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Collineation groups which are

sharply transitive on an oval

P.B. Kirkpatrick

Let G be a group of collineations in a protective plane II of

order n . Suppose that one of the point orbits of G is an

oval £ of II , and that G acts regularly on this orbit. We

prove that G fixes a non-incident point-line pair if either n

is even, or n is odd and G is abelian, or n ^ 11, 23, 59

is odd and £ is a pseudo-conic. I t is then easy to deduce

information about the lengths of the other orbits of G , and

about the structure of G as an abstract group.

1. Introduction

General results on the relations between the (point and line) orbits

of a collineation group in a finite projective plane have been obtained by,

for example, Dembowski [6], Foulser and Sandier [S], and Piper 1161. These

results depend on the fact that the orbits form a tactical decomposition of

the plane. Parker [15], Hughes [72],and Dembowski [6] proved independently

that the number of point orbits is equal to the number of line orbits.

Let II be a finite projective plane of order n . An oval of II is

a set of n + 1 points in II no three of which are collinear. The

elementary properties of ovals are described in Qvist [7 7] and Dembowski

[5]. If G is a group of collineations of II and one of the point orbits

of G is an oval £ of II , then also one of the line orbits of G

consists of the n + 1 tangents of £ , and each of the remaining point

(line) orbits either consists entirely of exterior points (chords) or

consists entirely of interior points (non-secants).
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198 P.B. K i r k p a t r i c k

By making further assumptions about the way G acts on the oval £ ,
about the geometric structure of £ , or about the structure of G as an
abstract group, we might hope to obtain more detailed descriptions of the
remaining orbits of G .

Only the identity collineation fixes every point of the oval C_ , that
is the collineation group G (with orbit £ ) acts faithfully on £ ; we
say that G acts regularly or sharply transitively on £ if i t is
transitive on the points of £ and no non-trivial collineation in G
fixes a point of £ . If G acts regularly on £ then \G\ = n + 1 , and
we shall then call (G, £) a sharply transitive oval. Singer's Theorem
[7 SI guarantees the existence of sharply transitive ovals in every finite
desarguesian plane, the ovals being conies and the groups cyclic.

An oval is a pseudo-aonio in the sense of Ostrom [74] if i t is the set
of a l l absolute points of a polarity of II .

The results proved in this paper will imply the following:

THEOREM. If {G, £) is a sharply transitive oval in a finite
projeotive plane of order n , then G fixes a non-ineident point - line
pair provided that either

(i) n is even, or

(ii) n is odd and G is abelian, or

(iii) n + 11, 23, 59 is odd and £ is a psendo-oonia.

2. Assumed results

We shall assume the following theorems from the theory of finite

projective planes and the theory of finite groups. Dembowski [5] or Hughes

and Piper [73] is suggested as a general reference.

RESULT 1 (Baer [2]). If 9 is an involutory collineation of a

finite projective plane of order n , then either 0 is an elation and n

is even, or 8 is an homology and n is odd, or the fixed points and

lines of 8 form a subplane of order Jn .

RESULT 2 (Baer [7]). Every polarity of a finite projective plane

has absolute points.

RESULT 3 (Parker [75], Hughes [72], Dembowski [6]). The number of
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point o rb i t s , of any collineation group of a f in i te projective plane, i s

equal to the number of i t s l ine o rb i t s .

RESULT 4 (Hering [7 7], Dembowski [5 ] , p . 179). Let T be an

abelian 2-group of collineations of a projective plane of order

n = 3 (mod k) .

(a) If | r | > 2 and T i s elementary abelian, then |T| = h and

the fixed points and l ines of T are the vertices and sides of a t r i ang le .

(b) If F is not elementary then T fixes exactly one point and

exactly one l i n e , and the point does not l i e on the l i ne .

RESULT 5 (Hering [7 7]). If r i s a 2-group of collineations of a

projective plane of order n = 3 (mod h) then T i s cycl ic , dihedral,

semi-dihedral, or a generalized quaternion group.

RESULT 6 (Piper [76]). Let T be an abelian collineation group of

order If in a projective plane of order n , and suppose T has exactly

one point orbit of length N . Then ei ther the fixed substructure of T

i s a l ine and at leas t three points on the l i ne ; or i t i s a point and at

2 2 2
leas t three l ines through the point; or N = n + n + 1, n , n - 1 ,
n - /n, n ( n - l ) , (n-1)2 , or (n-Jn+l) ; or N = 9 and n = h .

RESULT 7 (see Hall [JO]). Let G be a f in i te group. If G i s

soluble then G has an elementary abelian character is t ic subgroup. If G

is a p-group, for some prime p , then G has a non-tr ivial centre.

RESULT 8 (see Wielandt [79]). Suppose G i s a permutation group on

a f in i te set 5 , and P f 5 . Then

|C| = \Gp\'\P
G\ ,

where G i s the s tab i l i ze r in G of P and P is the orbit of G

containing P . Also, G permutes the orbi ts of any normal subgroup H

of G ; in par t icu la r , G permutes the fixed points of H . Finally, i f

G i s abelian and t rans i t ive on S then G i s sharply t rans i t ive on S .

RESULT 9 (see Wielandt [79]). I f G i s a permutation group on a

f in i te set S , and i f \(g) denotes the number of elements of S fixed

by g € G , then the number t of orbits of G i s given by:
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I x(g) = t\o\ .
glG

RESULT 10 (Frobenius1 Theorem, see Hall 1101, p . 292). The kernel

of any Frobenius group G i s a normal subgroup of G .

RESULT 11 (Fei t and Thompson [7]) . Every group of odd order i s

soluble.

RESULT 12 (Burnside [4]) . I f a f in i te group G has cyclic Sylow

2-subgroups then G has a normal 2-complement.

RESULT 13 (Brauer and Suzuki [3]) . If a f in i te group G has

generalized quaternion Sylow 2-subgroups then G/O(G) has a non-t r iv ia l

cent re , where 0{G) denotes the largest normal subgroup of odd order in

G .

RESULT 14 (see Gorenstein [9], pp. 26O-265). Let G be a finite

simple group whose Sylow 2-subgroups are either dihedral or semi-dihedral.

Then G has only one conjugacy class of involutions.

3 . Sharply t r a n s i t i v e ovals of even order

If ((?, £) is a sharply transitive oval in a protective plane II of

even order n , then G certainly fixes the knot F (point of concurrency

of the n + 1 tangents to £ ), since every collineation which maps C_ to

itself fixes F . Also, no non-trivial element of G fixes a point

X # F , since every line through F is tangent to £ and G acts

regularly on the tangents of £ . Thus every point orbit of G , apart

from {F} , has length n + 1 ; and G has exactly n + 1 point orbits.

I t follows (Result 3) that G has exactly n + 1 line orbits.

Since any line orbit of length less than n + 1 has length at most

•j(w+l) , simple counting shows that G must have n line orbits of length

n + 1 and one fixed line. We have proved:

THEOREM 1. If {G, £) is a sharply transitive oval in a protective

plane of even order n , then G fixes exactly one point and one line, the

point does not lie on the line, and all other orbits of G have length

n + 1 .
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4. Abelian sharply transitive ovals of odd order

In this section we prove:

THEOREM 2. Let {G, £) be a sharply transitive oval in a protective

plane II of odd order n , and suppose that G is abelian. Then the

involutions of G are homologies, and G fixes the centre and axis of

every involutory homology in G .

Proof. Choose an involution 6 in G . If 9 is an homology then,

since <6> < G , the whole group G must fix the centre and axis of 9 .

Suppose now that 9 is not an homology. Then the fixed points and

lines of 9 form a subplane A of order -/n (Result l). Choose any

point Q of £ , let R = Q , let q, r be the tangents at Q, R

respectively, and let P = q n r . Then Gp = <6> and so \P \ = j(n+l) ,

which means that G induces on A an abelian collineation group E of

order \{n+l) .

The group E has at least one point orbit of length h = \E\ = |(n+l)

and, since A has order vn , at most two such point orbits. If there is

exactly one, Result 6 implies that the fixed substructure of H consists

either of a line and at least three points on the line, or of a point and

at least three lines through the point. (The other alternatives, namely

various relations between h and -Jn , are easily seen to be impossible.)

If the fixed substructure is a line and at least three points on it,

then the line is a non-secant of £ and the fixed points are interior to

£ . The fixed points determine at least three distinct chord orbits of

length i(«+l) for G , and these orbits determine at least three distinct

involutions in G . By Result k these involutions generate a group of

order h whose fixed points are the vertices of a triangle. The

alternative (dual) case similarly gives rise to a contradiction.

We assume therefore that H has two point orbits of length h , and

let a = /n , so that h = j(m +l) and m is the order of A . Piper

{[.161, p. 331) remarks that simple calculations show that in such a case

there is a subplane of A whose points form a third point orbit for H ,

and that E has only three point orbits. In our situation, this third
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orbit must have length m {= m +m+l-2h) , which is impossible since >

To establish Piper's assertion, let A be a point orbit of length

less than h . Then |ff«| ^ 1 and #„ fixes every point of X (Result

8). Unless x is a single point, a set of collinear points, or a

triangle, the fixed points of Hv form an invariant subplane A. of A
A 0

(with respect to H ). The first three possibilities are easily ruled out

using the fact that H has two point orbits of length h . Now any line

of A- contains at least one point from the union of the two /i-orbits,

and the lines of A through the points of a given 7z-orbit all belong to

the same line orbit. So A contains at most two line orbits of H ; in

fact A can contain only one line orbit, since the orbits have odd length

(dividing j (m +lj ) and the number of lines in An is odd. Thus A_

contains only one point orbit (Result 3); indeed, every invariant proper

subplane contains only one point orbit. I t follows that every point v in

A\A which lies on a line 1 of A belongs to an /z-orbit (ffy fixes 1

and so fixes every line of A J. The possibility that the set of such

points exhausts the two fo-orbits is easily excluded by counting. Thus if

k is the order of A then

[k2
+k+l)(m-k) = \H\ = | ( m 2

+ l ) ,

and \HV\ - m - k . Now suppose <}> € H and <J> t 1 ; t h e n , s ince each
A A

invariant proper subplane (for H ) contains only one point orbit of H ,

4> fixes no point of MA . So HY acts semi-regularly on the points of
0 A

AYA , and therefore every invariant proper subplane other than A

contains at least m - k points. But

( m - k ) + k 2 + k + l > m ( = m 2 + n n - l - 2 h ) ,

that is H leaves only one proper subplane invariant. So H has exactly

three point orbits.
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This completes the proof of Theorem 2. We note that the intersections

with a fixed l ine, of the chords of £ passing through a fixed point not

on that l ine, form, a point orbit of length |(n+l) for G , and that the

remaining points on these chords split into i(w-l) orbits of length

n + 1 , plus the fixed point. A dual assertion can of course be made about

line orbits.

5. Sharply transitive pseudo-conies of odd order

Let (G, Q) be a sharply transitive pseudo-conic (in a protective

plane II of odd order n ), with associated polarity a . Then .every

collineation <j> in C commutes with a and so a induces a polarity on

the incidence structure vformed by the fixed points and lines of (J> . If

<j> # 1 this structure cannot be a subplane of II , since <j> fixes no point

of C. and every polarity of a finite projective plane has absolute points

(Result 2). Thus the involutions of G are homologies.

Consider any ij) in C which has prime order p and more than one

fixed point, say 4> fixes (at least) the points A and B . Now AB

cannot be an absolute l ine, and so C = A n B is not on AB . But ip

fixes C and therefore, since the fixed points and lines form a closed

substructure which is not a subplane, al l further fixed points of 41 l ie

on one only of the lines AB, BC, CA , say on AB . By considering the

action of \j> on the points of BC , we deduce that p = 2 . I t follows

that if a non-trivial collineation in G fixes more than one point, then

i ts order is a pover of 2 .

Now every collineation of prime order in G fixes at least one point,

since (|c| , n +n+l) = 1 . So every collineation in G whose order is not

a power of 2 fixes exactly one point.

If x in G has order k and x fixes more than one point,

p
consider the involution x • The centre A and axis a of the homology

2
X are fixed by x > a n ^ ^ l further fixed points of x l i e o n a •

Suppose x fixes a point B on a , and consider the orbits of the group

<X̂  acting on the points of AB : these are {A}, {B} and further orbits

al l of length k , so that n - 1 = 0 (mod k) , contradicting

n + 1 i 0 (mod U) .
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We have proved:

LEMMA. If (G, £) is a sharply transitive pseudo-conic in a

protective plane of odd order, then the involutions of G are homologies,

and every other non-trivial collineation in G fixes exactly one point.

This lemma will be very useful in the proof of our main result:

THEOREM 3. Suppose (G, £) is a sharply transitive pseudo-conic in

a protective plane II of odd order n # 3, 11, 23, 59 . Then G fixes

exactly one point and exactly one line, and Hie point does not lie on the

line.

Proof. We note f i rs t that i t suffices to prove that G fixes exactly-

one point, since G then fixes the polar line of this point, and no other

l ine; and the fixed point does not l ie on i t s polar line since G acts

regularly on Ĉ  .

Let if be a non-trivial subnormal subgroup of G such that K is

simple. K always exists , and K = G if G is simple. The involutions

in K are homologies (Lemma), and they form at most one conjugacy class of

K (Results 5, 7, 12, 13, Ik). Furthermore, no two involutory homologies

in G have the same centre (or the same axis) since the action of such an

homology on the oval Ĉ  is fully determined by the chords through i t s

centre: i t interchanges the two points of C. on each such chord. Thus

the centres of the involutory homologies in K form a point orbit of K

whose length equals the number of involutions in K .

If K has odd order, then K fixes exactly one point (Results 7, 11,

Lemma), and this point is the unique fixed point of G . We assume there-

fore that K has even order.

Any S -subgroup (Sylow 2-subgroup) S of K has a non-trivial

centre Z(S) . Let a be an involutory homology in Z(S) , let A be the

centre and a the axis of a . Then K, = K = C,,(a) , the centralizer in
A a K

K of a ; also K z> S , and we have

k = 2 re ,

i f \K\ = k , \S\ = 2m , \K. I = 2mr and c = \AK\ i s the number of
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involutions in K .

Let <j> in K have odd prime order p , and fixed point' F . Any

S -subgroup P of K which contains <1> fixes F , since

(n +rc+l, p) = 1 . If \K-,\ were odd, then K would act as a Frobenius

group on the points of F^ , that i s K would have a proper non-t r iv ia l

normal subgroup (Result 10), contradicting the simplicity of K . So |iCp|

i s even, that i s F i s ei ther the centre or l i e s on the axis of some

involutory homology in K . If F i s a centre then F € A ; while i f F

i s not a centre then (j> does not commute with any of the involutory

homologies whose axis contains F , and so F l i e s on at least two axes.

In the l a t t e r case, the Sp-subgroups of K each contain exactly one

involution: otherwise the axes of two commuting involutions would both

pass through F , which i s impossible unless F i s the centre of the

product of these two involutions. I t follows that these S -subgroups of

#„ have order 2 , since i f some ty of order h in K fixed F then F

would be the unique fixed point of an S -subgroup of K containing i> ,

that i s F would be the centre of an involutory homology.

If a point X l i e s on the axes of two involutions 8 and y in K

then <8, Y> fixes X and so e i ther <B, Y> is a 2-group and X i s

fixed by an involution which commutes with both B and y , that i s X i s

a centre, or <B, y) i s not a 2-group and X i s fixed by some

collineation of odd order in K .

We have established t h a t , for any point Y fixed by an involution in

K , e i ther \Ky\ = 2 or |Xy| = 2Wr or | # y | = 2s^ for some odd s^ > 1

coprime to r> . Furthermore,

where s. , . . . , s , are the d i s t inc t numbers s . so ar is ing; and
I t t-

s , , . • • , s , are mutually coprime.

ASSUMPTION 1. Let us assume that K contains an element of odd

order which fixes no centre, that i s t * 1 .
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Denote by a the number of centres on the axis a , and l e t F. be0 i*

a point on a such that \Kp | = 28. . By Result 12, K has a normal
i i

2-complement N . Since no involution in K- commutes with an element of
i

odd order in K y N acts semiregularly on the set of a l l axes through

F. . I t follows that there are exactly s . axes through F. . But K i s

t r ans i t ive on the set of a l l axes (of involutions in K ) and on the points

of F) , so we may use simple counting to deduce that the number of points

of F. on a i s exactly 2 r , for each i = \ , 2 , . . . , £ .

To calculate the number b of orbits of K , considered as a

permutation group on the \n{n~\) in te r io r points of £ , we apply Result

9 , obtaining

Writing n + 1 = hk , we have

& = i/z(n+e) - h + 1 .

We return to the consideration of the points on an axis a . The

in t e r io r points on a consist of: o centres, 2 rt points belonging

to orbi ts F. , and j(«+l) - c - 2 r t points belonging to orbi ts of

length |fe . The th i rd set determines {\k)~^oU(n+l)-c -2m~1rt o rb i t s ,

so i f c # 0 there are th i s number plus t + 1 orbits consisting of

in t e r io r points which l i e on at leas t one axis. Since fe|«+l and

2 re = -jfe , k must divide 2ecn . But cQ + 1 is the number of

involutions in K , since c . i s the number of axes through A and A

i s a centre. Also |# . | = 2mr , so that aQ + 1 5 2mr - 1 , and

caQ < 2 ra = k . Thus ei ther k = 2cc0 or c^ = 0 .

ASSUMPTION 2. Assume that fe = 2ocQ .
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Combining this with results obtained above, we deduce that there are

exactly ^h(n-o) - h + 1 orbits of interior points which lie on no axis,

and therefore exactly [lh(n-c)-h+l]k such points. We have now counted

all the interior points: a centres, £ k[2s.) points which lie on at

i=l %

least two axes (but are not centres), j(n+l)-e -2 rt\o points which

lie on exactly one axis, and [±h(n-c)-h+l]k points which lie on no axis.

Thus

i n ( n - l ) = o + l k [ 2 s i ) ~ 1

from which we deduce the equation

t

and thence (since each s . > 3 ) the inequality o - 1 > |fe I— - 1 .

If t > 3 then o > |fe + 1 and so (since a\k ) o = k , that i s

every element of if i s an involution, which i s impossible. If t = 1

then, by (*), 1 = c + k[2sA~ which i s impossible since e > 1 , k > 0

and s > 0 . So t = 2 and c - 1 > |fe , that i s c = 2fc, ifc, Ifc or

jfe . Now c t Ik or -fe since k i s even and e i s odd; and a # jk

since i f a = |fe then X has a normal 2-complement, contrary to the

simplicity of K .

Thus t = 2 and e = -ife , that i s fe = Its s_ and so, by (*),

from which we deduce that {s , s } = {3, 5) , k = 60 , e = 15 and

o = 2 . Each of the 15 involutions in K commutes with exactly 2 of

the remaining lU , and the 15 centres of these involutory homologies can

be part i t ioned into 5 disjoint sets C. of 3 non-collinear points

which are the centres of the involutory homologies in an elementary abelian

Sp-subgroup (of order It ) of K . The 15 centres form a unique point
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orbi t £ of length 15 for K , the remaining point orbits having length

6, 10, 30 or 60 . I t follows since K i s subnormal in G , tha t £ ' =• 0.

and tha t G permutes the 5 sets C. . Since £ = £ and K (being

simple) i s generated by i t s 15 involutions, K 2 G .

The representation of the simple group K as a permutation group on

W = {£ . . . , n } i s fa i thfu l . Let H be the kernel of the

representation of G on W . Since H n K = 1 , H < G and K 3 G ,

every element of fl commutes with each of the 15 involutory homologies

in K . I t follows readily that H - 1 , so that G i s isomorphic to a

subgroup of 5 . If G = 5 then the normalizer in G of any Sylow

5-subgroup P of G contains an element <j> of order h ; and <j> must

f ix the point X fixed by P . But \X \ = 6 and so (J> must fix at
n

l e a s t two points of X , contradicting our Lemma. Thus G ̂  S and

therefore |<7| = 60 , contradicting n + 59 • We have shown that in a l l

cases equation (*) leads to a contradiction.

Suppose that Assumption 2 is fa lse . Then a = 0 and so each

5'-subgroup S of K contains only one involution (otherwise, consider a

pa i r of commuting involutions in 5 : the centre of one l i e s on the axis

of the other) . If S i s cyclic then K has a normal 2-complement and

so, since K i s simple of even order, \K\ = 2 . If S i s generalized

quaternion then K/0{K) has a non-tr ivial centre (Result 13), which i s

impossible. There i s no other poss ib i l i ty (Result 5 ) , so \K\ = 2 .

Now suppose that Assumption 1 is fa lse . Then k = 2 r , a = 1 and

K contains exactly one involution. But K i s simple, so \K\ = 2 .

Since e i ther Assumption 1 or Assumption 2 is fa l se , \K\ = 2 .

If K i s a proper subnormal subgroup of some subnormal subgroup L

of G which fixes more than one point , then L consists of involutions

and the i den t i t y , tha t i s L is elementary abelian. Since K < L ,

\L\ = h (Result k), and so L fixes exactly three points , the remaining

point orbits of L having length 2 or k . Now G does not fix a l l

three fixed points of L since n ± 3 , so ei ther G fixes exactly one
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point or else G has exactly one point orbit of length 3 • The latter

case is impossible since the representation of G as a permutation group

on this orbit would have kernel L of order U , and the induced group

would be isomorphic to a subgroup of 5 , contradicting n t 11 or 23 .

If there is no such L then the centre of the involutory homology in

K is the unique fixed point of G . This completes the proof of Theorem

3.

COROLLARY. Suppose (<?,£) satisfies the hypotheses of Theorem 3.

Then either

(i) G contains only one involution, G has two point (line)

orbits of length j(n+l) , and n - 1 of length n + 1 ; or

(ii) n = 1 (mod k) , G contains j(w+l) conjugate involutions,

and G has n + 1 point (line) orbits of length |(n+l)

and |(n-l) of length n + 1 ; or

(iii) n = 3 (mod h) , G contains |(n+l) + 1 involutions in

three conjugacy classes, of sizes 1 , £(w+l) and £(w+l) ,

and G has two point (line) orbits of length £(n+l) , n

of length |(n+l) and j(w-l) of length n + 1 .

Proof. If G contains only one involution then the centre of this

homology is a fixed point, any point on its axis lies in an orbit of length

and every other point in an orbit of length n + 1 .(

Suppose n = 1 (mod U) and G contains more than one involution.

Then the centres of these involutions must l ie on the fixed line / and

the axes must pass through the fixed point F . Also, no centre lies on an

axis, and no axis is a chord of C_ . But the chords of Ĉ  through F

meet / in the points of an orbit of length |(n+l) , so these are the

centres of the involutory homologies in G , and the remaining -j(n+l)

points on / are the intersections with / of the axes, and form a single

orbit. The assertions of (ii) now follow readily.

Finally consider the case where n H 3 (mod 1*) and G contains more

than one involution. If P is the intersection with the fixed line / of

a chord of £ through the fixed point F , then \P | = |(n+l) and so

|G_| = 2 and either G contains an involutory (P, /)-homology or P is
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a centre or PF is an axis. The third case is impossible since G acts

regularly on £ . The second case is also impossible since \P | is

even, which implies that if P is centre of an involutory homology then

i t s axis is also a chord through F . Thus G contains an involutory

(F, /)-homology 9 and, since 8 is in the kernel of the representation

of G on P , 6 € Z(G) . The centre of any other involution in G lies

on / in an orbit of length i(«+l) . Since the length of every point

orbit other than {F} is at least £(M+1) , there are two orbits of

centres on / , each of length £(w+l) . The assertions of (Hi) now

follow readily.
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