in (3.5) below for the case where Ȳ	(ω) = 0 there). This was the sole
motivation for choosing a state space for the original sequence X, namely (0, ∞), that does not
include 0.
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(P6) Define the strictly increasing sequence ξ := (ξj , j ∈ Z) of integer-valued random
variables as follows. For every ω ∈ �,

· · · < ξ−2(ω) < ξ−1(ω) < ξ0(ω) ≤ 0 < 1 ≤ ξ1(ω) < ξ2(ω) < ξ3(ω) < · · ·
and {j ∈ Z : Zj (ω) ∈ {M, I }} = {ξk(ω) : k ∈ Z}. (3.3)

These random variables ξk will sometimes be written ξ(k).

(P7) Define the sequence Ȳ := (Ȳ	, 	 ∈ Z) of random variables (taking values in [0, ∞)) as
follows. For every ω ∈ �,

Ȳ	(ω) := X̄ξ(	)(ω)(ω) for all 	 ∈ Z. (3.4)

(P8) (i) Let U := (Uk, k ∈ Z) be (under P) a sequence of independent, identically distributed
random variables, each uniformly distributed on the interval [0, 1], with this sequence U being
independent of the pair of sequences (X, Z).

(ii) Let g : (0, ∞) × [0, 1] → (0, ∞) be a Borel function.
(iii) Let h : [0, 1] → (0, ∞) be a Borel function.
(iv) Define the sequence Y := (Y	, 	 ∈ Z) of random variables (taking values in (0, ∞)) as

follows. For every ω ∈ �,

Y	(ω) :=
{

g(Ȳ	(ω), U	(ω)) if Ȳ	(ω) ∈ (0, ∞),

h(U	(ω)) if Ȳ	(ω) = 0,
for all 	 ∈ Z. (3.5)

(The sequence Y is the output sequence, as in [8]. As described in more detail in Remark 3.1(d)
below, the functions g and h deal with mutations and insertions, respectively.)

The final two ‘paragraphs’ below give a few more items that were not needed in the
formulation of the output sequence Y , but will be needed in the formulation of the main result
(Theorem 4.1 below).

(P9) Let P0 denote the probability measure on (�, F ) defined as follows:

P0(F ) := P(F | Z0 ∈ {M, I }) = P(F | ξ0 = 0) for all F ∈ F . (3.6)

(The second equality follows from (P6).)

(P10) Define the sequence V := (Vk, k ∈ Z) of ({M, I } × N)-valued random variables as

Vk := (Zξ(k), ξk − ξk−1) for all k ∈ Z. (3.7)

Also, define the sequence ϒ := (ϒk, k ∈ Z) of ({M, I }×N×(0, ∞))-valued random variables
as

ϒk := (Vk, Yk) = (Zξ(k), ξk − ξk−1, Yk) for all k ∈ Z. (3.8)

This completes the (two-sided) presentation of the model in [8].

Remark 3.1. We present several comments pertaining to the model from [8] as spelled out in
(P1)–(P10).

(a) It is well known from renewal theory that even though the sequenceZ is (under the original
probability measure P) strictly stationary, the sequence (Zξ(k), k ∈ Z) is in general not
strictly stationary under P. As a consequence, under P, the output sequence Y will
in general not be strictly stationary. To obtain the stationarity of Y , Chaudhuri and
Dasgupta [8, Theorem 3.1] directly assumed that the sequence (Zξ(k), k ∈ Z) (though not
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necessarily the entire sequence Z) is strictly stationary, with the original MID sequence Z

itself being a Markov chain with certain properties. Theorem 4.1 below (the main result of
this paper) will employ the procedure, common in renewal theory, of formally switching
to the new probability measure P0 in (3.6), which under our assumptions will yield the
stationarity of Y (and of the entire sequence ϒ in (3.8)), with no ‘Markov’ assumption.
This is the role here of the probability measure P0.

(b) By (P4), (P6), and (P10), we have σ(ζ, ξ, V ) ⊂ σ(Z). Recall from (P3) and (P8) that,
under P, the random sequences X, Z, and U are independent of each other. By (3.6) and
a trivial argument, these three sequences are independent of each other under P0 as well.
Also, by (3.6), the random sequences X and U (but, in general, not Z or even V ) each
have the same distribution under P0 as they do under P. In particular,

β(X, n; P0) = β(X, n; P) for all n ∈ N. (3.9)

(The analogous equality holds for α(·, ·).)
(c) In (P3), it was implicitly understood in the phrase ‘without loss of generality’ that on

a certain ‘bad’ event F with P(F ) = 0, one might need to redefine certain random
variables Zk, k ∈ Z. By (3.6), P0(F ) = 0 as well, and, hence, the phrase ‘without loss
of generality’ applies under P0 as well as under P.

(d) In [8] (with a finite alphabet), the probabilities involving mutations and insertions were
specified directly. In [8] it was also pointed out how the context of mutation could include,
as part of the model, ‘high probability of no mutation’. Paragraph (P8) just gives an
alternative way to set all that up, using the independent random variables Uk uniformly
distributed on the interval [0, 1] as ‘randomizers’, and using appropriate choices of the
Borel functions g (to determine mutations) and h (to determine insertions).

For example, suppose (again in the spirit of [8]) that the input sequence X is a DNA
sequence, with the four nucleotides represented by the letters A, C, G, and T . To ‘fit’(P2)
and the subsequent paragraphs, one can respectively ‘code’ those letters as the numbers
1, 2, 3, and 4 in (0, ∞). In (3.5), suppose that whenever an insertion is to occur, the
respective probabilities of inserting the nucleotides A, C, G, and T (the numbers 1, 2,
3, and 4) are to be 0.15, 0.5, 0.25, and 0.1. One can set that up by using in (3.5) the
function h on [0, 1] defined by

h(u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ u < 0.15,

2 if 0.15 ≤ u < 0.65,

3 if 0.65 ≤ u < 0.9,

4 if 0.9 ≤ u ≤ 1.

Similarly, suppose that whenever a nucleotide A (the state 1) occurs, it is to be ‘left
alone’ with probability 0.95 (‘high probability of no mutation’) or to mutate to C, G, or
T (2, 3, or 4) with probability 0.01, 0.03, or 0.01, respectively. One can set that up by
using in (3.5) a function g that satisfies

g(1, u) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ u < 0.95,

2 if 0.95 ≤ u < 0.96,

3 if 0.96 ≤ u < 0.99,

4 if 0.99 ≤ u ≤ 1.
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One can similarly define g(2, u), g(3, u), and g(4, u), 0 ≤ u ≤ 1, in an appropriate way
to model particular probabilities of specific mutations—or ‘no mutation’—whenever the
nucleotide C, G, or T (the state 2, 3, or 4) occurs.

4. The main result and its proof

This section is devoted to the proof of the following theorem, the main result of this paper.

Theorem 4.1. Assume that the entire context of paragraphs (P1)–(P10) holds, with all assump-
tions there satisfied.

(i) Under the probability measure P0 in (3.6), the sequence ϒ (in (P10)) is strictly stationary
(and, hence, under P0, the sequences V and Y are each strictly stationary).

(ii) If also
∑∞

n=1 β(X, n; P) < ∞ (see also (3.9)) and
∑∞

n=1 β(V, n; P0) < ∞, then∑∞
n=1 β(Y, n; P0) ≤ ∑∞

n=1 β(ϒ, n; P0) < ∞.

Theorem 4.1(i) is in spirit a slight extension of [8, Theorem 3.1], which in their setup was
a corresponding ‘preservation of strict stationarity’ result involving a ‘Markov’ assumption
on the MID sequence. Theorem 4.1(ii) was inspired by [8, Theorem 3.2], which in their
setup was a corresponding ‘preservation of mixing rate’ result involving strong mixing with
exponential mixing rate. It seems clear that the setup here in (P1)–(P10), involving two-
sided random sequences, can facilitate the proofs of such ‘preservation of mixing rate’ results
involving absolute regularity, such as Theorem 4.1(ii); but it is yet to be determined to what
extent the setup here might facilitate such results involving strong mixing. The emphasis on
summable mixing rates in Theorem 4.1(ii) is motivated by Theorem 2.1, the very sharp central
limit theorem of Ibragimov involving summable mixing rates (for strong mixing); recall the
comments immediately after that theorem.

We will first prove Theorem 4.1(i). The proof given below will be a somewhat modified
version of the argument for [8, Theorem 3.1]. The argument will proceed through a series of
lemmas. The first lemma is of a standard form. (In closely related contexts, a very similar fact
was used in [3, Proof of Lemma 5] and [4, pp. 7–8]; see also [7, Theorem 26.4(I)].)

Lemma 4.1. In the context of (P1)–(P10) (with all assumptions there satisfied), the sequence
((Zk, X̄k), k ∈ Z) is, under the probability measure P, strictly stationary.

Sketch of the proof. Suppose that j is any integer. Define the integer-valued random vari-
able T := max{k ∈ Z : ζk ≤ j}. The entire array ((Zk, k ≥ j + 1), (X̄k, k ≥ j + 1)) can be
represented as φ((Zk, k ≥ j + 1), (XT +1, XT +2, XT +3, . . . )), where the (measurable) func-
tion φ : {M, I, D}N × (0, ∞)N → {M, I, D}N × [0, ∞)N does not depend on j . Under P,
regardless of j , by the assumptions in (P2)–(P5) and an elementary argument, the sequence
(XT +1, XT +2, XT +3, . . . ) is independent of σ(Z, T ) (= σ(Z)) and has the same distribution
as the sequence (X1, X2, X3, . . . ). Lemma 4.1 then follows easily.

Lemma 4.2. Suppose that L ≥ 3 is an integer. Suppose that, for each 	 ∈ {1, 2, . . . , L},
s	 ∈ {M, I }, N	 is a positive integer, and B	 is a Borel subset of [0, ∞). For each J ∈
{1, 2, . . . , L − 1}, define the event (see (3.7) and (3.3))

FJ := {Z0 ∈ {M, I }} ∩
[ L⋂

	=1

({V−J+	 = (s	, N	)} ∩ {Ȳ−J+	 ∈ B	})
]
. (4.1)

Then P(F1) = P(F2) = · · · = P(FL−1).
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Proof. Define the integers m0 := 0 and m	 := N1 + N2 + · · · + N	 for 	 ∈ {1, 2, . . . , L}.
The integers m	 will sometimes be written below as m(	). Define the set S := {1, 2, . . . , mL}−
{m1, m2, . . . , mL}. Suppose that J ∈ {1, 2, . . . , L − 1}.

By (3.3), {Z0 ∈ {M, I }} = {ξ0 = 0}. As a consequence, we have the equality of events

{Z0 ∈ {M, I }} ∩
[ L⋂

	=1

{ξ−J+	 − ξ−J+	−1 = N	}
]

=
L⋂

	=0

{ξ−J+	 = −mJ + m	}

=
[ L⋂

	=0

{Z−m(J )+m(	) ∈ {M, I }
]

∩
[⋂

u∈S

{Z−m(J )+u = D}
]
. (4.2)

Referring to (4.1) and applying both equalities in (4.2) carefully, we obtain

FJ = {Z0 ∈ {M, I }}

∩
[ L⋂

	=1

({Zξ(−J+	) = s	} ∩ {ξ−J+	 − ξ−J+	−1 = N	} ∩ {X̄ξ(−J+	) ∈ B	})
]

=
[ L⋂

	=0

{ξ−J+	 = −mJ + m	}
]

∩
[ L⋂

	=1

({Z−m(J )+m(	) = s	} ∩ {X̄−m(J )+m(	) ∈ B	})
]

= {Z−m(J ) ∈ {M, I }} ∩
[ L⋂

	=1

({Z−m(J )+m(	) = s	} ∩ {X̄−m(J )+m(	) ∈ B	})
]

∩
[⋂

u∈S

{Z−m(J )+u = D}
]
. (4.3)

By Lemma 4.1, the probability (under P) of the last expression in (4.3) does not depend on J

(∈ {1, 2, . . . , L − 1}). Thus, Lemma 4.2 holds.

Lemma 4.3. The sequence ((V	, Ȳ	), 	 ∈ Z) of (({M, I } × N) × [0, ∞))-valued random
variables is strictly stationary under P0.

Proof. Suppose that j ∈ Z and n ∈ N. It suffices to prove that, under P0, the ‘random
vectors’((V	, Ȳ	), 	 ∈ {j+1, j+2, . . . , j+n}) and ((V	, Ȳ	), 	 ∈ {j+2, j+3, . . . , j+n+1})
have the same distribution (on ({M, I } × N × [0, ∞))n).

Let J and L be positive integers such that {J − 1, J } ⊂ {1, 2, . . . , L − 1} and {j + 1, j +
2, . . . , j +n} ⊂ {−J +1, −J +2, . . . ,−J +L}. It suffices to prove that, under P0, the random
vectors ((V	, Ȳ	), 	 ∈ {−J + 1, −J + 2, . . . , −J + L}) and ((V	, Ȳ	), 	 ∈ {−J + 2, −J +
3, . . . ,−J + L + 1}) have the same distribution. However, this holds by (3.6), Lemma 4.2,
and a trivial calculation. Thus, Lemma 4.3 holds.

4.1. Proof of Theorem 4.1(i)

By (P8) (see Remark 3.1(b)), the sequence U is, under P0, independent of the sequence
((V	, Ȳ	), 	 ∈ Z). It follows from (P8) and Lemma 4.3 (again see Remark 3.1(b)) that, under
P0, the sequence ((V	, Ȳ	, U	), 	 ∈ Z) is strictly stationary. Now Theorem 4.1(i) holds by (3.5)
and (3.8).
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The proof of Theorem 4.1(ii) will be based on the following lemma. In what follows, E0(·)
denotes the expected value with respect to the probability measure P0. The indicator function
of a given event A will be denoted by 1(A).

Lemma 4.4. In the context of (P1)–(P10) (with all the assumptions there satisfied), suppose
also that

∑∞
n=1 β(X, n; P) < ∞. Define the sequence (H(n), n ∈ {0} ∩ N) of nonnegative

numbers as follows. For each n ≥ 0, H(n) := β(X, n + 1; P).
Suppose that N is an integer such that N ≥ 2. Then

β(ϒ, N; P0) ≤ β(V, N; P0) + 2E0H

(N−1∑
i=1

1(Zξ(i) = M)

)
.

Proof. The proof of this lemma will proceed through a series of steps.
Step 1. Refer to the integer N ≥ 2 in the hypothesis (of Lemma 4.4). Define the nonnegative

integer-valued random variable T by

T := card{k ∈ N : 1 ≤ k ≤ ξN − 1 and Zk ∈ {M, D}} = max{j ∈ {0} ∪ N : ζj < ξN }. (4.4)

(The second equality in (4.4) holds by (3.1).) Define the (one-sided) sequence X∗ := (X∗
1, X∗

2,

X∗
3, . . . ) of random variables as

X∗
k := Xk+T for all k ≥ 1. (4.5)

Step 2. Let us first look at the random variable ȲN . Suppose that ω ∈ �. If Zξ(N)(ω)(ω) =
I then ξN(ω) /∈ {ζk(ω) : k ∈ Z} by (3.1), and ȲN (ω) = 0 by (3.4) and (3.2). If instead
Zξ(N)(ω)(ω) = M (the only other possibility, by (3.3)) then, for some q ≥ 1, ξN(ω) = ζq(ω);
hence, q = T (ω) + 1 by (4.4), and, hence, ȲN (ω) = X̄ζ(q)(ω)(ω) = Xq(ω) = XT (ω)+1(ω) =
X∗

1(ω) by (3.4), (3.2), and (4.5). Thus, ȲN = 0 1(Zξ(N) = I ) + X∗
1 1(Zξ(N) = M). Hence, by

(3.7),
σ(ȲN) ⊂ σ(VN, X∗

1). (4.6)

Step 3. Suppose that 	 is any integer such that 	 > N . Our task in step 3 is to obtain some
sort of analog of (4.6) for Ȳ	.

First define the random variable

τ := card{k ∈ N : ξN ≤ k ≤ ξ	 and Zk ∈ {M, D}}. (4.7)

Then τ = [∑	
i=N 1(Zξ(i) = M)] + [∑	

i=N+1(ξi − ξi−1 − 1)]. For a given ω ∈ �, by (3.3),
the first sum on the right-hand side is simply the number of indices k in the set in (4.7) such
that Zk(ω) = M , and the second sum is simply the number of indices k in that set such that
Zk(ω) = D. (Either sum can be 0.) From this expression for τ , we have, by (3.7),

σ(τ) ⊂ σ(VN, VN+1, . . . , V	). (4.8)

Now suppose that ω ∈ �. Consider first the case where Zξ(	)(ω)(ω) = M . Then, for some
q ≥ 1, ξ	(ω) = ζq(ω); and by (4.4), (4.7), and (3.1), q = T (ω) + τ(ω). Hence, by (3.4), (3.2),
and (4.5), Ȳ	(ω) = X̄ζ(q)(ω)(ω) = Xq(ω) = X∗

τ(ω)(ω). Also, in the case where Zξ(	)(ω)(ω) =
M , we have τ(ω) ≥ 1 by (4.7). If instead Zξ(	)(ω)(ω) = I (the only other possibility) then
Ȳ	(ω) = 0 by (3.4) and (3.2).

Then (for our given 	 > N ) putting all these pieces together,

Ȳ	 = 0 1(Zξ(	) = I ) + X∗
τ 1(Zξ(	) = M) = 0 +

∞∑
t=1

[X∗
t 1(τ = t) 1(Zξ(	) = M)],
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and, hence, by (4.8) and (3.7),

σ(Ȳ	) ⊂ σ(VN, VN+1, . . . , V	) ∨ σ(X∗
1, X∗

2, X∗
3, . . . ). (4.9)

Step 4. Combining (4.6) and (4.9), we now have

σ(ȲN , ȲN+1, ȲN+2, . . . ) ⊂ σ(VN, VN+1, VN+2, . . . ) ∨ σ(X∗
1, X∗

2, X∗
3, . . . ). (4.10)

Define the two random arrays A and B as follows:

A := ((Xk, k ≤ 0); (Vk, k ≤ 0); (Uk, k ≤ 0)), (4.11)

B := (X∗; (Vk, k ≥ N); (Uk, k ≥ N)). (4.12)

By (3.5), σ(Y	) ⊂ σ(Ȳ	, U	) for each integer 	. We now have, by (3.8) and (4.10),

σ(ϒ	, 	 ≥ N) ⊂ σ(B). (4.13)

We need some sort of analog of (4.13) for σ(ϒ	, 	 ≤ 0) and σ(A). To this end, we will need
to work with the probability measure P0 (in (3.6)). Some more notation will be needed. For
the events A and B, the notation A

.= B will mean that P0(A�B) = 0, where ‘�’ denotes
the symmetric difference. For an event A and a σ -field B, the notation A ∈̇ B will mean that
A

.= B for some B ∈ B. For σ -fields A and B, the notation A ⊂̇ B will mean that A ∈̇ B
for every A ∈ A, and the notation A

.= B will mean that A ⊂̇ B and B ⊂̇ A.
Refer to (3.7) and both equalities in (3.6). For ω ∈ {ξ0 = 0}, the ‘ordered pairs’ (Vk(ω),

k ≤ 0) determine (‘measurably’) the set of integer {ξk(ω), k ≤ 0} as well as Zj (ω) (M or I ) for
j in that set, and, hence, determine Zj (ω) for all j ≤ 0 (since Zj (ω) = D for integers j ≤ 0
that are not in that set). Combining this with (3.3), we obtain σ(Vk, k ≤ 0)

.= σ(Zk, k ≤ 0).
Now σ(X̄k, k ≤ 0) ⊂ σ(Xk, Zk, k ≤ 0) by (3.1) and (3.2); hence, σ(Ȳk, k ≤ 0) ⊂ σ(Xk, Zk,

k ≤ 0) by (3.3) and (3.4), and, hence, also σ(Yk, k ≤ 0) ⊂ σ(Xk, Zk, Uk, k ≤ 0) by (3.5).
Thus, by (4.11) and (3.8),

σ(ϒk, k ≤ 0) ⊂̇ σ(A). (4.14)

Step 5. On the original probability space (�, F , P), let � be a random variable which
(under P) is uniformly distributed on the interval [0, 1] and is independent of σ(X, Z, U)

(recall (P2), (P3), and (P8)). Now, of course, by the hypothesis (of Lemma 4.4), the sequence
β(X, n; P) → 0 as n → ∞ (absolute regularity). At this point, we will apply the ‘coupling’
result of Berbee [1, Theorem 4.4.7, p. 104, the Note, p. 106], which is closely related to the
‘maximal coupling’ result of Goldstein [11]. As a convenient reference for Berbee’s result,
we cite [6, Theorem 20.7, p. 277 and Lemma A1651, pp. 477–478]. The latter lemma in that
reference simply involves the use of the random variable � above as a randomizer, and it is
simply (a special case of) the version in Dudley and Philipp [10, Lemma 2.11] of a theorem of
Skorohod [17]. Thereby there exists a sequence X′ := (X′

k, k ∈ Z) of random variables with
the following properties (under P):

the distributions of the sequences X and X′ are identical (under P), (4.15)

the σ -fields σ(X′) and σ(Xk, k ≤ 0) are independent (under P), (4.16)

P (there exist k ≥ n such that X′
k 
= Xk) = β(X, n; P) for all n ∈ N, (4.17)

σ(X′) ⊂ σ(X, �). (4.18)

By (P1)–(P8) and the properties of the random variable �, under P, the σ -fields σ(�), σ(X),
σ(Z), and σ(U) are independent. By (3.6) and a trivial argument, this condition holds under
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P0 as well. Furthermore, by (3.6) and a trivial argument, the distribution of the random
array (�, X, X′, U) (on [0, 1] × R

Z × R
Z × [0, 1]Z) is the same under P0 as it is under P. In

particular, (4.15)–(4.17) all hold with P replaced with P0 (see also (3.9)). Thus, under P0, the
following statements hold. By (4.18), the σ -fields σ(X, X′), σ(Z), and σ(U) are independent;
hence, by (4.16), the σ -fields σ(X′), σ(Xk, k ≤ 0), σ(Z), and σ(U) are independent, and,
hence, the σ -field σ(X′) is independent of the σ -field σ(U, Z) ∨ σ(Xk, k ≤ 0).

Step 6. Now referring to (4.4), define analogously to (4.5) the (one-sided) sequence X′∗ :=
(X′∗

1 , X′∗
2 , X′∗

3 , . . . ) of random variables as X′∗
k := X′

k+T for all k ≥ 1.

Consider an arbitrary event A ⊂ σ(U, Z) ∨ σ(Xk, k ≤ 0) such that P0(A) > 0. For each
integer t ≥ 0 such that P0(A ∩ {T = t}) > 0, we now have (note that σ(T ) ⊂ σ(Z))

L0(X
′∗ | A ∩ {T = t}) = L0((X

′
t+1, X

′
t+2, X

′
t+3, . . . ) | A ∩ {T = t})

= L0(X
′
t+1, X

′
t+2, X

′
t+3, . . . )

= L0(X
′
1, X

′
2, X

′
3, . . . ), (4.19)

where L0(·) and L0(· | ·) respectively denote the distribution and conditional distribution under
P0. Since the last term in (4.19) is ‘constant’ (not depending on A or t), it follows by a simple
standard calculation that, for each such event A, L0(X

′∗ | A) = L0(X
′
1, X

′
2, X

′
3, . . . ), and also

(consider the case A = �) L0(X
′∗) = L0(X

′
1, X

′
2, X

′
3, . . . ). Consequently, the sequence X′∗

is (under P0) independent of the σ -field σ(U, Z) ∨ σ(Xk, k ≤ 0).
Analogously to (4.12), define the random array B

′ as follows:

B
′ := (X′∗; (Vk, k ≥ N); (Uk, k ≥ N)). (4.20)

Referring to the last sentence of the preceding paragraph and the third sentence after (4.18)
(which together with (P8)(i) yields β(U, N; P0)=0), we have, by (4.11), (4.20), Remark 3.1(b),
and Lemma 2.1,

β(σ(A), σ (B′); P0) = β(V, N; P0). (4.21)

Also, by (4.4), (4.12), (4.20), and (4.17) (and the fact that σ(T ) ⊂ σ(Z)), with the sums below
taken over all nonnegative integers t such that P0(T = t) > 0, we have (recall the sequence
H(·) in the statement of Lemma 4.4)

P0(B
′ 
= B)

= P0(X
′∗ 
= X∗)

=
∑

P0(X
′∗ 
= X∗ | T = t)P0(T = t)

=
∑

P0((X
′
t+1, X

′
t+2, X

′
t+3, . . . ) 
= (Xt+1, Xt+2, Xt+3, . . . ) | T = t)P0(T = t)

=
∑

P0((X
′
t+1, X

′
t+2, X

′
t+3, . . . ) 
= (Xt+1, Xt+2, Xt+3, . . . ))P0(T = t)

=
∑

β(X, t + 1; P0)P0(T = t)

= E0H(T ).

Hence, by (4.11)–(4.14), (4.21), and Lemma 2.2 (and Theorem 4.1(i), proved above)

β(ϒ, N; P0) ≤ β(σ(A), σ (B); P0)

≤ β(σ(A), σ (B′); P0) + 2E0H(T )

= β(V, N; P0) + 2E0H(T ). (4.22)
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Now, by (4.4), T ≥ ∑N−1
i=1 1(Zξ(i) = M). Also, the sequence H(n) (in the statement of

Lemma 4.4) is nonincreasing as n increases. It follows that E0H(T ) ≤ E0H(
∑N−1

i=1 1(Zξ(i) =
M)). Combining this with (4.22) we obtain Lemma 4.4.

4.2. Proof of Theorem 4.1(ii)

Define the sequence � := (1(Zξ(i) = M), i ∈ Z) of random indicator functions. Under P0,
this sequence is strictly stationary by (3.7) and Theorem 4.1(i) (proved above). By (3.6),
(P3), and a trivial argument, the sequence � is also nondegenerate under P0. Also, by
(3.7) and the hypothesis (of Theorem 4.1(ii)), we have

∑∞
n=1 β(�, n; P0) < ∞. Also, by

the hypothesis (of Theorem 4.1(ii)), the (nonincreasing) sequence (H(n), n ∈ {0} ∩ N) of
nonnegative numbers in Lemma 4.4 is summable. Hence, for the sequence H(·), by Lemma 2.3,∑∞

n=2 E0H(
∑n−1

i=1 1(Zξ(i) = M)) < ∞. Hence, by (3.8), Lemma 4.4, and the hypothesis (of
Theorem 4.1(ii)), the conclusion of Theorem 4.1(ii) holds. This completes the proof.
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