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ON FINITE GROUPS WITH THE CAYLEY INVARIANT PROPERTY

CAI HENG LI

A finite group G is said to have the m-CI property if, for any two Cay ley graphs
Cay(G,5) and Cay(G,T) of valency m, Cay(G,S) = Cay(G,T) implies S" = T for
some automorphism a of G. In this paper, we investigate finite groups with the m-CI
property. We first construct groups with the 3-CI property but not with the 2-CI
property, and then prove that a nonabelian simple group has the 3-CI property if
and only if it is A5. Finally, for infinitely many values of m, we construct Frobenius
groups with the m-CI property but not with the nontrivial A;-CI property for any
k < m.

1. INTRODUCTION

For a finite group G, set G# = G \ {1} where 1 is the identity of G. For a subset S
of G#, a Cayley (di)graph Cay(G, 5) of G is the digraph with vertex-set G and edge-set
{(a,b) I a,b € G, a^b 6 S}. If 5 is self-inverse, namely 5 = S"1 := {s~l \ s e S},
then the adjacency relation is symmetric and Cay(G, 5) may be viewed as an undirected
graph. It is easily seen that Cay(G, 5) is connected if and only if {S} = G.

A Cayley (di)graph Cay(G, S) is called a Cl-graph of G (CI stands for Cayley Invari-
ant) if, for any T CG*, Cay(G, 5) ^ Cay(G, T) implies Sa = T for some a € Aut(G). In
this case, 5 is called a Cl-subset. One long-standing open problem about Cayley graphs
is the following: determine the groups G (or the types of Cayley graphs for a given group
G) for which all Cayley graphs for G are Cl-graphs. The investigation of this problem
has received considerable attention in the literature (see [13] for references).

For a positive integer m, a group G is said to have the m-DCI property if every
Cayley (di)graph of G of valency m is a Cl-graph; G is said to have the m-CI property
if every undirected Cayley graph of G of valency m is a Cl-graph. Further, if a group G
has the i-CI property for all i ^ m, then G is called an m-CI-group.

The problem of determining which groups are m-CI-groups has been investigated
for a long time, see for example [1, 2, 6, 9, 12, 13]. In particular, a classification of
2-CI-groups has been obtained in [9], which is dependent on the classification of finite
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simple groups. Praeger, Xu and the author in [11] started to investigate finite groups
with the m-(D)CI property, and proposed:

PROBLEM 1. Characterise finite groups with the m-(D)CI property.

A general investigation in [11] is made of the structure of Sylow subgroups of groups
with the m-(D)CI property for certain values of m. However, it seems very hard to obtain
a 'good' characterisation of the groups with the m-(D)CI property. For the directed graph
case, namely the m-DCI property, there have been some further results. In [8], it is proved
that if G is an Abelian group with the m-DCI property then every Sylow subgroup of
G is homocyclic. The finite groups with the 2-DCI property but not with the 1-DCI
property are completely classified in [7].

In this paper we study finite groups with the m-CI property for certain positive
integers m. It is proved in [11] that a group with the 2-CI property is a 2-CI-group, and
a classification of finite groups with the 2-CI property is therefore obtained as mentioned
above. Because of this, the investigation of finite groups with the 3-CI property can be
naturally divided into two problems. One is to determine 3-CI-groups, and the other is
to determine the finite groups with the 3-CI property but not with the 2-CI property. A
3-CI-group is a 2-CI-group and so has been well-characterised (because of a classification
of 2-CI-groups). For the second problem, the next theorem shows that there do exist
groups with the 3-CI property but not with the 2-CI property. (In the following, we
denote by An the alternating group of degree n.)

THEOREM 1 . 1 . Let H be a 2-CI-group of odd order such that 3 divides \H\, and
let G = H x A4. Then G has the 3-CI property but does not have the 2-CI property.

It seems hard to obtain a complete characterisation of finite groups with the 3-CI
property. However, the following theorem gives a complete classification of finite simple
groups with the 3-CI property.

THEOREM 1 . 2 . Let G be a finite nonabelian simple group. Then G has the 3-CI

property if and only ifG — A5.

To extend the investigation of the case m = 3 to the general case, we note that if G
is of odd order, then G* does not have self-inverse subsets of odd size and so the k-Cl
property for k odd is vacuously satisfied. Such a k-C\ property will be said to be trivial.
Now the following problem naturally arises:

PROBLEM 2. For a positive integer m > 2, characterise the finite groups which have the
m-CI property but do not have the nontrivial k-C\ property for any k with 2 ^ k < m.

Then an immediate question we face is, for a positive integer m, whether there exist
groups which have the m-CI property but do not have the nontrivial k-Cl property for
any k with 2 ^ k < m. We shall positively answer this question in Theorem 1.4 by
producing a family of such groups for infinitely many values of m. Examples of such
groups are found in the class of Frobenius groups, which are described as follows. A
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group is said to be homocyclic if it is a direct product of some cyclic subgroups of the

same order.

D E F I N I T I O N 1.3: Let G = E(M, n) = M * (z) be a finite group such that

(i) M is an Abelian group of odd order and all Sylow subgroups of M are

homocyclic;

(ii) (z) = Z n where n ^ 2, and (\M\, n) = 1;

(iii) there exists an integer I such that for any x e M # , xz = xl and n is the

least positive integer satisfying /" = 1 (mod o{x)).

THEOREM 1 . 4 . Let G = E(M, q) and m = q — 1 where q is a prime and q ^ 5.
Then G has the m-CI property but does not have the nontrivial k-CI property for any
k < m.

However, it is not known whether for every positive integer m there exist groups with
the m-CI property but not with the nontrivial k-Cl property for any k with 2 ^ k < m.
The smallest value of m in Theorem 1.4 is 4. We guess that a finite group with the 4-CI
property but not with the nontrivial k-Cl property for k = 2,3 must be isomorphic to
E(M, 5) for some M.

In Section 2 we establish our notation and give some preliminary results. Then in
Section 3 we prove Theorems 1.1 and 1.2, and finally we prove Theorem 1.4 in Section 4.

2. PRELIMINARY RESULTS

This section draws together some preliminary results. The terminology and notation
used in this paper are standard (see, for example, [3, 15]). In particular, for two positive
integers m, n, we denote by m n that m divides n. For a positive integer n, Cn denotes
the undirected cycle of length n, Kn denotes the complete graph of order n, and for n
even, Mn denotes the graph F with

VT = {0 ,1 , . . . , n - 1 } and ET = {{i,j} | |i - j \ = 1 or n/2 (mod n)}.

For a graph F and a vertex v G VT, denote by F(v) the neighbours of v in F. For a finite
group G, elements a,b of G are said to be fused if a" = b for some a e Aut(G), and
similarly, subsets 5, T of G are said to be fused if S" = T for some a € Aut(G).

Here we notice a simple fact which will be used often. For a group G and 5 C G*,
Cay(C, 5) = (\G\ / |(5)|)Cay((5), S). It follows that Cay(G, S) ^ Cay(G, T\ if and only
if Cay((S), 5) = Cay((T), T). Next we have a simple property.

LEMMA 2 . 1 . Let F be a connected vertex transitive graph of valency m and let
G = AutF (the full automorphism group ofF). Then any prime divisor of \GV\ is at
most m.
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PROOF: Let G^"^ be the group induced by Gv on T(v). For any w G VT, since G
is transitive on VT, there is p G G such that w - v9. Thus GT

w
(w) = Gj>>. Suppose

that p is a prime dividing \GV\, and let g be an element of Gv of order p. Then there
exists M G VT which is not fixed by g. Since F is connected, there is a path from v to
u: v = Vo, i»i,. . . , vi = u. Clearly there is some k < I such that vf = Vi for all i with
0 ^ i ^ k and i>'+1 ^ Vk+i- Thus g € GUjt, and since Vk+i € F(n^), vg

k+l € r(i)/t). Let
5* '•— 9\r(vk) (the restriction of g to F(wjt)). Then g* G G^"fc) and uf+1 / ufc+1. It follows
that 0(3*) = p, so p divides jc f̂c

("fc)j = |Gj>>|. Therefore, p ^ m. D

Now we have a criterion for a Cayley graph to be a Cl-graph.

LEMMA 2 . 2 . (Alspach and Parsons [1, Theorem 1], or Babai [2, Lemma 3.1].)
For a group G and S C G*, let F = Cay(G,5) and A = AutF. Let Sym(G) be the
symmetric group on G. Then Cay(G, S) is a Cl-graph if and only if, for any r G Sym(G)
with Gr ^ .4, there exists a e A such that Ga - GT.

The following result of Gross, together with Lemma 2.2, can provide a lot of examples
of Cl-graphs.

THEOREM 2 . 3 . (Gross [4]) Let G be a finite group and let n be a set of odd
primes. If G has a Hall rv-subgroup, then all Hall n-subgroups of G are conjugate in G.

The proof of the following simple property is easy and omitted.

LEMMA 2 . 4 . Suppose that G is an Abelian group and all its Sylow subgroups
are homocyclic. Let H, K be two isomorphic subgroups of G. Then any isomorphism
from H to K can be extended to an automorphism of G.

The Euler ^-function <p(n) equals the number of positive integers less than n and
relatively prime to n.

LEMMA 2 . 5 . ([10, Lemma 2.4]) Let m be a natural number. Then (p(m) ^
y/m/2, and <p(m) ̂  s/m whenever m ^ 2 or 6.

3. T H E 3-CI PROPERTY

This section is devoted to proving Theorems 1.1 and 1.2. First we prove Theorem 1.1.

P R O O F OF THEOREM 1.1. Take an element a e H and b G A4 such that o(a) =
o(b) = 3, and set 5 = {a,a~1} and T = {b,b~1}. Then Cay(G,5) =* (|G|/3)C3 S
Cay(G,T). Since 2 |CG(a) | and 2 j |CG(6)|, it follows that S is not fused to T. So G
does not have the 2-CI property. Next we must verify that G has the 3-CI property.

Let 5 C G* be such that \S\ = 3 and S = S"1. If all elements of 5 are involutions,
then S contains all the involutions of G. It follows that S is a Cl-subset and \(S}\ = 4.
Thus we may assume that S = {a, a"1, b} where 0(0) > 2 and 0(6) = 2. Let T C G*
be such that Cay(G, S) ^ Cay(G,T) and so Cay((5),Sr) ^ Cay((T),T). Then \(T)\ =

https://doi.org/10.1017/S0004972700030999 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030999


[5] Finite groups 257

|{5)| / 4, and it follows that T = {a',a'-\b'} where o(o') > 2 and o(ft') = 2. Write

a = xy and a' = x'j/ ' where x,x' £ H and y, y' £ A4.

Suppose first that 4 j | (S) | . Then y = 1 or b, and since Cay((S), 5 ) S Cay( (T) ,T) ,

4 | |{T}| and so y' = 1 or 6'. If y = 1 then Cay((5) , 5) S Go(o) x C2; if y = 6 then

Cay((S) ,5) =* Mo ( a ) . It is easily checked that Co(a) x C2 ¥ M2 o ( a ) . Therefore, since

Cay((5) ,5) = Ca.y{{T),T), it follows that y = 1 if and only if y' = 1 (so y = b if

and only if y1 = U). In particular, o{a!) = o(a). Since H is a 2-CI-group, there exists

a 6 Aut(H) such that {a^a'1}" = { a ' , a ' " 1 } . Clearly there exists /? € Aut(A4) such that

b3 = V. Hence p = (a, /?) e Aut(G) sends 5 to T, so 5 is a Cl-subset.

Suppose next that 4 divides \{S)\. Then either o(y) = 2 and y 7̂  b, or o(?/) = 3.

Since Cay((S) ,S) ^ C a y ( ( r ) , T ) , 4 divides \{T)\ and hence either o(y') = 2 and y' ^ 6',

or o(y') = 3. In particular, neither (S) nor (T) is cyclic. We claim that o(y) — o(y').

Assume that o(y) = 2. Then ab = 6a, and it follows that Cay( (S) ,S) = C0(a) x C2.

Since Cay((T),T) S Cay((5), 5 ) , Cay((T) ,T) S Co(a ) x C2. It follows that a'6' = b'a' or

6'-1a', and this implies that o(y') = 2. Conversely, if o(y') = 2 then similarly o(y) = 2.

Therefore, o(y) = 2 if and only if o{y') = 2, and so o(y) = 3 if and only if o(y') = 3,

namely, o(y) = o(y') as claimed. It is easily checked that (y,b) = (y',b'), (S) = (a, b) =

(x) x (y,b) and (T) = (a', b') = (x1) x (y',b'). Since Cay«S>,S) ^ Cay( (T) ,T) , \{S)\ =

|(T) | and so 0(1) = 0(2:'). Since / / is a 2-CI-group, there exists a € Au t ( / / ) such that

xQ = x'e for some e = 1 or — 1. Noting that if o(y') = 2 then y'e = y', it is clear that

there exists (3 € Aut(A4) such that (y,b)0 = (y'6,b'). Thus we have p = {a,P) e Aut(G)

such that 5 " = {xy,x-ly-\by = {x'ey'e,x'~ey'-e,b'} = T, so 5 is also a Cl-subset. This

completes the proof of the theorem. D

Next we shall prove Theorem 1.2. First we determine the Sylow 2-subgroups of a

group with the 3-CI property.

LEMMA 3 . 1 . Let G be a finite group with the 3-CI property. Then a Sylow

2-subgroup of a 2-CI-group is elementary Abelian, cyclic, or generalised quaternion.

P R O O F : Suppose that G is a finite group with the 3-CI property. If G is of odd

order then the lemma is (trivially) true. So assume that G is of even order and let G2

be a Sylow 2-subgroup of G. If G2 has only one involution, then it follows from Sylow's

Theorem that all involutions of G are conjugate. By [16, p.59], G2 is either cyclic or

generalised quaternion. Now suppose that G'Z has more than one involution. Then G2

contains two involutions b, c such that be = cb. Set T := {b, c,be}. If G has an element

a of order 4, and if we set 5 := {a,a~\a2}, then Cay((S) ,S) =* KA ^ Cay( (T) ,T) , so

Cay(G, S) = Cay(G,T) . However, clearly no automorphism of G maps 5 to T, which

is a contradiction since G has the 3-CI property. Thus G2 is of exponent 2 and so is

elementary Abelian. U

In the following, for a group G, let Ct(G,i) — {{a,a~1} | a € G, o(a) = i). We have
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a simple fact.

LEMMA 3 . 2 . Let G be a finite group such that Aut(G) is transitive on £l((z), o(z))

for some z € G. Then we have that NAut(G)((z)) is transitive on the set tt((z), o{z)) and

( l /2Mo(z)) divides |NAut(G)(<z>)/CAut(G)((*>)|.

PROOF: For any i coprime to o(z), o(z) = o(zl) and thus z is fused to zl or z~',
namely there exists a € Aut(G) such that za = z' or z~l. Thus a G NAut(G)((z)). Conse-
quently, NAut(G)((z)) is transitive on Q((z),o(z)), and so (l/2)(f(o(z)) (= |fi((z), o(z))|)
divides JNAut(G)((.z>)/CAut(G)((z))|. D

Now we can prove Theorem 1.2.

P R O O F OF THEOREM 1.2. By [10, Theorem 1.3], A5 is a 3-CI-group and so A5 has
the 3-CI property.

Conversely, suppose that G is a finite nonabelian simple group with the 3-CI prop-
erty. Then by Lemma 3.1, a Sylow 2-subgroup of G is elementary Abelian, cyclic or
generalised quaternion. However, by [14, 10.2.2], a finite group with a cyclic or gener-
alised quaternion Sylow 2-subgroup is not simple. Thus a Sylow 2-subgroup of G must be
elementary Abelian. Therefore, by [16, p. 582], G is one of the following: J1( Ree(32n+1)
(for some n > 1), PSL(2, 2") (for some n ^ 2) or PSL(2,?) with q = ±3 (mod 8). Now
we need to prove G — A5.

If G = Ji then by the Atlas [3], Aut(G) = G,G has a cyclic subgroup (x) of order 19,
NAut(G)((^)) — (x) ^^6, and x is conjugate to x~x by an involution g. Let 5 = {x,x~l,g}
and T = {x\x~\g} where 2 < i < 18. Then Cay(G,S) ^ (|G|/38)(G19 x C2) =
Cay(G,T). Since G has the 3-CI property, 5 is fused to T and so {a:,^"1} is fused
to {x\x-1}. By Lemma 3.2, 9 = (l/2)<p(o(x)) divides |NAut(G)((z))/CAut(G)((^))| = 6,
which is a contradiction.

Assume that G = Ree(32n+1) for some n > 1. By [5], G has a cyclic subgroup (x)
of order 3 2 n + 1 + 3 n + 1 + 1, and NAut(G)((z)) = (x) xi H where \H\ is even and divides
6(2n + 1). Let g be an involution of H. Then g normalises (x). Let y = x' where i
is coprime to o{x). Let 5 = {x,x~x,g} and T = {x\x~l,g}. It is easily checked that
there exists a e Aut({x,g)) such that Sa = T. It follows that Cay(G, 5) = Cay(G,T).
Since G has the 3-CI property, S is fused to T, and so {x,x~1} is fused to {y,y~1}- By
Lemma 3.2, we have (1 /2)VJ(3 2 " + 1 + 3 n + 1 + 1) < 6(2n + 1). By Lemma 2.5, it follows
that 3n\/3 < ip(32n+1 + 3 n + 1 + 1) ^ 12(2n + 1). Consequently, n ^ 3. However, if n = 2
then </?(35 + 33 + 1) = <p(271) = 270 ^ 60; if n = 3 then <p(37 + 34 + 1) = <p(2269) =
2268 ^ 86. Thus n = 1 and G = Ree(27). By the Atlas [3], |Out(G)| = 3, G contains 3
elements a, b, b~l of order 3 such that no two of them are fused, and there exist involutions
g,h£ G such that a9 = a"1 and bh - b. Let 5 = {a,a"1,g) and T - {b,b-l,h}. Then
Cay(G,5) ^ (|G|/6)(C3 x C2) = Cay(G,T). Since G has the 3-CI property, 5 is fused
to T and so a is fused to b or b~l, which is not possible.
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Assume that G = PSL(2, q) where either q = 2{, or q = p ! = ± 3 (mod 8) for some
prime p. By [15, p. 417], G has a cyclic subgroup (x) = Z(,+ £)/d , where e — ± 1 and
d = (q - 1,2), and N G ((x)) = (x) x Z2 = D2o(i) (a dihedral group). Arguing as in the
previous paragraph, we have that {x, x^1} is fused to {x\ x"'} for every i coprime to o(x).
Since |Out(G)| = df, it follows that NAut(G)((^))/CAut(G)((^)) is of order dividing 2df.
By Lemma 3.2, (\/2)ip{{q + e)/d) divides 2df. Hence 4d/ is divisible by both <p((g + l ) /d )
and ip((q — l)/d). In particular, ip((q + l ) /d ) ^ 4d/.

First suppose that p = 2. Then d = 1, and by Lemma 2.5, %/2-f + 1 ^ tp(2f + l ) <
4 / , whence / < 10. Since (l/2)tp((q + e)/d) divides 2df and d = 1, we have that both
<p\2f + l j and ip\2f — 1J divide if. A straightforward calculation shows that / ^ 4. If
/ = 4 then G = PSL(2,16). By the Atlas [3], G has a cyclic subgroup (x) of order 17,
and by the previous paragraph, x is conjugate to a;"1 and {a;, a;"1} is fused to {x1, x~1} for
every positive integer i ^ 16. However, since |Out(G)| = 4, it follows that NAUt(G)((-z))
is not transitive on fl((z), 17), which is a contradiction to Lemma 3.2. Thus / = 2 or 3.

Now suppose that p ^ 3. Then d — 2. Assume first that / is even. Then p2 —1 p-f — 1.
Since p = 4/c + 1 or 4fc + 3 for some k ^ 1, 8 divides (p + 1) (p — 1). = p2 — 1. Consequently,
p* = 1 (mod 8), a contradiction. Thus / is odd. If / = 1 then p = ± 3 (mod 8), and
we have that tp((p+l)/2) 8 and ip((p - l ) /2 ) 8. Thus (p + e)/2 = 2 r '3 r 2 5 r 3 , where
rr ^ 4 and r 2 , r 3 ^ 1. It follows that (p + e) /2 ^ 30 so p ^ 61. A straightforward
calculation shows that p = 5 or 11 (since p = ± 3 (mod 8)). Finally suppose that / ^ 3.
By Lemma 2.5, we have (l/2)yj{pf + l ) / 2 ^ ^ ( ( p ^ + l ) / 2 ) < 8 / , so p s + 1 < 512/ 2 .
It follows that p ^ 13, and if p = 3 then / ^ 9 so / = 3, 5, 7 or 9; if p = 5 then
/ < 6 so / = 3 or 5; if 7 ^ p ^ 13 then / ^ 4 so / - 3. Recall that pf = ± 3
(mod 8), ip((pl + 1)2) I 8 / and <fi((pf - l ) / 2 ) I 8 / . A straightforward calculation shows
that p ! = 27. Thus we have that pf = 5,11 or 27.

Suppose that p = 11 or 27. Then by the Atlas [3], G has two fusion classes of order
(p — l ) /2 and if x is an element of order (p — l ) / 2 then x is conjugate to x~x by an
involution g. So {x, x"1} is not fused to {x3, x~3} for some j with 1 < j < (p — l ) / 2 . Set
5 = {a:,*-1 ,^} and T = {x3\x-3,g}. Then C a y « S ) , S ) £ G(p_1) /2 x C 2 S Cay((T) ,T) ,
so Cay(G, 5) = Cay(G,T) . Since G has the 3-CI property, 5 is fused to T. It follows
that { x , x - 1 } is fused to {x3,x~3}, which is a contradiction.

Therefore, since PSL(2,4) £ PSL(2, 5) = A5, we have that G = A5 or PSL(2, 8). By
[10, Theorem 1.3], PSL(2,8) does not have the 3-CI property, and so G = A5. D

4. T H E m-CI P R O P E R T Y

This section is devoted to proving Theorem 1.4.

P R O O F O F T H E O R E M 1.4. As in Definition 1.3, write G = M x (z) where (z) = Zq.
By the definition, any non-identity element of (z) centralises no non-identity elements
of M so that Cc{z) = (z), and hence by [14, p. 299], G is a Frobenius group with
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M the Frobenius kernel and (z) a Frobenius complement. In particular it follows from

Definition 1.3 that any prime divisor of \M\ is greater than n, (\M\,l) = 1, and z

normalises every cyclic subgroup of M.

First we show that G does not have the k-C\ property for k < in, k even. Let

I = k/2 and let j = (q — l ) / 2 . Since k is even, we have k ^ q — 3 = m — 2. Thus

l = k/2<(q- l ) / 2 = j . Set

S = {z, z~\ ...,zl, z~'}, and T = {z\ z~\ ..., zjl, z'3'}.

Since (j,q) = 1, the map z —> zJ induces an automorphism of (z), which maps 5 to T.
Thus Cay ((z),S) ^ Cay((z),T), so Cay(G,S) 3* Cay(G,T). If G has the ifc-CI property,
then there is an element a of Aut(G) such that Sa — T. Therefore, za = z1 for some
integer i € {j,—j,---,jl,—jl}- Let i0 be the integer such that i = iQ (mod q) and
0 < i0 < q. Then za = z' = z'°. For a £ M, let a' - aa. Then z'^a'z10 = {z~laz)a -
(a1}" = (a')' = 2"Vz. Thus z^o+Vz10"1 = a'. It follows from the definition of E{M,q)
that q divides i0 — 1. Since 0 < io < 9, we have io = 1, that is, S — Sa = T. However,
since I < j = (q — l)/2, z J e T \ S, which is a contradiction.

Now we must verify that G has the m-CI property. Let S ' ^ G \ { l } b e such that
\S\ = m and 5 = S~\ and let H = (S). Let F = Cay(//,5), ^ = AutF and let Ax be
the stabiliser of 1 in A. Since F is a connected graph of valency m — q— 1, by Lemma 2.1,
all prime divisors of ĵ 4i | are less than q. Since all prime divisors of G are at least q,
\H\ and \Ai | are coprime. Therefore, A\ is a ?r-group and H is a Hall 7r'-subgroup of
J4, where n is the set of primes less than q. By Theorem 2.3, all Hall 7r'-subgroups of
A are conjugate to H. Thus by Lemma 2.2, S is a Cl-subset of H. For any T C G
such that Cay(G,S) =* Cay(G,T), we have Cay(tf,S) =* Cay((T),T). Let AT = (T) and
S = Aut Cay(A', T), and let Si be the stabiliser of 1 in B. Then similarly A" is a Hall
7r'-subgroup of B and B = A. Thus K = H. Let cr be an isomorphism from K to # and
let S' = T". Then Cay(H,S) = Cay(A:,T) S Cay(#,S'). Since 5 is a Cl-subset of H,

(S')T = S for some r € Aut(//). Thus p := or is an isomorphism from K to H such that
TP = Tar = (S,y = s

Let Mi :— K (1 M and M2 :— H D M. Then Afi, M2 are characteristic subgroups of
index 1 or q in A", ff respectively. The isomorphism p: K -> H induces an isomorphism
Po from Mi to M2. By Lemma 2.4 there exists a € Aut(M) such that the restriction of
a to Mi is po. Note that since M is a characteristic subgroup of G, any automorphism of
M can be induced by an automorphism of G. If M\ = K then there is nothing more to be
done. Otherwise K = Mx x (zi) where z\ has order q. Let z2

 := zi- Then / / = M2 x (22)-
Now (z2) and (z") are Sylow ^-subgroup of G and so they are conjugate by an element of
M. Thus there is an inner automorphism /? of G which fixes M pointwise and maps (zf)
to (Z2). Then a/3 maps A" to # , acts as p does on Mi, and maps (zj) to (zf). But then it
is easy to see that z\ = z[ (any automorphism of G induces the identity automorphism
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on G/M). Thus p is induced by an automorphism of G, and hence 5 is a Cl-subset of

G. Therefore, G has the m-Cl property. This completes the proof of the theorem. []
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