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When, for the generalized summation of series, we use A and B methods, 
giving A and B sums, respectively, we say that the A method is included in 
the B method, A C B, if the B sum exists and is equal to the A sum whenever 
the latter exists. A theorem proving such a result is called an Abelian theorem. 
For example, there is an Abelian theorem stating that if the A and B sums 
are the first Cesàro mean and the Abel mean, respectively, then A Q B. If 
A C B and B C A, we say that A and B are equivalent, A = B. For example, 
the nth Holder and nth. Cesàro means are equivalent. When A C B, B Çf A, 
then a Tauberian theorem is one in which we infer the existence of the A sum 
from the existence of the B sum if a specified restriction is put on the series. 
For example, if the A and B methods give ordinary convergence and the Abel 
sum, respectively, if the B sum exists, and if the series consists of non-negative 
terms, then we have the Tauberian theorem that the A sum exists. 

Let us now suppose that the A and B methods apply to integrals. Then 
many Abelian theorems occur in the literature. For example, 

(Riemann) C (Lebesgue) C (Perron), (Perron) (J_ (Lebesgue) (£_ (Riemann), 

the names denoting integrals in an obvious notation. Further, I conjectured 
in (4, pp. 110, 132) that there is a close connection between the general Denjoy 
integral and Burkill's approximate Perron integral. But G. Tolstoff (8) had 
already proved the conjecture false, and gave the generalized Perron integral 
that is equivalent to the general Denjoy integral. It is likely that these will 
also be equivalent to the corresponding variational integral. 

Tauberian theorems also occur in the literature. 

THEOREM 1. Let f > 0, where f is Perron-integrable in the finite interval 
[a, b]. Then f is Lebesgue-integrable in [a, b]. 

See, for example, Saks (7, p. 203, Theorem (6.5)). Further, S. Foglio (1) 
gives the following result. 

THEOREM 2. / / h > 0 is a finitely additive interval function, if f > 0 is a 
finite Baire function, and if the N-integral of (2), 

(N)jjdh, 

exists, then the corresponding Ward integral exists. 
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As (Ward) = (Perron) when h(x, y) = y — x, we can combine Theorems 1 
and 2 to arrive at the Lebesgue integrability of fin this case. More generally, 
we suppose that there exists an A -integral using a continuous monotonically 
increasing integrator rn(x), and obeying the following properties: 

(1) It is distributive in the integrand. 

(2) When the A-integral exists, the integrand is m-measurable. 

(3) (Radon) C (^4), using m(x). 

(4) If the integrand (f) is non-negative, so is the A-integral. 

Most integrals stronger than Lebesgue's and Radon's satisfy (1) to (4). 

THEOREM 3. Let f > g, where f is A-integrable and g is Radon-integrable, 
both with respect to m(x) in a finite interval [a, b]. If the A-integral satisfies (1) 
to (4), then f is Radon-integrable with respect to m(x) in [a, 6]. 

By (1), (3), / — g > 0 is ^4-integrable with respect to m(x) in [a, b]. From 
(2), / — g is m-measurable, so that if Es is the set of x where 

with characteristic function ch(Es\x), and m-measure m(Es), then 

(5) f~g> I > c h ( £ , ; . )=/», 

and fn is Radon-integrable with respect to m(x). Using (1), (3), (4), and (5), 

(A) f (f-g)dm> (A) f fndm= j^s.m(Es). 

Letting #—><», we prove that 
oo 

^2 s-m(E8) < oo, 

which is sufficient to show that / — g is Radon-integrable with respect to 
m(x) in the finite interval [a, b]. 

We now suppose that the A -integral also satisfies: 

(6) If f is A-integrable with respect to m(x) on a bounded perfect set P , there 
is a portion (a', b') C\P on which f is Radon-integrable with respect to m(x). 

Then we can prove a further Tauberian theorem. Note that properties 
(1), (2), (3), (4,) and (6) are true for the Perron, special and general Denjoy, 
and variational integrals, and the special Denjoy iV-integral of (3, p. 285), 
which is equivalent to the 7V-variational integral if the convergence factors 
N satisfy (27), (28), and (29) of (3, p. 289). The proof of the latter is given 
in (3, Theorem 4, p. 290). 
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THEOREM 4. Let the A-integral satisfy (1), (2), (3), (4), and (6). Let f be 
A-integrable with respect to m(x) in the bounded perfect set P. Let g be Radon-
integrable with respect to m(x) in P. Further, let there be an everywhere dense 
set of the ends of intervals I in P for which 

(7) lim inf m(Hs D P H I)/m(H8 H P) > 0, 
S->CO 

where Hs is the set where g — / > s. (In particular, then, P and P C\ I have 
positive m-measure.) Then f is Radon-integrable with respect to m{x) in P. 

For proof we take in the (af, bf) of (6) for / — g an interval 2" satisfying 
(7). From the Radon-integrability with respect to m(x) of / — g in P (~\ I 
we infer that 

OO GO 

Jlm(H,nPni) = TsM(Hs-Hs+1)npni} < ». 
Hence from (7) we obtain 

oo co 

Y,s.nt{(Hs-Hs+1)nP} = T,™(HsnP) < » , 

so that there is a Radon-integrable function k > 0 with respect to m(x) in 
the bounded P, such that / > g — k. The result now follows from Theorem 3, 
using (f — g + k)ch(P; .) > 0, in place of / — g. 

Theorem 4 shows that if a function is A -integrable but not Radon-integrable 
in [a, b], with respect to m(x), where the A -integral satisfies (1), (2), (3), (4), 
and (6), then the function tends to infinity in an unsymmetrical way in [a, b). 
More particularly, taking g = 0, and given a perfect set P C [#, b], then 
either / is not A -integrable on P with respect to m(x), or else in each portion 
of P there is a portion P Pi (a', br) such that for each interval / C (a', 6')» 

(8) lim inf m(Hs D P Pi J)/m(H, f | P ) = 0 . 
S->co 

But as the union of two abutting intervals J satisfying (8) need not be 
another interval J satisfying (8), there seems no point in considering the 
perfect component of [a, b] — G, where G is the union of the interiors of 
intervals J for which (8) is true with P = [a, b]. Note that if in Theorem 4 
we replace / — g by (/ — g)ch(P; .), and P in (7) by a containing interval 
[a, b], then (7) could not be true for I lying in the complement of P. Thus 
the use of P is an extension of the corresponding theorem with [a, b] for P. 
Further, it is not possible to replace lim inf by lim sup in (7), as the con­
clusion would only be that a partial sum of 

CO 

£ m{Hs H P) 

is convergent. It might be conjectured that Theorem 2 can be extended to a 
form using interval functions, as follows. 

https://doi.org/10.4153/CJM-1963-046-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-046-0


436 RALPH HENSTOCK 

Let the interval function j > 0 be N-variationally integrable in [a, b]. Then j 
is variationally integrable in [a, b]. 

To show that this is false we take j(I) = 0 except for / = [a, h), where h 
lies in a set of measure zero in h > a with a as one of its limit-points, and 
then j(I) = 1. Then for every absolutely continuous N, the N-variational 
integral is 0, while the variational integral cannot exist. 

Using Tauberian theorems we can extend theorems on the interchange of 
limits and integrals, taking note of Pratt (6) on Lebesgue integration. Theorem 
1 of (5, Chapter 5, Section 37) is as follows. 

THEOREM 5. Let hs > 0 (s = /, r) be a pair of interval functions, and let the 
point functions fif f2, f(., y) be variationally integrable with respect tola = {hi, hT\ 
in an elementary set E, with 

(9) f(x,y)>Mx) 

for each fixed y, and, in the case when y takes all values in y > 0, for each 
0 < Y < Z let 

(10) inf / (* , y) 
Y<y<Z 

be variationally integrable with respect to h in E. Then 

(11) (V) f lim inf/( . , y)dh < lim inf (V) f / ( . , y)dh. 
J E y-ïœ 2/->oo «J E 

If instead of (9) and (10), we have, for each fixed y, 

(12) f{x,y) <Mx), 

and, in the case when y takes all values in y > 0, for each 0 < Y < Z, if 

(13) sup f(x,y) 
Y<y<Z 

is variationally integrable with respect to h in E, then 

(14) (V) f lim sup / ( . , y)dh > lim sup (V) f / ( . , y)dh. 

(15) If in (11) or (14), 

lim f(x,y) 
y-^co 

exists, then we do not need the variational integrability of (10) or (13) with respect 
to h in E. 

(16) IffiM <f(x,y) < /*(*) , f(x) = limf(x,y), 
#->oo 

except possibly in a set X of x with 

(17) V(h;E;X) = 0 , 

then if we put f(x) = 0 for x in X, 
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(18) (V) f fdh = lim(V) f f(.,y)dh. 

(19) In particulary if h is variationally integrable in E, the results are true 
when fi, fi are constants, so that f(x, y) is bounded above, or below, or both, in 
x and y. 

In this theorem an elementary set is a union of a finite number of closed 
intervals, while a set of zero variation, (17), corresponds to a set of measure 
zero in Lebesgue theory. Further, we have supposed that the range of y is 
either all points in y > 0, or else all integers 1 , 2 , . . . . 

Keeping these two ranges of y, we can consider the proofs of special cases 
of a general theorem of this nature, using an A -integration with h as integ­
rator. 

THEOREM 6. Let hs > 0 (s = I, r) be a pair of interval functions, and let the 
point functions / ( . , y), p{., y), q(., y) be A-integrable with respect to h, with 

(20) lim p(x,y) = p(x), \imq(x, y) = q{x), 

lim (A) f p(.,y)dh = (A) f p(x)dh, 
V ^ J J y->oo *>E "E 

lim (A) f q(x,y)dh = (A) f q(x)dh. 
y->oo J B *>E 

(22) If fix, y) > p(x, y) for each fixed y, and, in the case when y takes all values 
in y > 0, if for each fixed 0 < Y < Z, 

(23) inf \f(x,y) -p(x,y)} 
Y<y<Z 

is A-integrable with respect to h in E, then 

(24) (il) f lim inf/( . , y)dh < lim inf (A) f / ( . , y)dh. 
J E y^co 2/->co J E 

If instead of (22) and (23) we have, for each fixed y, 

(25) f(x,y)<q(x,y), 

and, in the case when y takes all values in y > 0, for each 0 < Y < Z, if 

(26) sup {f(x,y) - q(x,y)} 
Y<y<Z 

is A-integrable with respect to h in E, then 

(27) (il) f lim sup / ( . , y)dh > lim sup (A) f / ( . , y)dh. 
^ E y-*» y^oo *' E 

(28) If in (24) or (27), 
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limf(x, y) 

exists except possibly in a set X of A-variation zero, relative to E, then we do 
not need the A-integrability of (23) or (26) with respect to h in E. 

(29) / / p(x, y) <f(x, y) < q(x, y), f(x) = lim/(x, y), 

except possibly in a set X of x of A-variation zero, relative to E, then if we put 
f(x) = 0 for x in X, 

(30) (A) f/dh = lim(^) f f(.,y)dh. 

In particular, if h is variationally A-integrable in E, the results are true when 
p, q are constants, so thatf(x, y) is bounded above, or below, or both, in x and y. 

Here, a set X of A-variation zero relative to E is such that if r is a point 
function equal to zero except possibly in X, then r is ^4-integrable relative 
to h in E, with A -integral zero. 

If (A) is the N-variational integral, then a set X of A -variation zero is 
such that NV(h; E; X) = 0. Then we can prove Theorem 6 when h is N-
variationally integrable in E, with indefinite integral H. For by (4, Theorem 
6(41), Theorem 13(59)), we can replace h by H > 0 in all the integrals. When 
(22) is true, with / — p a finite Baire function, then by Theorem 2, and the 
equivalence of the iV-integral and the TV-variational integral, and the equiva­
lence of the Ward and variational integrals, we prove (24) from (11). The 
rest of Theorem 6 follows by elementary arguments in this case. 

If (A) is the Lebesgue-Stieltjes (Radon) integral, we take 

hi{a, b) = hr(a, b) = m{b) — m(a), 

where m is some continuous monotonically increasing point function. We 
assume continuity to avoid trouble at discontinuities of the integrand. Then 
Theorem 6 is an easy extension of (24), in this case, which is a slight extension 
of Fatou's lemma. If, now, (̂ 4) satisfies (1), (2), (3), and (4), we use Theorem 
3 to reduce the A -integral to the Radon integral, proving the result fo r / — p 
or q — / , as the case may be, with Radon integrals. The last step is to use 
(3), followed by (1), and we prove Theorem 6 with m for h, and A -integrals. 
More generally, instead of (22), we can assume that for each fixed y > 0, 
f{.,y) and p{., y) are connected in the same way as / and g in Theorem 4, 
with P = E, and then we can again go from (̂ 4) to (Radon), by using Theorem 
4 if (̂ 4) satisfies (6) as well. 

The above results show how to reduce the proof of Theorem 6 in special 
cases to the consideration of special integrals, by using Tauberian theorems. 
It is an unsolved problem to prove Theorem 6 in its full generality when, 
say, (A) = (NV). 
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