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Abstract

We establish generalizations for normal selfmaps of complex spaces of the Schwarz lemma and of recent
results on convergence of iterates of holomorphic selfmaps of taut spaces.
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1. Introduction

Let X be a hyperbolic Riemann surface and / a holomorphic selfmap of X with a
fixed point p. The Cartan-Caratheodory Theorem [1], a generalization of the classical
Schwarz lemma, states

(i) )f'(p)\ < 1.
(ii) f'(p) = 1 if and only if/ = id (id denotes the identity map),

(iii) \f'(p)\ — 1 if and only if/ is an automorphism.

Abate [1] has shown further that

(iv) |/ '(p)l < 1 if and only if the sequence of iterates {/"} of/ converges to p
where/"is defined b y / 1 = / and/" = / of'1 torn > 1.

These results have been generalized to selfmaps of taut spaces: (i), (ii) and (iii) by
Wu [8] and (iv) by Abate [1] in the form of Theorem 1(1), (2), (3), and (4) below.
Theorem 1 (5) was proved by Abate [1]. The notation A is used for the unit disk
( z e C : \z\ < 1} in the complex plane C.
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[2] . A generalization of the Schwarz lemma 11

THEOREM 1.1 ([1,8]). Let f be a holomorphic selfmap of a taut space X with a
non-singular fixed point p. Letdfp : TP(X) -> TP(X) be the differential of f at p.
Then

(1) The eigenvalues ofdfp have absolute values at most 1.
(2) Ifdfp is the identity transformation of Tp (X), then f is the identity transforma-

tion ofX.
(3) If\ det(dfp)\ = 1, thenf is biholomorphic on X.
(4) The eigenvalues ofdfp have absolute values less than 1 {that is p is an attractive

fixed point) if and only if the sequence of iterates {/"} off converges to p.
(5) The set of eigenvalues of dfp are in A U {1} if and only if the sequence {/"}

converges and in this case the limit map is a holomorphic retraction.

Independently Kobayashi [7] and Kaup [6] (under a weaker condition) extended (1),
(2) and (3) of Theorem 1 to selfmaps of hyperbolic spaces. Following the proof given
by Kobayashi ([7, Theorem 5.5.1]), it can be seen from the fact that the considerations
are local in nature that the proofs of (1), (2), and (3) go through virtually unchanged
if the taut assumption in Theorem 1 is replaced with the requirement that the family
of iterates of / is a relatively compact subset of the space of continuous functions
from X to its one-point compactification. The proofs of (4) and (5) by Abate [1,
Theorem 2.4.1, Corollary 2.4.2] also rely on this condition on the iterates which is
imposed by the hypothesis placed on the space.

Let X, Y be complex spaces. The notafion Jf(X, Y) (^(X, Y)) denotes the space
of holomorphic (continuous) maps from a complex space X to a complex (topological)
space Y with the compact-open topology and Y* — Y U {oo} denotes the one-point
compactification of a noncompact space Y and Y* = Y otherwise. A family of maps
& C J?(X, Y) is uniformly normal in Jf?(X, Y) if & o Jf?(A, X) = [f o g :
f € &,g € Jf (A, X)} is relatively compact in ̂ (A , Y*) [4]. A map / is normal
when the singleton [f} is uniformly normal. This notion of uniformly normal family
extends to several variables that of uniformly normal family in one complex variable
by Hayman [2] and encompasses earlier notions of normal map by various authors.
Classical theorems such as the big Picard theorem and theorems for normal maps by
Schottky, Pommerenke, Hahn, Jarvi and Lappan have been generalized using these
families [4,5]. A complex space X is taut if the family Jf?(A, X) U {oo} is compact in
^(A, X*). A complex subspace X of a complex space Y is hyperbolically imbedded
(tautly imbedded) in Y if and only if the family J^(A, X) is relatively compact in
^(A, Y*) (Jt?(A, Y)) [1,5] and hence holomorphic maps into X are normal maps
into Y if X is either hyperbolically imbedded or tautly imbedded in Y. A relatively
compact hyperbolically imbedded subspace X of a complex space Y is obviously
tautly imbedded in Y.
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In this paper, we establish properties (1°) and (2°) for uniformly normal fami-
lies:

(1°) if & c Jif(X, Y) is uniformly normal, then & is relatively compact in
^(X, Y*) (this is known to be true when X is a complex manifold), and

(2°) the family of iterates of a normal self map / of a complex space X is a uniformly
normal family.

As a consequence we are able to extend (1), (2), (3), (4) and the necessity part of (5)
of Theorem 1 to selfmaps of complex spaces. The sufficiency part of (5) of Theorem 1
is shown to be valid for normal selfmaps where the sequence of iterates have only
holomorphic subsequential limits. It follows that each normal/ €jf(X, Y) such that
/ (X) c X and such that / (X) is relatively compact in Y satisfies the conclusions of
Theorem 1. In particular, holomorphic mappings into tautly imbedded spaces satisfy
the conclusions of Theorem 1.

As another consequence we manage to unify and generalize results on holomorphic
selfmaps with relative compact image of bounded domains in C (see [3]) and of taut
domains without compact complex subspaces of positive dimension by Abate [1] in
the form of the following result.

Each normal selfmap with relatively compact image of a complex space without
compact complex subspaces of positive dimension has a unique fixed point and the
sequence of its iterates converges to that point.

In Section 2 we present some additional preliminaries, prove (1°) and (2°) above
and extend (1), (2) and (3) of Theorem 1 to normal selfmaps of complex spaces. In
Section 3, we generalize to such maps (4) and the necessity part of (5) and under an
additional assumption the sufficiency part of (5) of Theorem 1 on the convergence of
iterates.

2. Generalizations of Theorem 1 (1), (2), (3)

A semi-length function, [7], on a complex space X is an upper-semi-continuous
non-negative function H on the tangent cone, T(X), such that H(av) = \a\H(v)
for a 6 C and v, av e T(X). A length function is a semi-length function which is
continuous and H(v) > 0 for all nonzero v e T(X). We denote by dH the distance
function ̂ pnerated on X b^ H, that is,

= mf
Y J a

H(Y'(t))dt,

where y : [a, b] -> X is a C1 curve joining x to y. The distance function dH is known
to generate the topology on X (see [7]). If X, Y are complex spaces with (semi-)length
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functions H, E respectively a n d / 6 J4?(X, Y), the norm \df \HE of the tangent map
f o r / with respect to H, E is defined by

\df \H,E = sup{|dfp | : p e X] where

\dfP\H,E = sup{E(dfp(v)) : v € TP{X), H(v) = 1}.

We will simply use \df | and \dfp | when confusion is unlikely. If X is a complex
space, kx (Kx) will denote the Kobayashi pseudo-distance (Kobayashi-Royden semi-
length function [7]) on X. The notation f*E represents the pull-back of the semi-
length function E by / (that is f*E(v) = E(df (u)) for v e T(X)).

We utilize the equivalences in Proposition 2.1 to establish (1°) above. The notation
A will denote the closure of a subset A of a topological space.

PROPOSITION 2.1. Let X, Y be complex spaces and H be a semi-length function on
X such that f*H < KA for all f € Jf?(A, X). Then the following statements are
equivalent for & c J^(X, Y).

(1) & is uniformly normal.
(2) & o Jf{ A, X) is an evenly continuous subset ofJt?(&, Y).
(3) There is a length function E on Y such that \df \HiE < I for eachf e &'.

PROOF. (1) implies (2). This follows from the Ascoli-Arzela theorem.
(2) implies (3). We begin the proof by showing that if (2) holds then for each length

function E on Y and compact Q d Y, there exists c > 0 such that \df\HE < c on
/ "' (Q) for each / e &. If Q C Y is compact and fails the stated condition for the
length function E, choose sequences {pn}, {/„}, {vn} and q € Q such that pn € X,
/„ € J?\ vn 6 TP.(X), fn(Pn) e G, ff(»,) - 1,/„(/>„) -* ^ and E(dfn(vn)) > n.
It follows that E(dfn(vn)) -> oo and that some sequence {<£„} in Jf?(A, X) satisfies
0n(O) = pn and \{dfn o 0n)o| -> oo. Let V be a relatively compact neighborhood of
g hyperbolically imbedded in Y. By (2) choose 0 < r < 1 such that/n o0n(Ar) c V
eventually where Ar — {z € A : \z\ < r] and consequently the set of restrictions of
/„ o </>„ to Ar is relatively compact in Ji?(Ar, Y) contradicting \(dfn o </>n)0| —> oo.
To complete the proof, choose sequences {Vn], [cn] such that each Vn is open and
relatively compact in Y, Tn C Vn+U | J f Vn = K, cn > 0 and |rf/|H.£ < cn on
/ ~' (Vn) for each / € &'. Choose a continuous function \i on Y such that jiic < 1 on
Vn — Vn-\. The function defined by L = /xE is a length function on Y and |d/ \HtL < 1
for each / e < \̂

(3) implies (1). From (3) members of & o J f (A, Z) are distance decreasing maps
with respect to the distances k& and dE. •

PROPOSITION 2.2. Ler X, y ie complex spaces. If & c ^ ( X , K) « uniformly
normal, then & is relatively compact in ^(X, Y*).
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PROOF. Letp e X and let U be a hyperbolic neighborhood of p. By Proposition 2.1,
there are distance functions on U and Y with respect to which each/ e & is a distance
decreasing map and consequently the restriction of & to U is relatively compact in
1f(U, Y*). •

PROPOSITION 2.3. Let X be a complex subspace of a complex space Y and let
f e J?(X, Y) be a normal map such that f (X) C X. Then the collection of
iterates off is a uniformly normal subfamily of Jf?(X, Y) and is relatively compact
in ¥{X, Y*).

PROOF. The family & of iterates of/ is uniformly normal since & o J f (A, X) c
, X). The relative compactness of & now follows from Proposition 2.2. •

Let X be a complex subspace of a complex space Y and let / e J^(X, Y) satisfy
/ ( X ) c X. The notation^" will be used for the collection of iterates of/ and^"'will
denote the set of subsequential limits of {/"} in #(X, Y*). WenotethatJp' = &U&'
is a compact subset of ^(X, Y*) if/ is normal.

Theorem 2.4, a main result of the paper, generalizes (1), (2), (3) of Theorem 1 and
may be viewed as a Schwarz lemma for normal selfmaps of complex spaces.

THEOREM 2.4. Let X be a complex subspace of a complex space Y with p a non-
singular point ofX. Let f € J^(X, Y) be a normal map such that f (X) C X and
f(p)=p and let dfp : Tp(X) -» TP(X) be the differential off at p. Then

(1) The eigenvalues of dfp have absolute values at most 1;
(2) If dfp is the identity transformation of TP(X), then f is the identity transforma-

tion ofX;
(3) If \ det(df p)\ •=• 1, thenf is biholomorphic on X. Corollary 2.5 derives from an

observation in [5] that the identity map on X, id e Jf? (X, Y), is normal if and only if
X is hyperbolically imbedded in Y.

COROLLARY 2.5. Let X be a complex subspace of a complex space Y. Then X is
hyperbolically imbedded in Y if and only if there is a normal map f e Jf?(X, Y) such
that f (X) c X and for a non-singular point p e X, / (p) = p and \ det(dfp)\ — 1.

PROOF. The sufficiency follows since the identity map id € Jf?(X, Y) is normal.
For the necessity we observe that it is shown in the course of the proof of Theorem 2.4
that id is a subsequential limit of the sequence of iterates of the normal map / and is
hence a normal map. •
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3. Generalizations of Theorem 1 (4), (5)

We prove our next main result of the paper, Theorem 3.3, which generalizes
the necessity part of Theorem 1(5) to normal selfmaps in general, and the other
part to such maps under the added assumption that the sequence of iterates of /
contains only holomorphic subsequential limits. We will use two lemmas to prove the
theorem. These lemmas, Lemma 3.1 and Lemma 3.2, are local versions of theorems
for holomorphic selfmaps of taut spaces by Abate [1] and may be proved similarly.
We essentially need to insure that the compositions of the maps involved are valid.

We recall that a holomorphic retraction of a complex space X is a holomorphic
map p e J(?(X, X) such that p2 = p. It is known [1] that the image p(X) of a
holomorphic retraction p € Jf?(X, X), a holomorphic retract, is a closed connected
complex subspace of a complex space X and if p e p (X) is a nonsingular point of X,
then p{X) is also nonsingular at p. We will say that a map p e Jf?(U, X) where U
is open in X is a holomorphic retraction on U if p2 = p on U. As before the image
p(U) of a holomorphic retraction p on U is a locally closed subspace of X (a subset
U of a topological space X is locally closed if for each p e U there is a neighborhood
W of p in X such that U D W is closed in W) and if p € p(U) is a nonsingular point
of U, then p (U) is also nonsingular at p.

LEMMA 3.1. Let X be a complex subspace of a complex space Y. Letf eJ(f(X, Y)
be a normal map such that f (X) C X. Suppose there is a nonempty open subset U
ofX such that a (U) c X for all a e &'. Then

(1) There exists a unique map p e &' such that p2 = p on U and every a e &'
is of the form a = y o p on U where y = a\u0 is an automorphism of the complex
subspace Uo = p(U).

(2) h(U) = Uoforallhe^'.
(3) The restriction off to Uo, f \ uo> is an automorphism of Uo.

PROOF. Let a € &' and / " ' - • a. We may assume that mk = nk+s — nk -*• oo,
pk = mk-nk - • oo, / " " -> p € tf(X, K*) and / p * -* 0 € #(X, y*). Since
lim/m»(/'"(x)) = lim/"'+1(jc) = a(x), we have on £/, p o a = a o p = a. Since
limf»(fnk{x)) = l im/m'(x) = p(x), j 3 o a = a ojS = /) on (/. Hence on £/,
p2 = Poaop — p oa = p. From / Joa = ao/5 = pwe may conclude that a is an
automorphism of p(£/) = f/0. Setting j / = a| ^ , we obtain a = y o p on Uo. The rest
of the proof may proceed as in Abate's proof for the case of holomorphic selfmaps of
taut spaces. •

LEMMA 3.2. Let X be a complex subspace of a complex space Y and let f e
, Y) be a normal map such that f (X) C X. If the sequence {/"} converges
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to a map p 6 if (X, Y*), then p2 = p where the composition is valid and at every
nonsingular point p € p(X) D X, dfp has eigenvalues in A U (1). Conversely, if
f has a nonsingular fixed point p such that dfp has eigenvalues in A U (1), then
the sequence [f"} converges on a nonempty open subset U of X to a holomorphic
retraction p on U and the dimension of p(U) coincides with the multiplicity of 1 as
eigenvectors ofdfp.

PROOF. If &' = [p] then, from Lemma 3.1, p is a holomorphic retraction on some
neighborhood of each point p e p~\X) and so is holomorphic retraction on p~l (X).
Hence p(X) f l X c Fix(/), the set of fixed points of/. If p € Fix(/) is nonsingular
and k an eigenvalue of dfp, then Xk converges to an eigenvalue of dpp which is either
0 or 1 which proves the first part of the theorem.

For the second part let W be a neighborhood ofp. We claim there is a neighborhood
U of p so that a (U) c W for each limit a 6 &'. If not there are sequences {/ "*} and
{Zk} such that z* -+ p and/"'(zt) g W. But this contradicts the relative compactness
of & in *€(X, Y*). Let p e &' be the limit retraction of the sequence {/"} on U and
a € &'. Now we may follow Abate's arguments and conclude from Theorem 1.4
and Lemma 3.1 that a is the identity map on p(X) n U and hence a o p = p on
U. Since a = a o p on [/, we get a = p on the connected component of p~l(X)
containing p. •

Theorem 3.3 follows from Lemma 3.2 and the fact that two holomorphic maps that
agree on an open subset are identical on their common domain.

THEOREM 3.3. Let X be a complex subspace of a complex space Y and let f e
Jf{X, Y) be a normal map such thatf (X) C X. If the sequence {/"} converges, then
it converges to a holomorphic map p such that p2 = p where the composition is valid
and at every nonsingular fixed point p of f the differential dfp has eigenvalues in
A U {1}. Conversely, iff has a nonsingular fixed point p such that dfp has eigenvalues
m A U ( l ) and in addition &' C Jf?(X, Y), then {/"} converges.

The following corollary shows that (5) of Theorem 1 holds for selfmaps of tautly
imbedded subspaces.

COROLLARY 3.4. Let X be a tautly imbedded subspace of a complex space Y and
letf 6 Jf(X, X). If the sequence {/"} converges inJif(X, Y), then it converges toa
holomorphic map p e J4?(X, Y) such that p2 = p whenever the composition is defined
and at every nonsingular fixed point p of f the differential dfp has eigenvalues in
AU{1}. Conversely, iff has a nonsingularfixedpointp such that dfp has eigenvalues
in A U (1) then [f"} converges.
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PROOF. We need to show that &' C J(?(X, Y). Suppose this is not the case
and assume that lim/"'(zo) = o o e Y* for zo e X and nk — nk-x -* oo. Define a
sequence of constant maps {<£*} C Jff (A, X)by <t>k(z) =/"*+'-'li(zo). Since {f"ko<pk}
is relatively compact in JP(X, Y), we get a contradiction. •

Abate [1] called a nonsingular fixed point p of a selfmap / of a complex space
X an attractive fixed point if the eigenvalues of the differential dfp are in A and
proved if p is a nonsingular point of a taut space X and / e Jf{X, X), then /> is an
attractive fixed point of/ if and only if the sequence of iterates of/ converges to p.
Theorem 3.5 extends this result (Theorem 1(4)) to normal selfmaps.

THEOREM 3.5. Let f be a normal selfmap of a complex space X and let p € X be
a nonsingular point. Then the sequence {/"} of iterates of f converges to p if and
only if p is an attractive fixed point off.

PROOF. The sufficiency is obvious. Suppose p is an attractive fixed point of / .
Then the limit retraction p of the sequence [f"} defined on a neighborhood U of p is
a constant map since the dimension of the image space p{U) is 0 by Lemma 3.2. The
proof may be finished by using the arcwise-connectedness of X. •

In Herve [3] it is shown that each holomorphic selfmap of a bounded domain in C
with relative compact image has a unique fixed point. Abate [1] proved a similar result
that each holomorphic selfmap with relative compact image of a taut space without
compact complex subspaces of positive dimension has a unique fixed point and the
sequence of its iterates converges to that point. Theorem 3.6 unifies and extends these
results to normal selfmaps.

THEOREM 3.6. Let X be a complex space without compact complex subspaces of
positive dimension. Iff 6 Jf?(X, X) is a normal map with relatively compact image
then f has an unique fixed point p and its sequence of iterates converges to p.

PROOF. There exists a holomorphic retraction p e &' by Lemma 3.1. Since p(X)
is a compact subspace, the proof is completed by appeal to Lemma 3.2. •
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