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Abstract

We derive a combinator library for non-deterministic parsers with a monadic interface, by

means of successive refinements starting from a specification. The choice operator of the

parser implements a breadth-first search rather than the more common depth-first search,

and can be seen as a parallel composition between two parsing processes. The resulting

library is simple and efficient for “almost deterministic” grammars, which are typical for

programming languages and other computing science applications.

1 Introduction

A popular way to describe a parser in a functional language is to use a parser

combinator library. In 1975, Burge (1975) had already proposed a set of functional

parser combinators. Since the early 1990s, a large number of different parser

combinator libraries has appeared for modern lazy functional languages (Fokker,

1995; Hutton, 1992), and their number seems to be steadily growing still.

So what contribution can this paper possibly make? To answer this question,

we need to understand the different issues involved in designing and implementing

parser combinator libraries today.

After Wadler’s popularisation of monads for functional programming (Wadler,

1992), parser combinators were soon discovered to have a convenient monadic

interface (Hutton & Meijer, 1998). By now, monads are well understood, there is

syntactic support for them, and good library support that aids reuse of common

monadic combinators. Monadic parsers are powerful enough to describe context-

sensitive grammars, such as grammars where the structure of the grammar can

depend on the input itself, e.g. the grammar of XML or Haskell.

However, the power that parser monads provide comes at a price. It has proven

quite difficult to implement a parser monad in an efficient way. The efficiency of

a parser combinator library usually revolves around a good implementation of the

choice operator, which indicates a non-deterministic choice in the grammar. To

implement the choice operator other than by a naive search, a careful analysis

of the parsers involved seems to be needed. However, the use of the monadic bind

combinator (��), which sequentialises two parsers where the behaviour of the second

parser depends on the result of the first, seems to make this impossible. For one
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cannot inspect the structure of the second parser before the first has produced a

result.

Two different approaches have been proposed to address this problem. The first

approach abandons the use of monads altogether and introduces a new class of

combinators. Efficiency improvements from forbidding the use of the monadic bind,

and instead introducing a weaker form of sequencing, were shown in Swierstra &

Duponcheel (1996) for deterministic parsers, and later generalised for non-determi-

nistic parsers in Swierstra (2000). This idea of a weaker form of sequencing was one

of the motivations behind Hughes’ arrows (Hughes, 2000). However, with the weaker

sequencing, it is only possible to describe context-free grammars in these systems.

The second approach keeps the monads, but instead requires the user to specify

at each choice point what kind of choice operator should be used (Hutton & Meijer,

1998; Leijen & Meijer, 2001). Usually, these libraries provide a number of different

choice operators. For example, asymmetric choice means that the right hand side will

not be taken if the left hand side succeeds, deterministic choice is only guaranteed to

work if the choice can be decided by a one symbol look ahead. Most of these libraries

still provide general choice, which has the efficiency problem mentioned earlier.

This paper presents a systematic derivation of a parser combinator library that

(1) has a simple monadic interface, (2) does not need special choice annotations,

and (3) is efficient in both time and space.

The derivation techniques we use are inspired by Hughes’ (1995) pretty printing

combinator derivation. The idea is to implement an abstract type by a datatype

that sums up all the ways one can construct elements in the datatype, i.e. the

operations that the library provides. This first implementation is called the term

representation, and has trivial implementations for its operations. We successively

refine this implementation by observing typical usage patterns of the constructors,

giving them names, and then simplifying the datatype by using the new constructors.

The implementations of the operations in terms of the new constructors can be

derived using the laws that holds for the operations. The result is a very short and

simple implementation of a parser monad.

The efficiency of the choice operator comes from the fact that we implement a

breadth-first search (rather than a depth-first search), which works well with “almost

deterministic” grammars. This informal term is usually used for grammars where

choices can be decided locally or by not looking too far ahead, and where the

expected number of results is small.

2 Specification of non-deterministic parsers

Here, we give a specification of a simple monadic interface to a non-deterministic

parsing library. There is an abstract type P s a of parsers that parse linear sequences

of elements of type s into possibly multiple structures of type a . The following

primitive operations exist on these parsers:

symbol :: P s s

fail :: P s a

(+++) :: P s a → P s a → P s a
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Form ::= ( Form )

| - Form

| Form & Form

| Var

Var ::= a | . . . | z

data Form = Form :& Form |Not Form | Var Char

form , atom , paren , neg , var :: P Char Form

form = do a ← atom; (conj a +++ return a)

atom = paren +++ neg +++ var

paren = do this ′(′; a ← form; this ′)′; return a

neg = do this ′−′; a ← atom; return (Not a)

var = do v ← sat isAlpha; return (Var v )

conj :: Form → P Char Form

conj a = do this ′&′; b ← form; return (a :& b)

sat :: (s → Bool ) → P s s

sat r = do c ← symbol ; if r c then return c else fail

this :: Eq s ⇒ s → P s s

this c = sat (c ==)

Fig. 1. A grammar and parser for a simple propositional logic.

The parser symbol consumes one symbol from the input (if there is one) and produces

it as a result; if there is no symbol it fails. The parser fail does not consume any

input, produces no results, and always fails. The choice operator (+++) takes two

parsers and constructs one parser that produces the results of both. Further, the

type P s a has a so-called monadic interface as well:

return :: a → P s a

(��) :: P s a → (a → P s b) → P s b

The parser return x does not consume any input and produces x as a result. The

parser p �� k (pronounced bind) first behaves like the parser p, but for every result

x produced by p, it then behaves like the parser k x . In this paper we sometimes use

the do-notation, syntactic sugar that makes it easier to write expressions containing

(��). The meaning of the do-notation is given by means of simple rewriting rules:

do x ← e; 〈rest〉 = e �� λ x . do 〈rest〉
do e; 〈rest〉 = e �� λ . do 〈rest〉
do e = e

An example use of the parser combinators provided here is given in Figure 1, where

we implement a parser form for a simple propositional logic grammar. Note that in

the parser implementation we are explicit about precedence and associativity of the

operators; information which is not explicit in the grammar. We can see that we

quickly find a need for defining auxiliary parser combinators, such as sat and this .

The purpose of this paper is not to discuss those combinators, instead we refer to

Hutton & Meijer (1998) and Leijen & Meijer (2001). Here, we restrict ourselves to

developing a suitable implementation of the primitive combinators.

We can clarify what we mean by the informal explanations given above by defining

a semantic mapping from the abstract type P s a to a more concrete type Parser s a .

In its definition, we use the type {( t )} to mean the type of bags (also called multisets

or unordered lists) of elements of type t . We use bags rather than lists because we
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want to change the order of results of parsers later on. On the expression level,

empty bags are written {( )}, unit bags are written {( x )}, and we use bag comprehension

notation, which is akin to list comprehensions.

type Parser s a = [s] → {( (a , [s]) )}

The type Parser s a represents the meaning of parsers: functions from strings of

symbols of type s to bags of results. A result is a pair of an answer of type a plus

the remaining part of the input.

The mapping [[ ]] tells us the meaning of each of the parser combinators:

[[ ]] :: P s a → Parsing s a

[[ symbol ]] (c : s) = {( (c, s) )}
[[ symbol ]] [ ] = {( )}
[[ fail ]] s = {( )}
[[ p +++ q ]] s = [[ p ]] s ∪ [[ q ]] s

[[ return x ]] s = {( (x , s) )}
[[ p �� k ]] s = {( (y , s ′′) | (x , s ′) ∈ [[ p ]] s , (y , s ′′) ∈ [[ k x ]] s ′ )}

In the following we use this mapping to derive a number of implementations for the

type P s a , leading to an efficient implementation of breadth-first parsing.

3 Traditional implementation: bags as lists

The traditional (and simplest) implementation of parser combinator libraries takes

the type Parser s a as a direct implementation of P s a . The semantic mapping [[ ]]

becomes the identity function, and the bags are implemented as simple lists.

symbol (c : s) = [(c, s)]

symbol [ ] = [ ]

fail s = [ ]

(p +++ q) s = p s ++ q s

return x s = [(x , s)]

(p �� k ) s = [(y , s ′′) | (x , s ′) ← p s , (y , s ′′) ← k x s ′]

This implementation is quite appealing since it is so close to the original definition

of what the parser combinators mean. However, there are a number of inefficiency

problems with the above definition.

List concatenation List concatenation (++) (used in the definition of (+++)) costs

linear time in the size of its left argument. So, if the (+++) combinator is nested left

associatively, we have quadratic time behaviour in the depth of the nesting.

List comprehensions The list comprehension (used in the definition of (��)) creates

a lot of intermediate datastructures, which introduces a large constant overhead. (It

is possible that an automatic compiler transformation could remove this overhead

in some cases. Removing the list comprehension also allows us to perform other

optimisations later.)
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Backtracking The operational reading of the lazy lists constructed during parsing

corresponds to backtracking. Backtracking works well for parsing with grammars

that are highly non-deterministic. However, using backtracking for grammars that

are ”mostly” deterministic (i.e. non-deterministic choices can be resolved by looking

but a few steps ahead in the input) leads to a nasty space-leak: at each choice point,

we have to hold on to the complete input left at that point, because we might come

back to that point in backtracking.

In the next couple of sections, we derive an alternative implementation that

overcomes each of these problems. But first, we look at a number of laws that hold

for the parsing combinators we use.

4 Laws for non-deterministic parsers

Here, we present a list of laws that follow from the semantics stated in section 2.

First, without surprise, the well-known monad laws do in fact hold:

L1. return x �� k ≡ k x

L2. p �� return ≡ p

L3. (p �� k ′) �� k ≡ p �� (λx . k ′ x �� k ) — x not free in k ′, k

A law stating p ≡ q says that the parsers p and q have the same observable

behaviour, i.e. that [[ p ]] s = [[ q ]] s for all inputs s . Here is the proof of law L1:

[[ return x �� k ]] s

= {( (y , s ′′) | (x , s ′) ∈ [[ return x ]] s , (y , s ′′) ∈ [[ k x ]] s ′ )}
= {( (y , s ′′) | (y , s ′′) ∈ [[ k x ]] s )}
= [[ k x ]] s

The other laws have similar proofs.

The above monad laws provide two laws (L1 and L3) that can be used to simplify

parsers occurring on the left hand side of (��). Here are two more such laws; one

for fail and one for (+++). These are actually two laws that hold for monads with a

plus.

L4. fail �� k ≡ fail

L5. (p +++ q) �� k ≡ (p �� k ) +++ (q �� k )

Other laws for monads with a plus are the following, which say that choice ignores

failing parsers.

L6. fail +++ q ≡ q

L7. p +++ fail ≡ p

Moreover, the choice operator (+++) does not prefer any argument order, or order of

nesting, and is therefore commutative and associative. Note that the commutativity

property does not hold in general for monads with a plus, but it holds for (+++)

since bags are unordered.

L8. (p +++ q) +++ r ≡ p +++ (q +++ r)

L9. p +++ q ≡ q +++ p
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These laws follow directly from the commutativity and associativity of the union

operator � for bags.

Finally, there is one law about the symbol operator, which is at the heart of the

algorithm we derive later. It says that a choice between two parsers that both start

by consuming a symbol, also starts with consuming a symbol, and proceeds with a

choice between the two remaining parts of the parsers.

L10. (symbol �� k ) +++ (symbol �� k ′) ≡ symbol �� (λc . k c +++ k ′ c)

The case for non-empty strings of this law can be proved as follows:

[[ (symbol �� k ) +++ (symbol �� k ′) ]] (c : s)

= [[ symbol �� k ]] (c : s) � [[ symbol �� k ′ ]] (c : s)

= [[ k c ]] s � [[ k ′ c ]] s

= [[ k c +++ k ′ c ]] s

= [[ symbol �� (λc . k c +++ k ′ c) ]] (c : s)

5 Implementation A: term representation

To find an efficient implementation of the parsing library specification, we use an

approach pioneered by Hughes (1995). The idea is to derive an implementation of an

abstract type by first representing it as a datatype that sums up all the ways one can

construct elements in the datatype, i.e. the operations that the library provides. This

first implementation is called the term representation, and has trivial implementations

for its operations.

We consecutively refine this implementation by observing typical usage patterns

of the constructors, giving them names, and then simplifying the datatype by using

the new constructors instead of the old ones. The implementations of the operations

in terms of the new constructors can be derived using the laws that hold for the

operations. We start with the following term representation for P s a:

data P s a = Symbol — wrong!

| Fail

| P s a :+++ P s a

| ∀ b . P s b :�� (b → P s a)

| Return a

The constructor functions Fail , (:+++), and Return directly correspond to the

operators fail , (+++), and return . The constructor (:��) also directly corresponds

to the operator (��), but since (��) is polymorphic not only in its final result type,

but also in its intermediate result type, we need to use local type quantification in

the declaration of (:��).

However, the type of the Symbol constructor shows that something is wrong;

Symbol has type P s a , but symbol :: P s s . The type of Symbol really does not

make much sense as a representation of the function symbol , since the result of

symbol should be a symbol, not just something of any type. To fix this, we introduce

a different operation to our parsing interface, but we do this just for the sake of
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this particular implementation. This new operation, called symbolMap, can be used

to implement symbol , and it actually is a variant of symbol that takes an extra

argument – a function that is to be applied to the parsed symbol before returning

it.

symbolMap :: (s → a) → P s a

(Note that the type of symbolMap fits nicely as a constructor of the type P s a .) Its

semantics is:

[[ symbolMap h ]] (c : s) = {( (h c, s) )}
[[ symbolMap h ]] [ ] = {( )}

Of course, symbol can trivially be defined in terms of symbolMap using the following

law:

D1. symbol ≡ symbolMap id

So, the final version of our term representation of the type P s a becomes:

data P s a = SymbolMap (s → a)

| Fail

| P s a :+++ P s a

| ∀ b . P s b :�� (b → P s a)

| Return a

The definitions of the operators in our parsing interface in terms of the above

constructors are straightforward:

symbol = SymbolMap id

fail = Fail

(+++) = (:+++)

(��) = (:��)

return = Return

Lastly, we can use the definition of the semantic mapping [[ ]] in order to give a

function parse that takes a parser and a string of input symbols, and produces the

results of the parser. However, we leave the implementation of the bag type {( )} still

abstract for now.

parse :: P s a → Parsing s a

parse (SymbolMap h) (c : s) = {( (h c, s) )}
parse (SymbolMap h) [ ] = {( )}
parse Fail = {( )}
parse (p :+++ q) s = parse p s ∪ parse q s

parse (Return x ) s = {( (x , s) )}
parse (p :�� k ) s = {( (y , s ′′) | (x , s ′) ∈ parse p s ,

(y , s ′′) ∈ parse (k x ) s ′ )}

It is not easy to come up with a good way of implementing the bags used in the

above function, because of the use of bag union (�) and the bag comprehensions.
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Instead, we will consecutively refine the implementation of the datatype P s a in

order to remove the constructor functions that give rise to the use of the bag

operators ((:+++) and (:��), respectively).

6 Implementation B: removing bind

Our goal in the next implementation is to remove the possibly expensive bag

comprehension in the last clause of the definition of parse. The approach we

take here is to take away the constructor function (:��) from our implementation

altogether. This we do by trying to simplify away uses of (��) as much as possible,

and then give names to the cases that cannot be removed. These names we use to

introduce new constructor functions instead of the ones we could simplify away.

There exist laws for simplifying all parsing operators on the left hand side of

a (��) operator, except symbol . We therefore merge the constructor (:��) with

the constructor SymbolMap into a new constructor, called SymbolBind , and then

implement the two operators (��) and symbol in terms of the new constructor. The

law for the new constructor is:

D2. SymbolBind k ≡ symbol �� k

Note that we are abusing notation a little bit here; really we should have used a

function symbolBind in the above law, but since we actually never implement such

a function explicitly, we use the constructor function in its place. The new datatype

becomes:

data P s a = SymbolBind (s → P s a)

| Fail

| P s a :+++ P s a

| Return a

So how do we implement our parsing operators? The three untouched operat-

ors are defined as before: fail = Fail , (+++) = (:+++), and return = Return . The

implementation of symbol follows directly from law L2 and definition D2:

symbol = SymbolBind Return

We can also derive the implementation of the (��) operator, resulting in:

SymbolBind f �� k = SymbolBind (λc . f c �� k )

Fail �� k = Fail

(p :+++ q) �� k = (p �� k ) :+++ (q �� k )

Return x �� k = k x

To illustrate this derivation, here is the first clause in the definition of (��):

SymbolBind f �� k

= (symbol �� f )�� k — by D2

= symbol �� (λc . f c �� k ) — by L3

= SymbolBind (λc . f c �� k ) — by D2
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The other clauses can be derived in a similar fashion. Lastly, the function parse has

one fewer case to deal with:

parse (SymbolBind f ) (c : s) = parse (f c) s

parse (SymbolBind f ) [ ] = {( )}
parse Fail = {( )}
parse (p :+++ q) s = parse p s ∪ parse q s

parse (Return x ) s = {( (x , s) )}

The first two clauses of this definition follow directly from definition D2 and the

semantics for (��).

This implementation does not need to implement bag comprehensions, but the

bag union operator (�) is still there. Even though it is possible to implement bag

union in an efficient way, using it here is a problem, for it is vital to be able to

control the order in which the elements in the resulting bag are evaluated. For

example, in the above, evaluating parse p s first means that parse q s still holds on

to the whole input s , leading to a space leak. So, we want more fine-grained control

over the evaluation order in the case of choice. In the next refinement, we would

therefore like to remove the constructor function (:+++) which gives rise to the use

of (�).

7 Implementation C: removing plus

Similar to the previous definition, we make the observation that there exist laws for

simplifying any parser on the left and right hand side of a (+++) operator, except

for return . So, we merge (:+++) with Return into a new constructor ReturnPlus and

implement the two operators (+++) and return in terms of the new constructor. The

law for the new constructor is:

D3. ReturnPlus x p ≡ return x +++ p

The new datatype loses yet another two constructors and gains a new one:

data P s a = SymbolBind (s → P s a)

| Fail

| ReturnPlus a (P s a)

There is only one untouched operator defined as before: fail = Fail . The imple-

mentation of the return operator can easily be derived from law L7 and definition

D3:

return x = ReturnPlus x Fail

The symbol operator is implemented as before, only it uses the new definition of

return:

symbol = SymbolBind return

The choice operator (+++) has to be defined by means of pattern matching on the
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other constructors. The complete definition of the (+++) operator becomes:

SymbolBind f +++ SymbolBind g = SymbolBind (λc . f c +++ g c)

Fail +++ q = q

p +++ Fail = p

ReturnPlus x p +++ q = ReturnPlus x (p +++ q)

p +++ ReturnPlus x q = ReturnPlus x (p +++ q)

The first clause is a very powerful case, which, by using law L10, allows us to

combine two parsers of the form SymbolBind f . The second and third clauses are

direct consequences of laws L6, and L7, respectively. The last two clauses can be

derived using law L8, which is associativity of (+++), and definition D3. The last

clause even makes use of law L9, which is commutativity of (+++)!

The new definition of (+++) thus changes the order of results compared to a

traditional implementation using lists and backtracking. The order of arguments

is changed in such a way that all possible intermediate results are produced and

all possible intermediate failing alternatives are discarded before the next symbol

is consumed. In other words, the different choice alternatives are executed in lock-

step, which means that none of the choice alternatives hold on to the input, as

a traditional backtracking implementation would, or in fact any implementation

which does not change the order of results in the choice operator. Together with

the first clause in the definition of (+++), which merges two uses of symbol into one,

this leads to a breadth-first (rather than the traditional depth-first) implementation

of parsing.

The implementation of the (��) operator has to deal with the new constructor

ReturnPlus . Here is a derivation of the corresponding clause:

ReturnPlus x p �� k

= (return x +++ p)�� k — by D3

= (return x �� k ) +++ (p �� k ) — by L5

= k x +++ (p �� k ) — by L1

The complete definition of (��) looks as follows:

SymbolBind f �� k = SymbolBind (λc . f c �� k )

Fail �� k = Fail

ReturnPlus x p �� k = k x +++ (p �� k )

And lastly, the function parse has again one case fewer to deal with:

parse (SymbolBind f ) (c : s) = parse (f c) s

parse (SymbolBind f ) [ ] = {( )}
parse Fail = {( )}
parse (ReturnPlus x p) s = {( (x , s) )} � parse p s

The last clause follows directly from definition D3 and the semantics for return and

(+++).

We have managed to express the parse function without using bag comprehen-

sions, and with using bag union only in a simple case. Thus, the decision of how
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to implement the used bags is not difficult anymore; we use plain lists. Here is the

implementation of the parse function above using lists:

parse (SymbolBind f ) (c : s) = parse (f c) s

parse (SymbolBind f ) [ ] = [ ]

parse Fail = [ ]

parse (ReturnPlus x p) s = (x , s) : parse p s

As we can see, to construct the lists, we are only using (:) and [ ], and it takes

constant time to produce a result.

If we were going to use lists for bags anyway, why did we bother with doing the

development with bags? The answer is that using bags in our original specification

of parser semantics allowed us to change the order of the results in the list. This

is what allowed us to construct a breadth-first implementation. One alternative

possibility would be to use a set instead of a bag in the specification, enabling us to

use idempotence as well. However, this would also restrict the possible parser result

types to equality-types.

The implementation we have arrived at now is not the final one yet; there is still

one source of inefficiency left that we want to remove.

8 Implementation D: associativity of bind

Let us take a look at the implementation of (��) in section 7. It is defined using

recursion over its left argument. Just as for example with list concatenation, using

(��) left-associatively in a nested fashion leads to behaviour taking quadratic time in

terms of the nesting depth. This typically happens in recursive grammars for tree-like

structures. Therefore, we would like to force (��) to be used only right-associatively.

To do this, it is not enough to simply refine the type P s a further. Instead,

a parser should be made aware of the way it is used, its context. Providing the

context of a parser to its implementation makes the way the bind operator is used

left-associatively explicit. Thus, the next implementation of the parser type becomes

a function from some type representing its context to a real parser. This technique

is called the context passing implementation in Hughes (1985).

As a note on the side, the problem of avoiding left-associative applications of (��)

is not a problem specific to this paper. In fact, it is well known that using a so-called

continuation passing monad solves this problem. In the form of a monad transformer

(Liang et al., 1995) one can even use an out-of-the-box solution. However, we still

think it is instructive and interesting to derive a solution for our parser monad using

the context passing implementation. The solution we arrive at later turns out to be

exactly the continuation passing monad.

Before we look at exactly how to implement the type P s a using context passing,

we introduce some preliminaries. We reuse the implementation of the type P s a

from the previous section (section 7) as a basis for our new implementation. To

avoid name confusion, we use primed (′) versions of the names to refer to the

implementations in that section:

symbol ′ :: P ′ s s

fail ′ :: P ′ s a
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(+++′) :: P ′ s a → P ′ s a → P ′ s a

return ′ :: a → P ′ s a

(��′) :: P ′ s a → (a → P ′ s b) → P ′ s b

parse′ :: P ′ s a → Parser s a

We use the unprimed versions of the names for the implementation of the current

section. The idea is that in the new implementation, the function (��′) is only going

to be applied right-associatively.

Next, we have to decide what the context we are going to pass around looks

like. For simplicity, let us assume that the parser is always used in a problematic

context, i.e. where it is the left argument of an application of (��′). So, contexts

have the following shape: ”• ��′ k” (where • represents a hole in which parsers

can be plugged in), and can simply be represented by k itself. In the case where a

parser is used in a context that does not actually have this shape, we simply take

k = return ′, in which case we have the identity context, by law L2.

The type of k depends on the result type of the parser that is put in the hole in

the context, and also on the result type of the whole context. These types are not

necessarily the same; when we construct a parser, we have no idea what the final

result type of its context will be. Therefore, we introduce two different result types,

a and b, and, inside P , universally quantify over the result type of the context b.

type Context s a b = a → P ′ s b

type P s a = ∀b . Context s a b → P ′ s b

What is the law that allows us to derive the implementations of the corresponding

operations? For a parser p in the new type and its corresponding parser p ′ in the

old type, the following correspondence should hold:

D4. p ≡ λk . p ′ ��′ k

Furthermore, we want the actual results of the two parsers to be the same:

D5. parse p ≡ parse′ p ′

We can now derive the definitions for the parsing operations. Here are the three

primitive parsing operations:

symbol = λk . SymbolBind k

fail = λk . Fail

p +++ q = λk . p k +++′ q k

The derivations of symbol and fail are quite straightforward. Here is the derivation

of (+++):

p +++ q

= λk . (p ′ +++′ q ′)��′ k — by D4

= λk . (p ′ ��′ k ) +++′ (q ′ ��′ k ) — by L5

= λk . p k +++′ q k — by D4
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The definitions of the monadic operators look like this:

return x = λk . k x

p �� f = λk . p (λx . f x k )

It is interesting to note that these definitions do not depend on return ′ and (��′) at

all! Let us look at the derivation of (��):

p �� f

= λk . (p ′ ��′ f ′)��′ k — by D4

= λk . p ′ ��′ (λx . f ′ x ��′ k ) — by L3

= λk . p (λx . f x k ) — by D4

Note how we use the associativity law of (��) (L3) in order to ensure right-

associativity — this was our original goal! Lastly, we implement the parse function:

parse p = parse′ (p return ′)

Its derivation is equally simple:

parse p

= parse′ p ′ — by D5

= parse′ (p ′ ��′ return ′) — by L2

= parse′ (p return ′) — by D4

We have now arrived at the final implementation. Note that this implementation

does not make use of (��′) anymore. Figure 2 shows the complete implementation,

where we have simplified the definition of parse′ to have fewer cases.

9 Extensions

Several extensions to the functionality of the derived parser combinators can be

made. In this section, we discuss two such extensions.

Look-ahead A parsing technique that is often used is look-ahead, i.e. looking at the

input without consuming it in order to decide what to do next. An example of an

application of look-ahead is a parser for identifiers as non-empty sequences of alpha-

numeric characters. Parsing the input ”foo” using a direct implementation would

produce the results {( (”f”, ”oo”), (”fo”, ”o”), (”foo”, ” ”) )}. However, the intention is

probably to only get {( (”foo”, ” ”) )}, which we can obtain by looking ahead in the

input and fail if there are still characters left that are alpha-numeric.

Thus, we introduce a new parsing operator in our library, look :: P s [s], with

the following definition:

[[ look ]] s = {( (s , s) )}

It is not possible to implement look transparently in terms of the other combinators.

This means that we have to adapt our current implementation, and simply following
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— types

type P s a = ∀b . (a → P ′ s b) → P ′ s b

data P ′ s a = SymbolBind (s → P ′ s a)

| Fail

| ReturnPlus a (P ′ s a)

— main functions

symbol = λk . SymbolBind k

fail = λk . Fail

p +++ q = λk . p k +++′ q k

return x = λk . k x

p �� f = λk . p (λx . f x k )

parse p = parse ′ (p (λx . ReturnPlus x Fail ))

— auxiliary functions

SymbolBind f +++′ SymbolBind g = SymbolBind (λc . f c +++′ g c)

Fail +++′ q = q

p +++′ Fail = p

ReturnPlus x p +++′ q = ReturnPlus x (p +++′ q)

p +++′ ReturnPlus x q = ReturnPlus x (p +++′ q)

parse ′ (SymbolBind f ) (c : s) = parse ′ (f c) s

parse ′ (ReturnPlus x p) s = (x , s) : parse ′ p s

parse ′ = [ ]

Fig. 2. Final parser implementation.

the development we have gone through for the other parser operators, we end up

with an extra constructor in the P ′ datatype:

data P ′ s a = . . . | LookBind ([s] → P ′ s a)

The function look is simply implemented as λ k . LookBind k . We also have to adapt

the auxiliary functions to be able to deal with the new constructor LookBind . Thus,

we add the following clauses to (+++′):

LookBind f +++′ LookBind g = LookBind (λs . f s +++′ g s)

LookBind f +++′ q = LookBind (λs . f s +++′ q)

p +++′ LookBind g = LookBind (λs . p +++′ g s)

The first clause is an optimisation; it avoids creating expressions of the form

LookBind (λ s1 . LookBind (λ s2 . . . .)), which are unnecessary, since s1 and s2 will be

bound to the same value anyway. Lastly, we add the following clause to parse′:

parse′ (LookBind f ) s = parse′ (f s) s

Here is an example of how look can be used. The function munch takes a predicate

r over symbols, and parses as many symbols as possible satisfying r .

munch :: (s → Bool ) → P s [s]

munch r = do s ← look ; inspect s

where

inspect (c : s) | r c = do symbol ; s ′ ← inspect; return (c : s ′)

inspect = return []
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We grab the current input with look and pass it to the local function inspect , which

inspects the input, and builds a parser that precisely consumes the symbols that

satisfy r . Note that when we decide to consume a symbol, we already know which

symbol it is (namely c), so we can ignore the result of symbol . The identifier parser

we introduced earlier can now be expressed using the parser munch isAlphaNum .

Other useful parser operations that can be implemented using look are longest

:: P s a → P s a , which only delivers the longest parse(s) of its argument, and try

:: P s a → P s (Maybe a), which never fails but returns Nothing exactly once when

its argument fails.

Alternative parse functions One design freedom which we have not explored yet is

varying the kind of result that the parse function delivers. The assumption that the

user of our parsers is interested in all intermediate results plus the left-over part of

the input might not always be true, and the user might pay a performance price for

it. Several alternative parse functions are possible though, and the choice of which

parse function to use should be made by the user independently for each parser.

These alternative parse functions can be seen as different interpreters for the same

parse language.

Here is an example. When a parse error occurs, instead of simply returning [ ],

we would like to return the position in the input where the error occurred. Let us

assume that we have a type for positions Pos , an initial position pos0 :: Pos , and

a function next :: Pos → Symbol → Pos , that computes the next position given

a current position and a symbol. We can implement an alternative parse function

by modifying the auxiliary function parse′. For simplicity, we only deliver the first

result that manages to parse the complete input.

parse′ :: P ′ s a → [s]→ Either Pos a

parse′ p s = track p s pos0

where

track (SymbolBind f ) (c : s) pos = track (f c) s $! next pos c

track (ReturnPlus x ) [ ] pos = Right x

track (ReturnPlus p) s pos = track p s pos

track (LookBind f ) s pos = track (f s) s pos

track pos = Left pos

We use strict function application ($!) to force evaluation of the position during

parsing, because otherwise lazy evaluation builds a large position expression in the

heap which consumes a lot of memory. This parse function is the first step towards

adding a good error reporting mechanism.

10 Discussion

Through a series of successive refinements, we have created a simple and efficient

implementation of a parser monad.

We have made two serious implementations of parser combinator libraries based

on the ideas presented in the paper. In the first implementation, we have added error
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reporting combinators, and provided an interface that is compatible with Leijen’s

parser combinator library Parsec (2001), for which there exist a lot of useful auxiliary

parser combinators and a comprehensive user manual. The second implementation

has no error reporting, but one extra feature which allows converting back and forth

between Haskell’s type ReadS a and a parser of type P Char a . This library is used

internally in the Glasgow Haskell Compiler to invisibly replace uses of Haskell’s

read function by calls to a more efficient parser.

Ljunglöf (2002) gives an excellent overview and comparison of different existing

parser combinator implementations. One of his results is that our implementation

performs best on deterministic grammars among the monadic parser combinators

providing general choice. It is slightly less efficient than other non-monadic parser

combinators, in particular on grammar definitions that are not left-factorised. Inter-

esting is the relation between our implementation and Swierstra’s implementation of

non-monadic parser combinators (2000); both use a datatype isomorphic to P ′ s a

internally.

One other interesting observation we noted was that the datatype P ′ s a is

isomorphic to the type SP a b of stream processors used in the Fudgets framework

(Carlsson & Hallgren, 1998). In fact, the (+++′) operator is one of the parallel

composition operators provided for stream processors! This inspired the view of

the parser combinators being parsing process combinators. The choice operator can

then be seen as a parallel composition of parsing processes.

In the paper, we have so far only shown partial correctness: if our functions

produce a result at all, it is going to be the correct result. In order to show total

correctness, we also need to argue why our functions will produce actual results.

We cannot simply prove termination, since for any interesting grammar, the parsers

we create are infinite, because we use recursion in the definition of the parsers.

Therefore, we should argue that parse is always productive/destructive: For each

consumption of a constructor in the parser datatype, either one symbol from the

input is consumed, a result is generated on the output list, or the output list is

terminated. Doing this formally is beyond the scope of this paper.
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