Collineation groups which are sharply transitive on an oval

P.B. Kirkpatrick

Let G be a group of collineations in a projective plane Π of order n. Suppose that one of the point orbits of G is an oval \underline{C} of Π , and that G acts regularly on this orbit. We prove that G fixes a non-incident point-line pair if either n is even, or n is odd and G is abelian, or $n \neq 11, 23, 59$ is odd and \underline{C} is a pseudo-conic. It is then easy to deduce information about the lengths of the other orbits of G, and about the structure of G as an abstract group.

1. Introduction

General results on the relations between the (point and line) orbits of a collineation group in a finite projective plane have been obtained by, for example, Dembowski [6], Foulser and Sandler [8], and Piper [16]. These results depend on the fact that the orbits form a tactical decomposition of the plane. Parker [15], Hughes [12], and Dembowski [6] proved independently that the number of point orbits is equal to the number of line orbits.

Let Π be a finite projective plane of order n. An *oval* of Π is a set of n + 1 points in Π no three of which are collinear. The elementary properties of ovals are described in Qvist [17] and Dembowski [5]. If G is a group of collineations of Π and one of the point orbits of G is an oval \underline{C} of Π , then also one of the line orbits of Gconsists of the n + 1 tangents of \underline{C} , and each of the remaining point (line) orbits either consists entirely of exterior points (chords) or consists entirely of interior points (non-secants).

Received 24 April 1974.

By making further assumptions about the way G acts on the oval \underline{C} , about the geometric structure of \underline{C} , or about the structure of G as an abstract group, we might hope to obtain more detailed descriptions of the remaining orbits of G.

Only the identity collineation fixes every point of the oval \underline{C} , that is the collineation group G (with orbit \underline{C}) acts faithfully on \underline{C} ; we say that G acts regularly or sharply transitively on \underline{C} if it is transitive on the points of \underline{C} and no non-trivial collineation in Gfixes a point of \underline{C} . If G acts regularly on \underline{C} then |G| = n + 1, and we shall then call (G, \underline{C}) a sharply transitive oval. Singer's Theorem [18] guarantees the existence of sharply transitive ovals in every finite desarguesian plane, the ovals being conics and the groups cyclic.

An oval is a *pseudo-conic* in the sense of Ostrom [14] if it is the set of all absolute points of a polarity of Π .

The results proved in this paper will imply the following:

THEOREM. If (G, \underline{C}) is a sharply transitive oval in a finite projective plane of order n, then G fixes a non-incident point - line pair provided that either

(i) n is even, or

(ii) n is odd and G is abelian, or

(iii) $n \neq 11, 23, 59$ is odd and <u>C</u> is a pseudo-conic.

2. Assumed results

We shall assume the following theorems from the theory of finite projective planes and the theory of finite groups. Dembowski [5] or Hughes and Piper [13] is suggested as a general reference.

RESULT 1 (Baer [2]). If θ is an involutory collineation of a finite projective plane of order n, then either θ is an elation and n is even, or θ is an homology and n is odd, or the fixed points and lines of θ form a subplane of order \sqrt{n} .

RESULT 2 (Baer [1]). Every polarity of a finite projective plane has absolute points.

RESULT 3 (Parker [15], Hughes [12], Dembowski [6]). The number of

point orbits, of any collineation group of a finite projective plane, is equal to the number of its line orbits.

RESULT 4 (Hering [11], Dembowski [5], p. 179). Let Γ be an abelian 2-group of collineations of a projective plane of order $n \equiv 3 \pmod{4}$.

(a) If $|\Gamma| > 2$ and Γ is elementary abelian, then $|\Gamma| = 4$ and the fixed points and lines of Γ are the vertices and sides of a triangle.

(b) If Γ is not elementary then Γ fixes exactly one point and exactly one line, and the point does not lie on the line.

RESULT 5 (Hering [11]). If Γ is a 2-group of collineations of a projective plane of order $n \equiv 3 \pmod{4}$ then Γ is cyclic, dihedral, semi-dihedral, or a generalized quaternion group.

RESULT 6 (Piper [16]). Let Γ be an abelian collineation group of order N in a projective plane of order n, and suppose Γ has exactly one point orbit of length N. Then either the fixed substructure of Γ is a line and at least three points on the line; or it is a point and at least three lines through the point; or $N = n^2 + n + 1$, n^2 , $n^2 - 1$, $n^2 - \sqrt{n}$, n(n-1), $(n-1)^2$, or $(n-\sqrt{n}+1)^2$; or N = 9 and n = 4.

RESULT 7 (see Hall [10]). Let G be a finite group. If G is soluble then G has an elementary abelian characteristic subgroup. If G is a p-group, for some prime p, then G has a non-trivial centre.

RESULT 8 (see Wielandt [19]). Suppose G is a permutation group on a finite set S, and $P \in S$. Then

$$|G| = |G_p| \cdot |P^G| ,$$

where G_p is the stabilizer in G of P and P^G is the orbit of Gcontaining P. Also, G permutes the orbits of any normal subgroup Hof G; in particular, G permutes the fixed points of H. Finally, if G is abelian and transitive on S then G is sharply transitive on S.

RESULT 9 (see Wielandt [19]). If G is a permutation group on a finite set S, and if $\chi(g)$ denotes the number of elements of S fixed by $g \in G$, then the number t of orbits of G is given by:

P.B. Kirkpatrick

$$\sum_{g \in G} \chi(g) = t |G| .$$

RESULT 10 (Frobenius' Theorem, see Hall [10], p. 292). The kernel of any Frobenius group G is a normal subgroup of G.

RESULT 11 (Feit and Thompson [7]). Every group of odd order is soluble.

RESULT 12 (Burnside [4]). If a finite group G has cyclic Sylow 2-subgroups then G has a normal 2-complement.

RESULT 13 (Brauer and Suzuki [3]). If a finite group G has generalized quaternion Sylow 2-subgroups then G/O(G) has a non-trivial centre, where O(G) denotes the largest normal subgroup of odd order in G.

RESULT 14 (see Gorenstein [9], pp. 260-265). Let G be a finite simple group whose Sylow 2-subgroups are either dihedral or semi-dihedral. Then G has only one conjugacy class of involutions.

3. Sharply transitive ovals of even order

If (G, \underline{C}) is a sharply transitive oval in a projective plane Π of even order n, then G certainly fixes the knot F (point of concurrency of the n + 1 tangents to \underline{C}), since every collineation which maps \underline{C} to itself fixes F. Also, no non-trivial element of G fixes a point $X \neq F$, since every line through F is tangent to \underline{C} and G acts regularly on the tangents of \underline{C} . Thus every point orbit of G, apart from $\{F\}$, has length n + 1; and G has exactly n + 1 point orbits. It follows (Result 3) that G has exactly n + 1 line orbits.

Since any line orbit of length less than n + 1 has length at most $\frac{1}{3}(n+1)$, simple counting shows that G must have n line orbits of length n + 1 and one fixed line. We have proved:

THEOREM 1. If (G, \underline{C}) is a sharply transitive oval in a projective plane of even order n, then G fixes exactly one point and one line, the point does not lie on the line, and all other orbits of G have length n + 1.

Abelian sharply transitive ovals of odd order In this section we prove:

THEOREM 2. Let (G, \underline{C}) be a sharply transitive oval in a projective plane Π of odd order n, and suppose that G is abelian. Then the involutions of G are homologies, and G fixes the centre and axis of every involutory homology in G.

Proof. Choose an involution θ in G. If θ is an homology then, since $\langle \theta \rangle \triangleleft G$, the whole group G must fix the centre and axis of θ .

Suppose now that θ is not an homology. Then the fixed points and lines of θ form a subplane Λ of order \sqrt{n} (Result 1). Choose any point Q of \underline{C} , let $R = Q^{\theta}$, let q, r be the tangents at Q, Rrespectively, and let $P = q \cap r$. Then $G_p = \langle \theta \rangle$ and so $|P^G| = \frac{1}{2}(n+1)$, which means that G induces on Λ an abelian collineation group H of order $\frac{1}{2}(n+1)$.

The group H has at least one point orbit of length $h = |H| = \frac{1}{2}(n+1)$ and, since Λ has order \sqrt{n} , at most two such point orbits. If there is exactly one, Result 6 implies that the fixed substructure of H consists either of a line and at least three points on the line, or of a point and at least three lines through the point. (The other alternatives, namely various relations between h and \sqrt{n} , are easily seen to be impossible.)

If the fixed substructure is a line and at least three points on it, then the line is a non-secant of \underline{C} and the fixed points are interior to \underline{C} . The fixed points determine at least three distinct chord orbits of length $\frac{1}{2}(n+1)$ for G, and these orbits determine at least three distinct involutions in G. By Result 4 these involutions generate a group of order 4 whose fixed points are the vertices of a triangle. The alternative (dual) case similarly gives rise to a contradiction.

We assume therefore that H has two point orbits of length h, and let $m = \sqrt{n}$, so that $h = \frac{1}{2}(m^2+1)$ and m is the order of Λ . Piper ([16], p. 331) remarks that simple calculations show that in such a case there is a subplane of Λ whose points form a third point orbit for H, and that H has only three point orbits. In our situation, this third orbit must have length $m (= m^2 + m + 1 - 2h)$, which is impossible since \mathcal{J} $|H| = \frac{1}{2}(m^2 + 1)$.

To establish Piper's assertion, let X^H be a point orbit of length less than h. Then $|H_X| \neq 1$ and H_X fixes every point of X^H (Result 8). Unless X^H is a single point, a set of collinear points, or a triangle, the fixed points of H_X form an invariant subplane Λ_0 of Λ (with respect to H). The first three possibilities are easily ruled out using the fact that H has two point orbits of length h. Now any line of Λ_0 contains at least one point from the union of the two h-orbits, and the lines of Λ_0 through the points of a given h-orbit all belong to the same line orbit. So Λ_0 contains at most two line orbits of H; in fact Λ_0 can contain only one line orbit, since the orbits have odd length

(dividing $\frac{1}{2}(m^2+1)$) and the number of lines in Λ_0 is odd. Thus Λ_0 contains only one point orbit (Result 3); indeed, every invariant proper subplane contains only one point orbit. It follows that every point Y in $\Lambda \setminus \Lambda_0$ which lies on a line 1 of Λ_0 belongs to an *h*-orbit (H_Y fixes 1 and so fixes every line of Λ_0). The possibility that the set of such points exhausts the two *h*-orbits is easily excluded by counting. Thus if k is the order of Λ_0 then

$$(k^2+k+1)(m-k) = |H| = \frac{1}{2}(m^2+1)$$
,

and $|H_{\chi}| = m - k$. Now suppose $\phi \in H_{\chi}$ and $\phi \neq 1$; then, since each invariant proper subplane (for H) contains only one point orbit of H, ϕ fixes no point of $\Lambda \setminus \Lambda_0$. So H_{χ} acts semi-regularly on the points of $\Lambda \setminus \Lambda_0$, and therefore every invariant proper subplane other than Λ_0 contains at least m - k points. But

$$(m-k) + k^2 + k + 1 > m (= m^2+m+1-2h)$$
,

that is H leaves only one proper subplane invariant. So H has exactly three point orbits.

This completes the proof of Theorem 2. We note that the intersections with a fixed line, of the chords of \underline{C} passing through a fixed point not on that line, form a point orbit of length $\frac{1}{2}(n+1)$ for G, and that the remaining points on these chords split into $\frac{1}{2}(n-1)$ orbits of length n + 1, plus the fixed point. A dual assertion can of course be made about line orbits.

5. Sharply transitive pseudo-conics of odd order

Let (G, \underline{C}) be a sharply transitive pseudo-conic (in a projective plane Π of odd order n), with associated polarity α . Then every collineation ϕ in G commutes with α and so α induces a polarity on the incidence structure formed by the fixed points and lines of ϕ . If $\phi \neq 1$ this structure cannot be a subplane of Π , since ϕ fixes no point of \underline{C} and every polarity of a finite projective plane has absolute points (Result 2). Thus the involutions of G are homologies.

Consider any ψ in *G* which has prime order *p* and more than one fixed point, say ψ fixes (at least) the points *A* and *B*. Now *AB* cannot be an absolute line, and so $C = A^{\alpha} \cap B^{\alpha}$ is not on *AB*. But ψ fixes *C* and therefore, since the fixed points and lines form a closed substructure which is not a subplane, all further fixed points of ψ lie on one only of the lines *AB*, *BC*, *CA*, say on *AB*. By considering the action of ψ on the points of *BC*, we deduce that p = 2. It follows that if a non-trivial collineation in *G* fixes more than one point, then its order is a power of 2.

Now every collineation of prime order in G fixes at least one point, since $(|G|, n^2+n+1) = 1$. So every collineation in G whose order is not a power of 2 fixes exactly one point.

If χ in *G* has order 4 and χ fixes more than one point, consider the involution χ^2 . The centre *A* and axis *a* of the homology χ^2 are fixed by χ , and all further fixed points of χ lie on *a*. Suppose χ fixes a point *B* on *a*, and consider the orbits of the group $\langle \chi \rangle$ acting on the points of *AB*: these are {*A*}, {*B*} and further orbits all of length 4, so that $n - 1 \equiv 0 \pmod{4}$, contradicting $n + 1 \equiv 0 \pmod{4}$. We have proved:

LEMMA. If (G, \underline{C}) is a sharply transitive pseudo-conic in a projective plane of odd order, then the involutions of G are homologies, and every other non-trivial collineation in G fixes exactly one point.

This lemma will be very useful in the proof of our main result:

THEOREM 3. Suppose (G, \underline{C}) is a sharply transitive pseudo-conic in a projective plane II of odd order $n \neq 3$, 11, 23, 59. Then G fixes exactly one point and exactly one line, and the point does not lie on the line.

Proof. We note first that it suffices to prove that G fixes exactly one point, since G then fixes the polar line of this point, and no other line; and the fixed point does not lie on its polar line since G acts regularly on <u>C</u>.

Let K be a non-trivial subnormal subgroup of G such that K is simple. K always exists, and K = G if G is simple. The involutions in K are homologies (Lemma), and they form at most one conjugacy class of K (Results 5, 7, 12, 13, 14). Furthermore, no two involutory homologies in G have the same centre (or the same axis) since the action of such an homology on the oval \underline{C} is fully determined by the chords through its centre: it interchanges the two points of \underline{C} on each such chord. Thus the centres of the involutory homologies in K form a point orbit of Kwhose length equals the number of involutions in K.

If K has odd order, then K fixes exactly one point (Results 7, 11, Lemma), and this point is the unique fixed point of G. We assume therefore that K has even order.

Any S_2 -subgroup (Sylow 2-subgroup) S of K has a non-trivial centre Z(S). Let α be an involutory homology in Z(S), let A be the centre and a the axis of α . Then $K_A = K_a = C_K(\alpha)$, the centralizer in K of α ; also $K_A \supseteq S$, and we have

$$k = 2^m rc$$
,

if |K| = k, $|S| = 2^m$, $|K_A| = 2^m r$ and $c = |A^K|$ is the number of

https://doi.org/10.1017/S0004972700043793 Published online by Cambridge University Press

involutions in K.

Let ϕ in K have odd prime order p, and fixed point F. Any S_n -şubgroup P of K which contains ϕ fixes F , since $(n^2+n+1, p) = 1$. If $|K_p|$ were odd, then K would act as a Frobenius group on the points of F^{K} , that is K would have a proper non-trivial normal subgroup (Result 10), contradicting the simplicity of K. So $|K_F|$ is even, that is F is either the centre or lies on the axis of some involutory homology in K . If F is a centre then $F \in A^K$; while if F is not a centre then ϕ does not commute with any of the involutory homologies whose axis contains F , and so F lies on at least two axes. In the latter case, the $S_{\rm p}$ -subgroups of $K_{\rm p}$ each contain exactly one involution: otherwise the axes of two commuting involutions would both pass through F, which is impossible unless F is the centre of the product of these two involutions. It follows that these S_{o} -subgroups of K_F have order 2 , since if some ψ of order 4 in K fixed F then F would be the unique fixed point of an S_{Q} -subgroup of K containing ψ , that is F would be the centre of an involutory homology.

If a point X lies on the axes of two involutions β and γ in K then $\langle \beta, \gamma \rangle$ fixes X and so either $\langle \beta, \gamma \rangle$ is a 2-group and X is fixed by an involution which commutes with both β and γ , that is X is a centre, or $\langle \beta, \gamma \rangle$ is not a 2-group and X is fixed by some collineation of odd order in K.

We have established that, for any point Y fixed by an involution in K, either $|K_Y| = 2$ or $|K_Y| = 2^m r$ or $|K_Y| = 2s_i$ for some odd $s_i > 1$ coprime to r. Furthermore,

$$k = 2^m r s_1 \dots s_t,$$

where s_1, \ldots, s_t are the distinct numbers s_i so arising; and s_1, \ldots, s_t are mutually coprime.

ASSUMPTION 1. Let us assume that K contains an element of odd order which fixes no centre, that is $t \ge 1$.

Denote by c_0 the number of centres on the axis a, and let F_i be a point on a such that $|K_{F_i}| = 2s_i$. By Result 12, K_{F_i} has a normal 2-complement N. Since no involution in K_{F_i} commutes with an element of odd order in K_{F_i} , N acts semiregularly on the set of all axes through F_i . It follows that there are exactly s_i axes through F_i . But K is transitive on the set of all axes (of involutions in K) and on the points of F_i^K , so we may use simple counting to deduce that the number of points of F_i^K on a is exactly $2^{m-1}r$, for each i = 1, 2, ..., t.

To calculate the number b of orbits of K, considered as a permutation group on the $\frac{1}{2}n(n-1)$ interior points of \underline{C} , we apply Result 9, obtaining

$$\frac{1}{2}n(n-1) + \frac{1}{2}(n+3)c + k - c - 1 = bk .$$

Writing n + 1 = hk, we have

$$b = \frac{1}{2}h(n+c) - h + 1$$
.

We return to the consideration of the points on an axis a. The interior points on a consist of: c_0 centres, $2^{m-1}rt$ points belonging to orbits of length $\frac{1}{2}k$, and $\frac{1}{2}(n+1) - c_0 - 2^{m-1}rt$ points belonging to orbits of length $\frac{1}{2}k$. The third set determines $(\frac{1}{2}k)^{-1}c\left[\frac{1}{2}(n+1)-c_0-2^{m-1}rt\right]$ orbits, so if $c_0 \neq 0$ there are this number plus t + 1 orbits consisting of interior points which lie on at least one axis. Since k|n+1 and $2^{m-1}rc = \frac{1}{2}k$, k must divide $2cc_0$. But $c_0 + 1$ is the number of involutions in K_A , since c_0 is the number of axes through A and A is a centre. Also $|K_A| = 2^m r$, so that $c_0 + 1 \leq 2^m r - 1$, and $cc_0 < 2^m rc = k$. Thus either $k = 2cc_0$ or $c_0 = 0$.

Combining this with results obtained above, we deduce that there are exactly $\frac{1}{2}h(n-c) - h + 1$ orbits of interior points which lie on no axis, and therefore exactly $[\frac{1}{2}h(n-c)-h+1]k$ such points. We have now counted all the interior points: c centres, $\sum_{i=1}^{t} k(2s_i)^{-1}$ points which lie on at least two axes (but are not centres), $[\frac{1}{2}(n+1)-c_0-2^{m-1}rt]c$ points which lie on exactly one axis, and $[\frac{1}{2}h(n-c)-h+1]k$ points which lie on no axis. Thus

$$\frac{1}{2}n(n-1) = c + \sum_{i=1}^{t} k(2s_i)^{-1} + \left[\frac{1}{2}(n+1) - c_0 - 2^{m-1}rt\right]c + \left[\frac{1}{2}h(n-c) - h+1\right]k ,$$

from which we deduce the equation

(*)
$$1 = c + \sum_{i=1}^{t} k(2s_i)^{-1} + \frac{1}{2}k(1-t) ,$$

and thence (since each $s_i \ge 3$) the inequality $c - 1 \ge \frac{1}{2}k\left(\frac{2t}{3} - 1\right)$.

If $t \ge 3$ then $c \ge \frac{1}{2}k + 1$ and so (since $c \mid k$) c = k, that is every element of K is an involution, which is impossible. If t = 1then, by (*), $1 = c + k(2s_1)^{-1}$ which is impossible since c > 1, k > 0and $s_1 > 0$. So t = 2 and $c - 1 \ge \frac{1}{6}k$, that is $c = \frac{1}{5}k, \frac{1}{4}k, \frac{1}{3}k$ or $\frac{1}{2}k$. Now $c \neq \frac{1}{5}k$ or $\frac{1}{3}k$ since k is even and c is odd; and $c \neq \frac{1}{2}k$ since if $c = \frac{1}{2}k$ then K has a normal 2-complement, contrary to the simplicity of K.

Thus
$$t = 2$$
 and $c = \frac{1}{4}k$, that is $k = 4s_1s_2$ and so, by (*),
 $1 = 2s_1 + 2s_2 - s_1s_2$,

from which we deduce that $\{s_1, s_2\} = \{3, 5\}$, k = 60, c = 15 and $c_0 = 2$. Each of the 15 involutions in K commutes with exactly 2 of the remaining 14, and the 15 centres of these involutory homologies can be partitioned into 5 disjoint sets \underline{C}_i of 3 non-collinear points which are the centres of the involutory homologies in an elementary abelian S_2 -subgroup (of order 4) of K. The 15 centres form a unique point

orbit $\underline{0}$ of length 15 for K, the remaining point orbits having length 6, 10, 30 or 60. It follows since K is subnormal in G, that $\underline{0}^{G^*} = \underline{0}$ and that G permutes the 5 sets \underline{C}_{i} . Since $\underline{0}^{G} = \underline{0}$ and K (being simple) is generated by its 15 involutions, $K \leq G$.

The representation of the simple group K as a permutation group on $W = \{\underline{C}_1, \ldots, \underline{C}_5\}$ is faithful. Let H be the kernel of the representation of G on W. Since $H \cap K = 1$, $H \triangleleft G$ and $K \trianglelefteq G$, every element of H commutes with each of the 15 involutory homologies in K. It follows readily that H = 1, so that G is isomorphic to a subgroup of S_5 . If $G \cong S_5$ then the normalizer in G of any Sylow 5-subgroup P of G contains an element ϕ of order 4; and ϕ must fix the point X fixed by P. But $|X^G| = 6$ and so ϕ must fix at least two points of X^G , contradicting our Lemma. Thus $G \not\cong S_5$ and therefore |G| = 60, contradicting $n \neq 59$. We have shown that in all cases equation (*) leads to a contradiction.

Suppose that Assumption 2 is false. Then $c_0 = 0$ and so each S_2 -subgroup S of K contains only one involution (otherwise, consider a pair of commuting involutions in S: the centre of one lies on the axis of the other). If S is cyclic then K has a normal 2-complement and so, since K is simple of even order, |K| = 2. If S is generalized quaternion then K/O(K) has a non-trivial centre (Result 13), which is impossible. There is no other possibility (Result 5), so |K| = 2.

Now suppose that Assumption 1 is false. Then $k = 2^m r$, c = 1 and K contains exactly one involution. But K is simple, so |K| = 2.

Since either Assumption 1 or Assumption 2 is false, |K| = 2.

If K is a proper subnormal subgroup of some subnormal subgroup L of G which fixes more than one point, then L consists of involutions and the identity, that is L is elementary abelian. Since K < L, |L| = 4 (Result 4), and so L fixes exactly three points, the remaining point orbits of L having length 2 or 4. Now G does not fix all three fixed points of L since $n \neq 3$, so either G fixes exactly one

point or else G has exactly one point orbit of length 3. The latter case is impossible since the representation of G as a permutation group on this orbit would have kernel L of order 4, and the induced group would be isomorphic to a subgroup of S_3 , contradicting $n \neq 11$ or 23.

If there is no such L then the centre of the involutory homology in K is the unique fixed point of G. This completes the proof of Theorem 3.

COROLLARY. Suppose (G, \underline{C}) satisfies the hypotheses of Theorem 3. Then either

- (i) G contains only one involution, G has two point (line) orbits of length $\frac{1}{2}(n+1)$, and n-1 of length n+1; or
- (ii) $n \equiv 1 \pmod{4}$, G contains $\frac{1}{2}(n+1)$ conjugate involutions, and G has n + 1 point (line) orbits of length $\frac{1}{2}(n+1)$ and $\frac{1}{2}(n-1)$ of length n + 1; or
- (iii) $n \equiv 3 \pmod{4}$, G contains $\frac{1}{2}(n+1) + 1$ involutions in three conjugacy classes, of sizes 1, $\frac{1}{4}(n+1)$ and $\frac{1}{4}(n+1)$, and G has two point (line) orbits of length $\frac{1}{4}(n+1)$, n of length $\frac{1}{2}(n+1)$ and $\frac{1}{2}(n-1)$ of length n + 1.

Proof. If G contains only one involution then the centre of this homology is a fixed point, any point on its axis lies in an orbit of length $\frac{1}{2}(n+1)$, and every other point in an orbit of length n + 1.

Suppose $n \equiv 1 \pmod{4}$ and G contains more than one involution. Then the centres of these involutions must lie on the fixed line f and the axes must pass through the fixed point F. Also, no centre lies on an axis, and no axis is a chord of \underline{C} . But the chords of \underline{C} through Fmeet f in the points of an orbit of length $\frac{1}{2}(n+1)$, so these are the centres of the involutory homologies in G, and the remaining $\frac{1}{2}(n+1)$ points on f are the intersections with f of the axes, and form a single orbit. The assertions of (ii) now follow readily.

Finally consider the case where $n \equiv 3 \pmod{4}$ and G contains more than one involution. If P is the intersection with the fixed line f of a chord of C through the fixed point F, then $|P^G| = \frac{1}{2}(n+1)$ and so $|G_p| = 2$ and either G contains an involutory (F, f)-homology or P is a centre or PF is an axis. The third case is impossible since G acts regularly on \underline{C} . The second case is also impossible since $|P^G|$ is even, which implies that if P is centre of an involutory homology then its axis is also a chord through F. Thus G contains an involutory (F, f)-homology θ and, since θ is in the kernel of the representation of G on P^G , $\theta \in Z(G)$. The centre of any other involution in G lies on f in an orbit of length $\frac{1}{4}(n+1)$. Since the length of every point orbit other than $\{F\}$ is at least $\frac{1}{4}(n+1)$, there are two orbits of centres on f, each of length $\frac{1}{4}(n+1)$. The assertions of (iii) now follow readily.

References

- [1] Reinhold Baer, "Polarities in finite projective planes", Bull. Amer. Math. Soc. 52 (1946), 77-93.
- [2] Reinhold Baer, "Projectivities with fixed points on every line of the plane", Bull. Amer. Math. Soc. 52 (1946), 273-286.
- [3] Richard Brauer and Michio Suzuki, "On finite groups of even order whose 2-Sylow group is a quaternion group", Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759.
- [4] W. Burnside, Theory of groups of finite order, 2nd ed. (Cambridge University Press, Cambridge, 1911; reprinted Dover, New York, 1955).
- [5] P. Dembowski, Finite geometries (Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44. Springer-Verlag, Berlin, Heidelberg, New York, 1968).
- [6] Peter Dembowski, "Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen", Math. Z. 69 (1958), 59-89.
- [7] Walter Feit and John G. Thompson, "Solvability of groups of odd order", Pacific J. Math. 13 (1963), 773-1029.
- [8] David A. Foulser and Reuben Sandler, "Certain properties of orbits under collineation groups", J. Combinatorial Theory 2 (1967), 546-570.

211

- [9] Daniel Gorenstein, *Finite groups* (Harper and Row, New York, Evanston, London, 1968).
- [10] Marshall Hall, Jr., The theory of groups (The Macmillan Company, New York, 1959).
- [11] Christoph Hering, "Eine Bemerkung über Automorphismengruppen von endlichen projektiven Ebenen und Möbiusebenen", Arch. Math. 18 (1967), 107-110.
- [12] D.R. Hughes, "Collineations and generalized incidence matrices", Trans. Amer. Math. Soc. 86 (1957), 284-296.
- [13] D[aniel] R. Hughes, F[red] C. Piper, Projective planes (Graduate Texts in Mathematics, 6. Springer-Verlag, New York, Heidelberg, Berlin, 1973).
- [14] T.G. Ostrom, "Ovals, dualities, and Desargues's theorem", Canad. J. Math. 7 (1955), 417-431.
- [15] E.T. Parker, "On collineations of symmetric designs", Proc. Amer. Math. Soc. 8 (1957), 350-351.
- [16] Fred Piper, "The orbit structure of collineation groups of finite projective planes", Math. Z. 103 (1968), 318-332.
- [17] B. Qvist, "Some remarks concerning curves of the second degree in a finite plane", Ann. Acad. Sci. Fennicae. Ser. A.I. Math.-Phys. 134 (1952), 1-27.
- [18] James Singer, "A theorem in finite projective geometry and some applications to number theory", Trans. Amer. Math. Soc. 43 (1938), 377-385.
- [19] Helmut Wielandt, Finite permutation groups (Academic Press, New York and London, 1964).

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.