Collineation groups which are sharply transitive on an oval

P.B. Kirkpatrick

Abstract

Let G be a group of collineations in a projective plane I of order n. Suppose that one of the point orbits of G is an oval $\underline{\underline{C}}$ of Π, and that G acts regularly on this orbit. We prove that G fixes a non-incident point-line pair if either n is even, or n is odd and G is abelian, or $n \neq 11,23,59$ is odd and $\underset{\underline{C}}{C}$ is a pseudo-conic. It is then easy to deduce information about the lengths of the other orbits of G, and about the structure of G as an abstract group.

1. Introduction

General results on the relations between the (point and line) orbits of a collineation group in a finite projective plane have been obtained by, for example, Dembowski [6], Foulser and Sandler [8], and Piper [16]. These results depend on the fact that the orbits form a tactical decomposition of the plane. Parker [15], Hughes [12], and Dembowski [6] proved independently that the number of point orbits is equal to the number of line orbits.

Let Π be a finite projective plane of order n. An oval of Π is a set of $n+1$ points in Π no three of which are collinear. The elementary properties of ovals are described in Qvist [17] and Dembowski [5]. If G is a group of collineations of Π and one of the point orbits of G is an oval $\underline{\underline{C}}$ of Π, then also one of the line orbits of G consists of the $n+1$ tangents of $\underline{\underline{C}}$, and each of the remaining point (line) orbits either consists entirely of exterior points (chords) or consists entirely of interior points (non-secants).

Received 24 April 1974.

By making further assumptions about the way G acts on the oval $\underline{\underline{C}}$, about the geometric structure of $\underline{\underline{C}}$, or about the structure of G as an abstract group, we might hope to obtain more detailed descriptions of the remaining orbits of G.

Only the identity collineation fixes every point of the oval $\underset{=}{C}$, that is the collineation group G (with orbit $\underline{\underline{C}}$) acts faithfully on $\underline{\underline{C}}$; we say that G acts regularly or sharply transitively on $\underline{\underline{C}}$ if it is transitive on the points of $\underline{\underline{C}}$ and no non-trivial collineation in G
 we shall then call ($G, \underline{\underline{C}}$) a sharply transitive oval. Singer's Theorem [18] guarantees the existence of sharply transitive ovals in every finite desarguesian plane, the ovals being conics and the groups cyclic.

An oval is a pseudo-conic in the sense of Ostrom [14] if it is the set of all absolute points of a polarity of Π.

The results proved in this paper will imply the following:
THEOREM. If ($G, \underline{\underline{\mathrm{C}} \text {) is a sharply transitive oval in a finite }}$ projective plane of order n, then G fixes a non-incident point - line pair provided that either
(i) n is even, or
(ii) n is odd and G is abelian, or
(iii) $n \neq 11,23,59$ is odd and C is a pseudo-conic.
2. Assumed results

We shall assume the following theorems from the theory of finite projective planes and the theory of finite groups. Dembowski [5] or Hughes and Piper [13] is suggested as a general reference.

RESULT 1 (Baer [2]). If θ is an involutory collineation of a finite projective plane of order n, then either θ is an elation and n is even, or θ is an homology and n is odd, or the fixed points and lines of θ form a subplane of order \sqrt{n}.

RESULT 2 (Baer [1]). Every polarity of a finite projective plane has absolute points.

RESULT 3 (Parker [15], Hughes [12], Dembowski [6]). The number of
point orbits, of any collineation group of a finite projective plane, is equal to the number of its line orbits.

RESULT 4 (Hering [11], Dembowski [5], p. 179). Let Γ be an abelian 2-group of collineations of a projective plane of order $n \equiv 3(\bmod 4)$.
(a) If $|\Gamma|>2$ and Γ is elementary abelian, then $|\Gamma|=4$ and the fixed points and lines of Γ are the vertices and sides of a triangle.
(b) If Γ is not elementary then Γ fixes exactly one point and exactly one line, and the point does not lie on the line.

RESULT 5 (Hering [11]). If Γ is a 2-group of collineations of a projective plane of order $n \equiv 3(\bmod 4)$ then Γ is cyclic, dihedral, semi-dihedral, or a generalized quaternion group.

RESULT 6 (Piper [16]). Let Γ be an abelian collineation group of order N in a projective plane of order n, and suppose Γ has exactly one point orbit of length N. Then either the fixed substructure of Γ is a line and at least three points on the line; or it is a point and at least three lines through the point; or $N=n^{2}+n+1, n^{2}, n^{2}-1$, $n^{2}-\sqrt{n}, n(n-1),(n-1)^{2}$, or $(n-\sqrt{n}+1)^{2}$; or $N=9$ and $n=4$.

RESULT 7 (see Hall [10]). Let G be a finite group. If G is soluble then G has an elementary abelian characteristic subgroup. If G is a p-group, for some prime p, then G has a non-trivial centre.

RESULT 8 (see Wielandt [19]). Suppose G is a permutation group on a finite set S, and $P \in S$. Then

$$
|G|=\left|G_{P}\right| \cdot\left|P^{G}\right|
$$

where G_{P} is the stabilizer in G of P and P^{G} is the orbit of G containing P. Also, G permutes the orbits of any normal subgroup H of G; in particular, G permutes the fixed points of H. Finally, if G is abelian and transitive on S then G is sharply transitive on S.

RESULT 9 (see Wielandt [19]). If G is a permutation group on a finite set S, and if $\chi(g)$ denotes the number of elements of S fixed by $g \in G$, then the number t of orbits of G is given by:

$$
\sum_{g \in G} \chi(g)=t|G|
$$

RESULT 10 (Frobenius' Theorem, see Hall [10], p. 292). The kernel of any Frobenius group G is a normal subgroup of G.

RESULT 11 (Feit and Thompson [7]). Every group of odd order is soluble.

RESULT 12 (Burnside [4]). If a finite group G has cyclic Sylow 2-subgroups then G has a normal 2-complement.

RESULT 13 (Brauer and Suzuki [3]). If a finite group G has generalized quaternion Sylow 2-subgroups then $G / O(G)$ has a non-trivial centre, where $O(G)$ denotes the largest normal subgroup of odd order in G.

RESULT 14 (see Gorenstein [9], pp. 260-265). Let G be a finite simple group whose Sylow 2-subgroups are either dihedral or semi-dihedral. Then G has only one conjugacy class of involutions.

3. Sharply transitive ovals of even order

If ($G, \underline{\underline{C}}$) is a sharply transitive oval in a projective plane Π of even order n, then G certainly fixes the knot F (point of concurrency of the $n+1$ tangents to $\underline{\underline{C}}$), since every collineation which maps $\underline{\underline{C}}$ to itself fixes F. Also, no non-trivial element of G fixes a point $X \neq F$, since every line through F is tangent to $\underline{\underline{C}}$ and G acts regularly on the tangents of $\underline{\underline{C}}$. Thus every point orbit of G, apart from $\{F\}$, has length $n+1$; and G has exactly $n+1$ point orbits. It follows (Result 3) that G has exactly $n+1$ line orbits.

Since any line orbit of length less than $n+1$ has length at most $\frac{1}{3}(n+1)$, simple counting shows that G must have n line orbits of length $n+1$ and one fixed line. We have proved:

THEOREM 1. If $(G, \underline{\underline{C}})$ is a sharply transitive oval in a projective plane of even order n, then G fixes exactly one point and one line, the point does not lie on the line, and all other orbits of G have length $n+1$.
4. Abelian sharply transitive ovals of odd order

In this section we prove:
THEOREM 2. Let ($G, \underline{\underline{C}}$) be a sharply transitive oval in a projective plane Π of odd order n, and suppose that G is abelian. Then the involutions of G are homologies, and G fixes the centre and axis of every involutory homology in G.

Proof. Choose an involution θ in G. If θ is an homology then, since $\langle\theta\rangle \triangleleft G$, the whole group G must fix the centre and axis of θ.

Suppose now that θ is not an homology. Then the fixed points and lines of θ form a subplane Λ of order \sqrt{n} (Result 1). Choose any point Q of $\underline{\underline{C}}$, let $R=Q^{\theta}$, let q, r be the tangents at Q, R respectively, and let $P=q \cap r$. Then $G_{P}=\langle\theta\rangle$ and so $\left|P^{G}\right|=\frac{1}{2}(n+1)$, which means that G induces on Λ an abelian collineation group H of order $\frac{1}{2}(n+1)$.

The group H has at least one point orbit of length $h=|H|=\frac{1}{2}(n+1)$ and, since Λ has order \sqrt{n}, at most two such point orbits. If there is exactly one, Result 6 implies that the fixed substructure of H consists either of a line and at least three points on the line, or of a point and at least three lines through the point. (The other alternatives, namely various relations between h and \sqrt{n}, are easily seen to be impossible.)

If the fixed substructure is a line and at least three points on it, then the line is a non-secant of C and the fixed points are interior to C . The fixed points determine at least three distinct chord orbits of length $\frac{1}{2}(n+1)$ for G, and these orbits determine at least three distinct involutions in G. By Result 4 these involutions generate a group of order 4 whose fixed points are the vertices of a triangle. The alternative (dual) case similarly gives rise to a contradiction.

We assume therefore that H has two point orbits of length h, and let $m=\sqrt{n}$, so that $h=\frac{1}{2}\left(m^{2}+1\right)$ and m is the order of Λ. Piper ([16], p. 331) remarks that simple calculations show that in such a case there is a subplane of Λ whose points form a third point orbit for H, and that H has only three point orbits. In our situation, this third
orbit must have length $m\left(=m^{2}+m+1-2 h\right)$, which is impossible since $|H|=\frac{1}{2}\left(m^{2}+1\right)$.

To establish Piper's assertion, let X^{H} be a point orbit of length less than h. Then $\left|H_{X}\right| \neq 1$ and H_{X} fixes every point of X^{H} (Result 8). Unless X^{H} is a single point, a set of collinear points, or a triangle, the fixed points of H_{X} form an invariant subplane Λ_{0} of Λ (with respect to H). The first three possibilities are easily ruled out using the fact that H has two point orbits of length h. Now any line of Λ_{0} contains at least one point from the union of the two h-orbits, and the lines of Λ_{0} through the points of a given h-orbit all belong to the same line orbit. So Λ_{0} contains at most two line orbits of H; in fact Λ_{0} can contain only one line orbit, since the orbits have odd length (dividing $\frac{1}{2}\left(m^{2}+1\right)$) and the number of lines in Λ_{0} is odd. Thus Λ_{0} contains only one point orbit (Result 3); indeed, every invariant proper subplane contains only one point orbit. It follows that every point Y in $\Lambda \backslash \Lambda_{0}$ which lies on a line 1 of Λ_{0} belongs to an h-orbit $\left(H_{Y}\right.$ fixes 1 and so fixes every line of Λ_{0}). The possibility that the set of such points exhausts the two h-orbits is easily excluded by counting. Thus if k is the order of Λ_{0} then

$$
\left(k^{2}+k+1\right)(m-k)=|H|=\frac{1}{2}\left(m^{2}+1\right)
$$

and $\left|H_{X}\right|=m-k$. Now suppose $\phi \in H_{X}$ and $\phi \neq 1$; then, since each invariant proper subplane (for H) contains only one point orbit of H, ϕ fixes no point of $\Lambda \backslash \Lambda_{0}$. So H_{X} acts semi-regularly on the points of $\Lambda \backslash \Lambda_{0}$, and therefore every invariant proper subplane other than Λ_{0} contains at least $m-k$ points. But

$$
(m-k)+k^{2}+k+1>m\left(=m^{2}+m+1-2 h\right)
$$

that is H leaves only one proper subplane invariant. So H has exactly three point orbits.

This completes the proof of Theorem 2. We note that the intersections with a fixed line, of the chords of C passing through a fixed point not on that line, form a point orbit of length $\frac{1}{2}(n+1)$ for G, and that the remaining points on these chords split into $\frac{1}{2}(n-1)$ orbits of length $n+1$, plus the fixed point. A dual assertion can of course be made about line orbits.

5. Sharply transitive pseudo-conics of odd order

Let (G, \underline{C}) be a sharply transitive pseudo-conic (in a projective plane Π of odd order n), with associated polarity α. Then every collineation ϕ in G commutes with α and so α induces a polarity on the incidence structure, formed by the fixed points and lines of ϕ. If $\phi \neq 1$ this structure cannot be a subplane of Π, since ϕ fixes no point of $\underline{\underline{C}}$ and every polarity of a finite projective plane has absolute points (Result 2). Thus the involutions of G are homologies.

Consider any ψ in G which has prime order P and more than one fixed point, say ψ fixes (at least) the points A and B. Now $A B$ cannot be an absolute line, and so $C=A^{\alpha} \cap B^{\alpha}$ is not on $A B$. But ψ fixes C and therefore, since the fixed points and lines form a closed substructure which is not a subplane, all further fixed points of ψ lie on one only of the lines $A B, B C, C A$, say on $A B$. By considering the action of ψ on the points of $B C$, we deduce that $p=2$. It follows that if a non-trivial collineation in G fixes more than one point, then its order is a power of 2 .

Now every collineation of prime order in G fixes at least one point, since $\left(|G|, n^{2}+n+1\right)=1$. So every collineation in G whose order is not a power of 2 fixes exactly one point.

If X in G has order 4 and X fixes more than one point, consider the involution X^{2}. The centre A and axis a of the homology χ^{2} are fixed by X, and all further fixed points of X lie on a. Suppose X fixes a point B on a, and consider the orbits of the group $\langle X\rangle$ acting on the points of $A B$: these are $\{A\},\{B\}$ and further orbits all of length 4 , so that $n-1 \equiv 0(\bmod 4)$, contradicting $n+1 \equiv 0(\bmod 4)$.

We have proved:
LEMMA. If ($G, \underline{\underline{C}}$) is a sharply transitive pseudo-conic in a projective plane of odd orders then the involutions of G are homologies, and every other non-trivial collineation in G fixes exactly one point.

This lemma will be very useful in the proof of our main result:
THEOREM 3. Suppose ($G, \underline{\underline{C}}$) is a sharply transitive pseudo-conic in a projective plane II of odd order $n \neq 3,11,23,59$. Then G fixes exactly one point and exactly one line, and the point does not lie on the line.

Proof. We note first that it suffices to prove that G fixes exactly one point, since G then fixes the polar line of this point, and no other line; and the fixed point does not lie on its polar line since G acts regularly on $\underline{\underline{C}}$.

Let K be a non-trivial subnormal subgroup of G such that K is simple. K always exists, and $K=G$ if G is simple. The involutions in K are homologies (Lenma), and they form at most one conjugacy class of K (Results 5, 7, 12, 13, 14). Furthermore, no two involutory homologies in G have the same centre (or the same axis) since the action of such an homology on the oval $\underset{=}{C}$ is fully determined by the chords through its centre: it interchanges the two points of \xlongequal{C} on each such chord. Thus the centres of the involutory homologies in K form a point orbit of K whose length equals the number of involutions in K.

If K has odd order, then K fixes exactly one point (Results 7, ll, Lemma), and this point is the unique fixed point of G. We assume therefore that K has even order.

Any S_{2}-subgroup (Sylow 2-subgroup) S of K has a non-trivial centre $Z(S)$. Let α be an involutory homology in $Z(S)$, let A be the centre and a the axis of α. Then $K_{A}=K_{a}=C_{K}(\alpha)$, the centralizer in K of α; also $K_{A} \supseteq S$, and we have

$$
k=2^{m_{r c}},
$$

if $|K|=k,|S|=2^{m},\left|K_{A}\right|=2^{m} r$ and $c=\left|A^{K}\right|$ is the number of
involutions in K.
Let ϕ in K have odd prime order p, and fixed point F. Any S_{p}-şubgroup P of K which contains ϕ fixes F, since $\left(n^{2}+n+1, p\right)=1$. If $\left|K_{F}\right|$ were odd, then K would act as a Frobenius group on the points of F^{K}, that is K would have a proper non-trivial normal subgroup (Result 10), contradicting the simplicity of K. So $\left|K_{F}\right|$ is even, that is F is either the centre or lies on the axis of some involutory homology in K. If F is a centre then $F \in A^{K}$; while if F is not a centre then ϕ does not commute with any of the involutory homologies whose axis contains F, and so F lies on at least two axes. In the latter case, the S_{2}-subgroups of K_{F} each contain exactly one involution: otherwise the axes of two commuting involutions would both pass through F, which is impossible unless F is the centre of the product of these two involutions. It follows that these S_{2}-subgroups of K_{F} have order 2 , since if some ψ of order 4 in K fixed F then F would be the unique fixed point of an S_{2}-subgroup of K containing ψ, that is F would be the centre of an involutory homology.

If a point X lies on the axes of two involutions B and γ in K then $\langle\beta, \gamma\rangle$ fixes X and so either $\langle\beta, \gamma\rangle$ is a 2 -group and X is fixed by an involution which commutes with both β and γ, that is X is a centre, or $\langle\beta, \gamma\rangle$ is not a 2 -group and X is fixed by some collineation of odd order in K.

We have established that, for any point Y fixed by an involution in K, either $\left|K_{Y}\right|=2$ or $\left|K_{Y}\right|=2^{m} r_{r}$ or $\left|K_{Y}\right|=2 s_{i}$ for some odd $s_{i}>1$ coprime to r. Furthermore,

$$
k=2^{m} r s_{1} \ldots s_{t}
$$

where s_{1}, \ldots, s_{t} are the distinct numbers s_{i} so arising; and s_{1}, \ldots, s_{t} are mutually coprime.

ASSUMPTION 1. Let us assume that K contains an element of odd order which fixes no centre, that is $t \geq 1$.

Denote by c_{0} the number of centres on the axis a, and let F_{i} be a point on a such that $\left|K_{F_{i}}\right|=2 s_{i}$. By Result $12, K_{F_{i}}$ has a normal 2-complement N. Since no involution in $K_{F_{i}}$ commutes with an element of odd order in $K_{F_{i}}, N$ acts semiregularly on the set of all axes through F_{i}. It follows that there are exactly s_{i} axes through F_{i}. But K is transitive on the set of all axes (of involutions in K) and on the points of F_{i}^{K}, so we may use simple counting to deduce that the number of points of F_{i}^{K} on a is exactly $2^{m-1} r$, for each $i=1,2, \ldots, t$.

To calculate the number b of orbits of K, considered as a permutation group on the $\frac{1}{2} n(n-1)$ interior points of $\underline{\underline{C}}$, we apply Result 9, obtaining

$$
\frac{1}{2} n(n-1)+\frac{1}{2}(n+3) c+k-c-1=b k
$$

Writing $n+1=h k$, we have

$$
b=\frac{1}{2} h(n+c)-h+1
$$

We return to the consideration of the points on an axis a. The interior points on a consist of: c_{0} centres, $2^{m-1} r t$ points belonging to orbits F_{i}^{K}, and $\frac{1}{2}(n+1)-c_{0}-2^{m-1} r t$ points belonging to orbits of length $\frac{1}{2} k$. The third set determines $\left(\frac{1}{2} k\right)^{-1} c\left[\frac{1}{2}(n+1)-c_{0}-2^{m-1} r t\right]$ orbits, so if $c_{0} \neq 0$ there are this number plus $t+1$ orbits consisting of interior points which lie on at least one axis. Since $k \mid n+1$ and $2^{m-1} r c=\frac{1}{2} k, k$ must divide $2 c c_{0}$. But $c_{0}+1$ is the number of involutions in K_{A}, since c_{0} is the number of axes through A and A is a centre. Also $\left|K_{A}\right|=2^{m} r$, so that $c_{0}+1 \leq 2^{m} r_{r}$, and $c c_{0}<2 m_{r c}=k$. Thus either $k=2 c c_{0}$ or $c_{0}=0$.

ASSUMPTION 2. Assume that $k=2 c c_{0}$.

Combining this with results obtained above, we deduce that there are exactly $\frac{1}{2} h(n-c)-h+1$ orbits of interior points which lie on no axis, and therefore exactly $\left[\frac{1}{2} h(n-c)-h+1\right] k$ such points. We have now counted all the interior points: centres, $\sum_{i=1}^{t} k\left(2 s_{i}\right)^{-1}$ points which lie on at least two axes (but are not centres), $\left[\frac{1}{2}(n+1)-c_{0}-2^{m-1} r t\right] c$ points which lie on exactly one axis, and $\left[\frac{1}{2} h(n-c)-h+1\right] k$ points which lie on no axis. Thus

$$
\frac{1}{2} n(n-1)=c+\sum_{i=1}^{t} k\left(2 s_{i}\right)^{-1}+\left[\frac{1}{2}(n+1)-c_{0}-2^{m-1} r t\right] c+\left[\frac{1}{2} h(n-c)-h+1\right] k
$$

from which we deduce the equation

$$
\begin{equation*}
1=c+\sum_{i=1}^{t} k\left(2 s_{i}\right)^{-1}+\frac{1}{2} k(1-t) \tag{*}
\end{equation*}
$$

and thence (since each $s_{i} \geq 3$) the inequality $c-1 \geq \frac{1}{2} k\left(\frac{2 t}{3}-1\right)$.
If $t \geq 3$ then $c \geq \frac{1}{2} k+1$ and so (since $c \mid k$) $c=k$, that is every element of K is an involution, which is impossible. If $t=1$ then, by (*), $1=c+k\left(2 s_{1}\right)^{-1}$ which is impossible since $c>1, k>0$ and $s_{1}>0$. So $t=2$ and $c-1 \geq \frac{1}{6} k$, that is $c=\frac{1}{5} k, \frac{1}{4} k, \frac{1}{3} k$ or $\frac{1}{2} k$. Now $c \neq \frac{1}{5} k$ or $\frac{1}{3} k$ since k is even and c is odd; and $c \neq \frac{1}{2} k$ since if $c=\frac{1}{2} k$ then K has a normal 2 -complement, contrary to the simplicity of K.

Thus $t=2$ and $c=\frac{1}{4} k$, that is $k=4 s_{1} s_{2}$ and so, by (*),

$$
1=2 s_{1}+2 s_{2}-s_{1} s_{2}
$$

from which we deduce that $\left\{s_{1}, s_{2}\right\}=\{3,5\}, k=60, c=15$ and $c_{0}=2$. Each of the 15 involutions in K commutes with exactly 2 of the remaining 14 , and the 15 centres of these involutory homologies can be partitioned into 5 disjoint sets \underline{C}_{i} of 3 non-collinear points which are the centres of the involutory homologies in an elementary abelian S_{2}-subgroup (of order 4) of K. The 15 centres form a unique point
orbit $\underline{\underline{0}}$ of length 15 for K, the remaining point orbits having length 6, 10,30 or 60 . It follows since K is subnormal in G, that $\underline{\underline{0}}^{G .}=\underline{\underline{0}}$ and that G permutes the 5 sets \underline{C}_{i}. Since $\underline{\underline{O}}^{G}=\underline{\underline{0}}$ and K (being simple) is generated by its 15 involutions, $K \unlhd G$.

The representation of the simple group K as a permutation group on $W=\left\{\underline{\underline{C}}_{1}, \ldots,{\underset{S}{C}}\right\}$ is faithful. Let H be the kernel of the representation of G on W. Since $H \cap K=1, H \triangleleft G$ and $K \unlhd G$, every element of H commutes with each of the 15 involutory homologies in K. It follows readily that $H=1$, so that G is isomorphic to a subgroup of S_{5}. If $G \cong S_{5}$ then the normalizer in G of any Sylow 5-subgroup P of G contains an element ϕ of order 4 ; and ϕ must fix the point X fixed by P. But $\left|X^{G}\right|=6$ and so ϕ must fix at least two points of X^{G}, contradicting our Lemma. Thus G 车 S_{5} and therefore $|G|=60$, contradicting $n \neq 59$. We have shown that in all cases equation (*) leads to a contradiction.

Suppose that Assumption 2 is false. Then $c_{0}=0$ and so each S_{2}-subgroup S of K contains only one involution (otherwise, consider a pair of commuting involutions in S : the centre of one lies on the axis of the other). If S is cyclic then K has a normal 2-complement and so, since K is simple of even order, $|K|=2$. If S is generalized quaternion then $K / O(K)$ has a non-trivial centre (Result 13), which is impossible. There is no other possibility (Result 5), so $|K|=2$.

Now suppose that Assumption 1 is false. Then $k=2^{m}, c=1$ and K contains exactly one involution. But K is simple, so $|K|=2$.

Since either Assumption 1 or Assumption 2 is false, $|K|=2$.
If K is a proper subnormal subgroup of some subnormal subgroup L of G which fixes more than one point, then L consists of involutions and the identity, that is L is elementary abelian. Since $K<L$, $|L|=4$ (Result 4), and so L fixes exactly three points, the remaining point orbits of L having length 2 or 4 . Now G does not fix all three fixed points of L since $n \neq 3$, so either G fixes exactly one
point or else G has exactly one point orbit of length 3 . The latter case is impossible since the representation of G as a permutation group on this orbit would have kernel L of order 4 , and the induced group would be isomorphic to a subgroup of S_{3}, contradicting $n \neq 11$ or 23 .

If there is no such L then the centre of the involutory homology in K is the unique fixed point of G. This completes the proof of Theorem 3.

COROLLARY. Suppose ($G, \underline{\underline{\mathrm{C}} \text {) satisfies the hypotheses of Theorem } 3 .}$ Then either
(i) G contains only one involution, G has two point (line) orbits of length $\frac{1}{2}(n+1)$, and $n-1$ of length $n+1$; or
(ii) $n \equiv 1(\bmod 4), G$ contains $\frac{1}{2}(n+1)$ conjugate involutions, and G has $n+1$ point (line) orbits of length $\frac{1}{2}(n+1)$ and $\frac{1}{2}(n-1)$ of length $n+1$; or
(iii) $n \equiv 3(\bmod 4), G$ contains $\frac{1}{2}(n+1)+1$ involutions in three conjugacy classes, of sizes $1, \frac{1}{4}(n+1)$ and $\frac{1}{4}(n+1)$, and G has two point (line) orbits of length $\frac{1}{4}(n+1), n$ of length $\frac{1}{2}(n+1)$ and $\frac{1}{2}(n-1)$ of length $n+1$.

Proof. If G contains only one involution then the centre of this homology is a fixed point, any point on its axis lies in an orbit of length $\frac{1}{2}(n+1)$, and every other point in an orbit of length $n+1$.

Suppose $n \equiv 1(\bmod 4)$ and G contains more than one involution. Then the centres of these involutions must lie on the fixed line f and the axes must pass through the fixed point F. Also, no centre lies on an axis, and no axis is a chord of $\underline{\underline{C}}$. But the chords of $\underline{\underline{C}}$ through F meet f in the points of an orbit of length $\frac{1}{2}(n+1)$, so these are the centres of the invoiutory homologies in G, and the remaining $\frac{1}{2}(n+1)$ points on f are the intersections with f of the axes, and form a single orbit. The assertions of ($i i$) now follow readily.

Finally consider the case where $n \equiv 3(\bmod 4)$ and G contains more than one involution. If P is the intersection with the fixed line f of a chord of \subseteq Chrough the fixed point F, then $\left|P^{G}\right|=\frac{1}{2}(n+1)$ and so $\left|G_{P}\right|=2$ and either G contains an involutory (F, f)-homology or P is
a centre or $P F$ is an axis. The third case is impossible since G acts regularly on \subseteq. The second case is also impossible since $\left|P^{G}\right|$ is even, which implies that if P is centre of an involutory homology then its axis is also a chord through F. Thus G contains an involutory (F, f)-homology θ and, since θ is in the kernel of the representation of G on $P^{G}, \theta \in Z(G)$. The centre of any other involution in G lies on f in an orbit of length $\frac{1}{4}(n+1)$. Since the length of every point orbit other than $\{F\}$ is at least $\frac{1}{4}(n+1)$, there are two orbits of centres on f, each of length $\frac{1}{4}(n+1)$. The assertions of ($i i i$) now follow readily.

References

[1] Reinhold Baer, "Polarities in finite projective planes", Bull. Amer. Math. Soc. 52 (1946), 77-93.
[2] Reinhold Baer, "Projectivities with fixed points on every line of the plane", BulZ. Amer. Math. Soc. 52 (1946), 273-286.
[3] Richard Brauer and Michio Suzuki, "On finite groups of even order whose 2-Sylow group is a quaternion group", Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759.
[4] W. Burnside, Theory of groups of finite order, 2nd ed. (Cambridge University Press, Cambridge, 1911; reprinted Dover, New York, 1955).
[5] P. Dembowski, Finite geometries (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin, Heidelberg, New York, 1968).
[6] .Peter Dembowski, "Verallgemeinerungen von Transitivitätsklassen endiicher projektiver Ebenen", Math. Z. 69 (1958), 59-89.
[7] Walter Feit and John G. Thompson, "Solvability of groups of odd order", Pacific J. Math. 13 (1963), 773-1029.
[8] David A. Foulser and Reuben Sandler, "Certain properties of orbits under collineation groups", J. Combinatorial Theory 2 (1967), 546-570.
[9] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
[10] Marshall Hall, Jr., The theory of groups (The Macmillan Company, New York, 1959).
[11] Christoph Hering, "Eine Bemerkung über Automorphismengruppen von endlichen projektiven Ebenen und Möbiusebenen", Arch. Math. 18 (1967), 107-110.
[12] D.R. Hughes, "Collineations and generalized incidence matrices", Trans. Amer. Math. Soc. 86 (1957), 284-296.
[13] D[aniel] R. Hughes, F[red] C. Piper, Projective planes (Graduate Texts in Mathematics, 6. Springer-Verlag, New York, Heidelberg, Berlin, 1973).
[14] T.G. Ostrom, "Ovals, dualities, and Desargues's theorem", Canad. J. Math. 7 (1955), 417-431.
[15] E.T. Parker, "On collineations of symmetric designs", Proc. Amer. Math. Soc. 8 (1957), 350-351.
[16] Fred Piper, "The orbit structure of collineation groups of finite projective planes", Math. Z. 103 (1968), 318-332.
[17]
B. Qvist, "Some remarks concerning curves of the second degree in a finite plane", Ann. Acad. Sci. Fennicae. Ser. A.I. Math.-Phys. 134 (1952), 1-27.
[18] James Singer, "A theorem in finite projective geometry and some applications to number theory", Trans. Amer. Math. Soc. 43 (1938), 377-385.
[19] Helmut Wielandt, Finite permutation groups (Academic Press, New York and London, 1964).

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.

