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Abstract

Topological algebra bundles whose fibre (-algebras) admit functional representations constitute a
category, antiequivalent with that of (topological) fibre bundles having completely regular bundle
spaces and locally compact fibres.
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In [5] B. R. Gelbaum has proved the following. We are given a fibre bundle E on
a space X with fibre a commutative or g-uniform Banach algebra A and
group-bundle the group of isometric automorphisms of A. Then, the maximal
ideal space of the Banach algebra of sections of £ is a fibre bundle over the same
base as E, fibre the maximal ideal space of A and group-bundle the group of
self-homeomorphisms of the latter space.

In this paper we enrich the previous picture by getting a kind of an inverse of
Gelbaum's result. Furthermore, the whole stage is put within a more general
framework, that of "topological algebra bundles". So, one considers a triplet
£ = (E, IT, X), where -n: E -» X is a given map of a set E into a topological
space X, the latter map being further specified, up to equivalence, by "algebraic"
atlases. The preceding is patterned after certain current results of A. Mallios [11,
12], as well as some ideas in the above quoted work of B. R. Gelbaum.
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[2] On topological algebra bundles 399

More particularly, in Section 1 we deal with standard facts of the general
theory of topological algebra bundles getting thus results analogous to those of
the classical theory of vector bundles [7] (see Theorem 1.3, Remark 1.1). More
specifically, we give a characterization of a topological algebra bundle through a
system of transition functions on X (Theorem 1.2), a technique which is sys-
tematically applied throughout the rest of the paper. Then in Section 2 we exhibit
the set of continuous sections of £ as a topological algebra (see (2.3)ff), in effect,
as an algebra of continuous functions with values in the algebras-fibres of the
bundle E (Theorem 2.1). The above makes it possible to get our main results, as
these are presented in the subsequent Sections 3 and 4.

Thus, more precisely, let ${X) be the category of topological algebra bundles
over X and 9ft(£) the "spectrum bundle" of an object £ in ${X), defined
through the "spectrum functor" 3R (see (3.9) and Theorem 3.1). Moreover, let
J^( X) be the category of fibre bundles over X. Then, one defines a contravariant
functor <6: &{X)^>£{X) (Theorem 3.2), which is fully faithful [7], if the objects
of ^(X) have completely regular bundle spaces and locally compact fibres (we
denote this subcategory of &(X) by '^(X)). Thus, if 'S(X) denotes the category
of topological algebra bundles whose fibres (Ma, a e K) admit functional repre-
sentations (viz. #(2tt(Ma)) = Ma), then the categories '£{X) and '^(X) are
antiequivalent (Corollary 3.1). In particular, one concludes that £ e '^(X) and
#(£) e '${X) (Theorem 3.2) are in a kind of "canonical dualtiy"; namely, £ is
isomorphic to the bundle obtained from #(£) (Theorem 3.1) via the application
of the "spectrum functor" Wl. Naturally, this constitutes one further application
of the classical concept of numerical spectrum (Gel'fand space) of a topological
algebra. Analogous results are valid for holomorphic (algebra) bundles (Scholium
3.1). The above are mainly based on the following fact: Taking a topological fibre
bundle £ = (E, IT, X) from Jr(Ar), ^C{E) is identified (as a locally m-convex
algebra) with Y(^{£)) (see Theorem 3.3). This same result exhibits a generaliza-
tion in the context of the theory of fibre bundles of the well known identity
^ ( I x Y) = <<rc(X, #c(y)), with Y a locally compact space [4].

Finally, we consider in an Appendix (Section 4) another realization of the
spectrum bundle 2ft(|) of a suitable £ e ${X), proving that the (numerical)
spectrum of the algebra of sections of £ {W{Y{£))) defines a fibre bundle over
the compact base X of £ (Theorem 4.1). The latter extends, within the present
framework, an analogous result of Gelbaum in [5]. The technique applied is both
different from that in [5] and simpler from some points of view. In addition the
preceding specializes to the standard result that 3Jf(^c(X)) and X are homeo-
morphic, when X is a completely regular space [9]. A similar result has been given
in [6] by considering fibre tensor product bundles. In a future publication we
hope to extend Theorem 4.1 to the case of a non compact base space X.
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It is a pleasant duty to express my sincere thanks to Professor Anastasios
Mallios for generous help and advice, as well as lively interest, during the
preparation of this work. Among other things it was his idea to set the whole
stage in the context of topological algebras in general (not locally convex or yet
locally m-convex ones), and also to apply a categorical language to my initial
main result.

1.

Given a set E, a (Hausdorff) topological space X and a map m: E -* X, an
algebraic chart (or simply chart) of £ is a triplet 5 = (U, <py, M), where U is an
open subset of X, Ma topological algebra and <pv a bijection

(1.1) <py: Ux M-+ir-\U)

such that w((pt/(x, a)) = x, for any (x, a) e U X M; thus, for every x e U, the
map

(1.2) <Pu,x:= V i / V w l"~\x) -> M

is a bijection. Now, given two charts sx = (U, (p^, M) and s2 = (V,\pv,N)we say
that they are compatible, if the next two conditions are satisfied:

(1.3a) ^ / ^ ^

for every x e U n K, and moreover the map

(1.3b) x ^tv,x°<Pu\- UC\V^> Homs(M,N)

is continuous, where Homs(M, N) is the set of continuous algebra morphisms of
M into N equipped with the simple convergence topology induced on it by
£CS(M,N). If the algebras involved have identities, the elements of Hom(Af, N)
are assumed to respect identities. Moreover, since

(1.4) (^^^j'^^'^

for every x e U n V, we observe that the range of (1.3b) is, in fact, the set of
topological algebraic isomorphisms of M onto N, denoted by Iso(Af, N).

Furthermore, the compatibility of slt s2 is, in effect, equivalent with the
existence of a continuous map, say X, such that

(1.5) X: Un V-+ Homs(M,N): x ~ \(x):= ^ / i f ^ .

Thus, for any x e U n V and a £ M , one has

(1.6) (ryl'Vu)(x,a) = (x,[Hx)](a))S(x,\(x)a).
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[41 On topological algebra bundles 401

A family s# = {(£/„, <pa, Ma)}a<= K °f charts of E is called an algebraic atlas (or
simply atlas) of E, if the charts of J / are mutually equivalent and X = U a e K Ua.
Moreover, two atlases s/, 38 of E are said to be equivalent (s/~3t)iis/U<%is
also an atlas of E. The last notion provides an equivalence relation in the set of
all atlases of E, in such a way that one sets

DEFINITION 1.1. (A. Mallios). A triplet £ = (£, IT, X), as above, is said to be a
topological algebra bundle over X, if we are given an equivalence class of algebraic
atlases, say [s/], of E.

Locally (m-) convex algebra bundles will have the obvious meaning by special-
izing to the pertinent class of topological algebras for the fibres.

Now, given an atlas J / of E, and hence its equivalence class [s#], we may
always consider the associated to s/ maximal atlas of E say sf*, consisting of all
charts of E compatible with the charts of s/, that is,

(1.7) s/* = U SS.

As we shall presently see, the last atlas defines E, in a unique way, as a
topological algebra bundle.

We first give the following lemma, a useful tool for the realization of a
topological algebra bundle (see Theorems 1.1 and 1.2 below). It also extends
within the present context an analogous result of [11, Lemma 2.1], [7, Theorem
1.12, page 3].

LEMMA 1.2. Given the topological algebras M, N and a (Hausdorff) topological
space X, consider the following two assertions:

(1) The map h: X -* Homs(M, N) is continuous.
(2) The map h: X X M -» X X N: {x, a) -> h(x, a) = (x, [h(x)](a)) is continu-

ous.
Then, (2) => (1). Moreover, if Yloms(M, N) is a locally equicontinuous subset of

£fs(M,N), then the previous two assertions are equivalent. In this respect, one
definesx >-> h(x):= hx(= h(x, •), x e X.

PROOF. (2) => (1): The map h(x) = (p2 ° h)x (partial map of p2 ° h), where p2

is the projection p2: X X N -* N, is continuous for every x e X. Thus, the
relation

[h(x)](a)=p2(h{x,a)),

with (x, a) G XX M, proves the assertion.
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Now, if Hom(A/, TV) c S£S{M, N) is locally equicontinuous, one still proves
that (1) =» (2): Indeed, the map h is the composition of the maps

XX M^> XX Homs(M, N) X M ^ X X N,

where (JC, a) •-» 8(x, a) := (x, h(x), a) is a continuous map by the continuity of
h; besides, (x, h(x), a) •-» e(x, h(x), a):= (x,h(x)a) is also continuous by hy-
pothesis for Homs(M, N) (see [3, Chapter X, Section 2.2, Corollary 4]).

The local equicontinuity of Hom^Af, TV) was, of course, a crucial assumption
for the proof of the previous lemma, and this is also the case for the next
Theorems 1.1, 1.2. This condition is valid, for example, in case of Frechet locally
convex algebras, when by Hom^M, N) one should mean, of course, continuous
morphisms of the whole structure [3, Chapter X, Section 3.1, Example 2)].

Now, given a topological algebra bundle £ = (E, 77, X), we topologize E as
follows: A subset A of E is open, if <p~1(A n ir~\Ua)) c UaX Ma is open, for
every a e K, where J/= {(Ua, cpa, Ma)}aeK is a given atlas of £. Thus, one gets a
topology ^ , of E (not necessarily Hausdorff), which is, of course, independent of
the atlas s? considered.

The next result is analogous to that of [11, Lemma 2.2] for A-vector bundles.

THEOREM 1.1. Let £ = (E, m, X) be a topological algebra bundle and J / =

{(^o'fa' Ma)}a(E K an atlas of £ such that the sets Isoms(Afa, Mp) are locally
equicontinuous. Then, 9~^ is the unique topology on E making IT continuous and the
maps <pa: Ua X Ma —> w~1((/a), a & K, homeomorphisms. Moreover, each fibre
Ex = TT~1(X), x G X, of E is uniquely defined as a topological algebra whose
topology is the relative one induced on it by E.

PROOF. For any charts (Ua, <pa, Ma), (Up, q>p, M^) of sf, the set

(1.8) «P-1(^"1(I/J n *-l(up)) = <p;l{*-l{ua n Up)) = {Ua n up) x Ma

is open, for every a e K, such that ir~l{Ua) G 3^, for any a e K, hence the
continuity of w. Moreover, by Lemma 1.1 and the continuity of (1.3b) (see also
(1-6)),

(1.9) vp1 o <pa: (Ua n Up) X Ma -» (Ua n Up) X Mfi

is continuous, and hence its inverse map <p~loq>p too, so that the map <pa:
U<* x Ma -> m~l(Ua), a e K is a homeomorphism. Furthermore, for every x e
f/a, TT^^X) c £ is endowed by (1.2) with the structure of Ma. The last assump-
tion is independent of the choice of chart, since, for every x e f/a n Ljj, the map
(Vji1 ° <P*)x = <P̂ "x ° <P«,x G Isom(Ma, Mp) (see (1.3b)). Thus, the resulting topo-
logy of w ^ x ) = Ma, coincides with the relative one induced on it from the open
set ir~l(Ua) c E, since <pa, a & K, are homeomorphisms. On the other hand, the
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uniqueness of the topology of E satisfying the preceding conditions follows by a
standard argument.

The above theorem yields, in particular, that a basis of ^ consists of the open
sets v~r(U) for any given chart (U, <p, M) e s/* (see (1.7)).

On the other hand, in analogy with the standard notion of a (complex) vector
bundle (see, for instance, [1] and/or [7]), we can define topological algebra
bundles as follows:

Let X be a topological space and (Ex)xeX a family of topological algebras.
Moreover, if E = Ex Ex is the respective vector space direct sum of the family
(Ex)xeX, we consider E topologized so that the relative topology on each Ex is
the initial one of the algebra Ex, x e X, and the canonical projection IT: E -* X
is continuous.

Now, a triplet £ = (E, w, X) as above is said to be a topological algebra bundle,
if there exists an open covering iW= {U} of X, such that £|y is a trivial
topological algebra bundle; that is, there exists a topological algebra M and a
homeomorphism <p,/ U X M -* in~l(U) = E\v, in such a way that, for every
x G U, the map <p,j x = <pi}

1|w-i(x): TT~\X) -» M is an algebraic isomorphism,
hence an algebraic homeomorphism.

Consequently, Theorem 1.1 implies that the notion of a topological algebra
bundle through a family of topological algebras over a topological space X is
equivalent to that of Definition 1.1.

Now, given a topological algebra bundle £ = (E, IT, X) and an atlas JZ/ =
4> fa' Ma)}aeK of E, one always gets a family of continuous functions

(1.10) Xo/}: UanUp^ Homs(Mp,Ma),

by the relation Xa/8(x):= <pa x ° <Pp,l (see (1.5)) such that the relative "cocycle
condition"

(1.11) Kii(x)-Xfiy(x) = \ay(x), xeuanupnuy,

to be valid. Therefore, the relation

(1-12) *aa(x) = idMa

for any x e Ua, a e K, is also true. By (1.11) (see also (1.5)) one has

(1.13) \ap(x)

for every x e Ua n L .̂
A triplet A = {(£4))(Xa/g),(Ma)} consisting of an open covering (Ua) of a

topological space X, a family of topological algebras (Ma) and a family of
continuous maps Xa/8: l/a n Up -* Homi(A//3, MQ) satisfying (1.11), is said to be
a system of transition functions on X.
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The preceding characterizes, in fact, topological algebra bundles according to
the next

THEOREM 1.2. Let X be a (Hausdorff) topological space and A =
{(Ua),(\ap),(Ma)} a system of transition functions on X such that the sets
lsoms(Mp, Ma) are locally equicontinuous. Then, there exists a topological algebra
bundle £ = (E,ir, X), having A as a system of transition functions.

PROOF. On the disjoint union T = Ua(t/a X Ma) we define an equivalence
relation as follows

(Xa = Xp = X G Ua n Up>
(1.14) (xa,aa)~{xfi,ap) if and only if , , ,

Let E = T/ ~ be the corresponding quotient set and q: T -* E the canonical
quotient map. We consider T equipped with the direct sum topology and E with
the respective quotient topology. Now, we consider the map

(1.15) «:E-+X:[(xa,aa)]~xa,

which is uniquely defined via (1.14) and also continuous: Indeed, IT is continuous
if and only if the maps IT « q° j a are continuous (ja: Ua X Ma •-» T is the
canonical injection), which is, of course, true since w ° q° ja= pra°(ia X idM ),
where pra: X X Ma -» X is the projection and ia: Ua ̂ > X the inclusion map.

Moreover, for any « G ^ , w e consider the map

whose range is ir~\Ua), since (1.15) implies •n{q{xa,aa)) = xa and therefore
("" ° *PoX^o' aa) = xa G ^>- Besides, (1.16) is a homeomorphism: Indeed, <pa is
continuous by the continuity of q and moreover "onto" since for b = [(xp, a^)]
G <!T~1(Ua), one has xfi e [/„ n [/̂  and (xa, aa) - (xa,Xap{xp)ap), such that
* = fa(

xa^ap(x)ap) (see (1.14)). Furthermore, the relation (xa, aa) ~ « , a^)
implies that xa = x'a and â , = Xtta(x)aa = idMa{aa) = aa, which shows that <pa

is 1-1. Finally, <p~l is continuous, by the continuity of the composition of the
following continuous maps

(Ua n Up) XM^ (Ua n Ufi) XMa-*UaXMa

(see Lemma 1.1, (1) => (2)).
Now, by considering the map <p~l ° ̂  x: Mp -» Ma, x e Ua n Up, for each

a^^Mp, let aa = ((p^l°(ppx)(ap). Then, ^ ( x , a^) = <po(x, a a ) which means
( J C , ^ ) ~ (x, a a ) (see (1.14)), and therefore aa = \afi{x)ap. Thus, one gets
(<P«~* ° <P/3,xXa/j) = ^a^(x)aP' w h i c h P r o v e s t h e assertion.
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O n the o ther hand , two systems of t ransi t ion functions on X, say A =
{(Ua),(^afi),(Ma)}, A' = {(^)> (/*,•>), (ty)}> a re equivalent if there exist cont inu-
ous maps

(1.17) /7i:I/on^.-»Isom,(A/a,JV;.)

such that

(1-18) pl
a(x)-XaP(x)-p^xyl = ixIJ(x)

for x e Ua n Up C\ V, n Vj. This is an equivalence relation in the set of systems
of transition functions (see [7, page 10] for an analogous proof). Thus, by
extending the standard terminology pertaining to G-cocycles (G being a topologi-
cal group [7, page 9]), we denote by Hl(X) the corresponding quotient set. Now,
given a topological space X, let S(X) be the category whose objects are
topological algebra bundles over X (Definition 1.1). Thus, given £ = (E, m, X),
£' = (E',ir', X) of ${X), a morphism of £ into £' is a fibre preserving continu-
ous map a: E -» E' (that is, ir' ° a = IT), such that

(1.19) a x { = a \ w - H x ) ) e H o m { E x , E x ) , x ^ X

(topological algebra morphisms).
So, by considering isomorphism classes of the objects of $(X) one gets the

following result analogous to [7, Theorem 3.6, page 10], [12, Theorem 1.2], which
provides an equivalence version of Theorem 1.2.

THEOREM 1.3. Let $(X) be the set of isomorphism classes of topological algebra
bundles over a topological space X having locally equicontinuous sets of fibre
isomorphisms (see (1.4)). Moreover, let H1(X) be the set of equivalence classes of
systems of transition functions on X, as above (see (1.18)). Then,

(1.20) ${X) = H1(X)

within a bijection.

Theorem 1.3 yields that the topological algebra bundle constructed by Theorem
1.2 is unique up to equivalence.

REMARK 1.1. Given a topological algebra bundle £ = (E, IT, X) of fibre type a
topological algebra M, let J / = {(Ua,<pa, M); a e K) be an atlas of E and
A = {(£/„),(\ap), M;a e K) a system of transition functions for E. Thus, one
has \ap(x) e s/ut(M), for every x e Ua n Up, where s/ut(M) is the set of
topological algebraic self-isomorphisms of the topological algebra M. Thus, if
sfut(M) is a locally equicontinuous subset of Homs(M, M), then it is a topological
group (see [3, Chapter X, Section 3.5, Corollary of Proposition 10] and also [6,
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Section 2]), such that A is a G-cocycle (see [7, page 9]), for G = s/ut(M). In this
case (1.20) takes the more standard form

(1.21)

within a bijection.

2.

Let £ = {E, IT, X) be a topological algebra bundle, s/= {(Ua, <pa, Ma)}amK, an
atlas of £ and F( |) the set of (continuous) sections of £. Now, F(£) is made into
a topological algebra and, in fact, a "^(A^-algebra, where ^(A') denotes the
(locally m-convex) algebra of C-valued continuous functions on X, endowed with
the compact-open topology. Thus, for y,yx,y2 e F(£), / , fi,f2^ ^(X) and
x G Ua, we define

( / • Y ) ( * ) H Y •/)(*)== *«(*>/(*) •',,(?(*))),
(2.1) (/x • Yl + / 2 • y2)(x):= tp.ixj^x) • ta(yx(x)) + f2 • ta(y2(x))),

where rQ = <pa<x (see (1.3)).
The elements / • y, y • / , fx • yx + f2 • y2, Yi ' Y2 belong to F(£) and, moreover,

these are independent of the choice of Ua: Indeed, if x e Up, then by (2.1)

(Yi • Y2)(x) = <Pa(
x>ta(yi(x)) • ta(y2(x)))

= « P / , ( * . ^ ( Y I W ) - ^ ( Y 2 W ) ) (by (1-5)).
We also define the zero section O(JC) := ya(x, 0) and moreover, if the algebras Ma

have identities l a , we still define 1(JC):= <pa(x, l a ) , x G C/a, these sections being
also independent of the choice of Ua; furthermore, for all y e F( | ) , one gets

y - II = II • y = y , 0 - Y = Y - 0 = 0 , Y + 0 = 0 + Y = Y -

Thus, F(£) is a t>(X)-algebra (with identity element if the Ma are unital
algebras). Before we define F(£) as a topological algebra, some more comments
are necessary.

So, let £ be a topological algebra and ^U(K, E) the algebra of continuous
£-valued functions on a compact space K endowed with the topology of uniform
convergence in K. Then, by definition of the topology u, %U(K, E) is a topologi-
cal algebra (see [12, Lemma 2.1]). Moreover, the algebra of continuous £-valued
functions on a topological space X endowed with the topology of compact
convergence in X (denoted by ^(A' , £)) is also a topological algebra, as this
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follows by

(2.2) Vc(X,E)=KmVH(K,E),

where the projective limit is defined over the compact subspaces K of X (see [9,
Chapter VI, Section 4, (4.12)]).

Now, for any Ua, the local sections of £ "are" Afa-valued continuous functions
on Ua due to the "local triviality" of £; that is one has the following algebra
isomorphism

(2-3)

Thus, if T(Ua, £) is equipped with the (compact-open) topology of ^c(Ua, Ma)
then T(Ua, £) becomes a topological algebra of the same type with Ma. Moreover,
if ia: F(£) -» F(£/a, £) is the canonical restriction map (X = UaUa), then F(£)
endowed with the inverse topology defined via ia, is a topological algebra of the
same type with Ma. In particular, if Ma is a (complete) locally (m-) convex
algebra, F(£) is such an algebra too, while if Ma is a Frechet locally (m-) convex
algebra and X a second countable space, F(£) is a Frechet locally (m-) convex
algebra as well. The seminorms which define the locally (m-) convex topology on
F(£/a,£)areoftheform

(2.4) tf*.,,..x(Y):= sup (pa,x(ta(y{x)))),
x<=KaQUa

where Ka is a compact subspace of Ua and pa x a seminorm from the family of
seminorms {pa X} x defining the locally (m-) convex topology of Ma.

The fact that the local sections of | are (usual (!) vector-valued) continuous
functions suggests now a more convenient form for the algebra F(£).

Namely, if n a # c (£ / a , Ma) is the topological algebra, cartesian product of the
topological algebras ^c(Ua, Ma), consider the algebra
(2-5)

( ^ (TJ e T\K(Ua,Ma): ra(x) =
a

We assume 38 endowed with the relative topology from Y\a^c{Ua, Ma), so that 38
is a topological algebra too. In particular, if Ma are unital algebras, 38 is such,
since \ap(x), x e Uad Up, is identity preserving (see (1.3b) and also (2.5)).

The following identifies the algebra 36 as F( | ) .

THEOREM 2.1. Let F(£) be the algebra of sections of a topological algebra bundle
| and 38 the algebra defined by (2.5). Then,

(2.6) r(0 = #,
within an isomorphism of topological algebras.
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PROOF. By (2.5), for any r = (ra)a in 98 and x G Ua n U0, one has ra(x) =

[^a0(x)](Tfi(x)) such that (1.5) implies <pa(x,Ta(x)) = (pp(x, T^X)). Thus, by
setting T(X) := <pa(x, TO(X)) one has -ir(<pa(x, Ta(x))) = x, such that the map

(2.7) u: 38 ^ TU): r ~ U(T)(X):= <pa(x,ra(x))

is well defined; that is, « ( T ) is a continuous section of £, since <pa is a
homeomorphism and continuity is of a "local nature".

On the other hand, « is an algebra morphism. Thus, for any T, T' in 2 and
x e X, one gets ( « ( T ) • U ( T ' ) X * ) = « ( T ) ( X ) • CO(T')(X) = <pa(x, TO(X)) •
<*>«(*> Ta'(x)) = <pa(x, TO(JC) • <(x)) = <pa(Jc,(Ta • TJ) (*) ) = W(T • T ' ) (X) (similarly
for the other operations). Furthermore, if T, T' e ^ with W(T) = W(T') then, for
any x e [/a, <pa(x, ra(x)) = (JPO(JC, < ( X ) ) and hence TO = T ,̂ that is, T = T', which
shows that w is 1-1. Now, each y e F(£) is locally in ^(t/,,, Ma), that is,
Ylt/. = Y« e T ( t / a , 0 = ^c( t / a ,Mn), so that TO:= /(Ya) (see (2.3)). Indeed, r =
(Ta)a G Y\a^c{Ua, Ma) is an element of ̂ . Thus, for any x e Uan Up, we have
<Pa(x,ta(y(x)))=<pf}(x,t/}(y(x))) = (by (1.5)) <Pa(x,[Aa/3(x)](^(7(x)))), which
entails ta(y(x)) = [Xa/,(jc)](//,(y(x)))> that is r a ( x ) = / (y a ) (x) =
[^«^(x)](^(Yy8))(-x) = l^ap(x)](Tp(x))- Hence w is onto. Finally, « is bicontinuous.
That is, since, by definition, F(£) has the initial topology of the canonical
restriction map ia: F(£) -» F(t/a, | ) , it suffices to prove the continuity of each
one of the maps ia° u, which is valid since ia° u = / ° pa° j , the second map
being, of course, continuous, where pa: Yla^c(Ua, Ma) -> ^c{Ua,Ma) is the
canonical projection and j : 38^ ^ n a ^ c ( [ / a , Ma) the inclusion map (see also
(2.3)). Moreover, by the definition of the topology on 38, w"1: F(£) -> 38 is
continuous if and only if pa° j ° u~x is continuous, which is valid because
Pa" j°"~l = l°ia-

3.

In the present section we establish a (category) antiequivalent between the
category of topological algebra bundles £{X) (see Section 1) and that of (locally
trivial) fibre bundles ^(X) over a topological space X (see Corollary 3.1). An
object of ^(X) is a triplet i- = (E, p, X) endowed with an atlas s/ =
{(^4> 9a' Ma)} (Definition 1.1), where now the fibre Ma is a topological space. On
the other hand, a morphism a: £ = (E, p, X) -» £' - ( £ ' , p', X) in &(X) is a
continuous map a: E -» E' such that p' ° a = p; that is, a is "fibre preserving",
such that

(3.1) ax = a\l>-Hx):p-l{x)^p'-\x), x ^ X,

is a continuous map.
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Let £ = (£, IT, X) be a semi-simple topological algebra bundle and J / =
{(Ua,<pa, Ma)} an atlas of E. If u G lsom(Mp,Ma), then 'w G Isom(2R(MJ,
3»(M^)), with 'u(x) := x ° "» X e W(Ma) (numerical spectrum of Ma, [9]). The
map M -» 'M yields a bijection

(3.2) Isom^A^, Ma) s 'Isom(M/J, Ma) s {'«: u e Isom(M(8, Ma)}

through which one endows 'Isom(Af̂ , Ma) with the topology of the first member
of (3.2). Now, the continuity of \afj: Uan Up-* lsoms(Mp,Ma) (see (1.10),
(1.13)) implies the continuity of the (dual) maps

(3.3) X%: UanU^ <lsoms(Mp, Ma): x - X%a(x):= l[\aP(x)}

so that the system of transition functions A = {(Ua), (Xap), (Ma)}a defines a
(dual) system of transition functions A* = {(£/„), (\*0a),(Wl(Ma))}aon X.

So by adapting Theorem 1.2 to the present framework, one obtains a topologi-
cal (fibre) bundle £'. Namely, one considers the quotient space

(3-4) L

where the equivalence relation " ~ " on the disjoint union involved is given by

lxa = xp = x G Uan Up,
(3-5) (xa,xa) ~ (xp,Xn) ifandonlyif

The obvious projection map P: L -* X is, of course, continuous.
Thus, the topological algebra bundle £ = (E,TT, X) defines a fibre bundle

£' = (L, P, X) of fibre type 3tt(MJ. Namely, one gets an object of ^(X), which
we call the "spectrum bundle" of £ and denote by 2Ji(£).

On the other hand, given the topological algebra bundles £ = (E, p, X) and
£' = (E',p', X) of fibre types Ma, respectively, a bundle morphism h: £ -* £'
defines a morphism ("spectrum morphism ")

(3.6) m(h): 2R(r) = (L',P',X) - (L,P,X) ^

between the corresponding spectra bundles, as follows: Namely, if

(3.7) hx = h\ pl{x): p-'ix) ^Ma^M'a= p"\x),
ISO ISO

x G Ua, is the (canonical) continuous algebra morphism defined by h:£-»£' (see
(3.1)), then the continuous map

Ua X m{M;) B (x,X) - (x,hx-x) e Ua X Tl(Ma)
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entails a continuous map v: Ua(f/a X 2ft(Ma')) -» Ua(f/a X W(Ma)), so that
v\u xOT(A/-) := va. Thus, the continuous map

(3.8) h V = (U(I4 X 2R(K')))/~ - L s (U(t/. X

between the corresponding quotient spaces may be defined in a canonical way
(see (3.4), (3.5) and also [9, Chapter II, Section 8]). Moreover, for every x e X,
the map

K \ p i x y \ ) ( a ) ( J ^ )
homeo homeo

is continuous since hx = 'hx (see (3.7)); thus, the spectrum morphism W(h) := A
is well defined.

So the preceding discussion yields now the next

THEOREM 3.1. / / S(X) (resp. !F(X)) is the category of semi-simple topological
algebra bundles (resp. of fibre bundles) over a topological space X, then the
correspondence (see also (3.6))

(3.9) W: g(X) ^3F(X): Z<-+Wl(£)

yields a contravariant functor ("spectrum functor").

Let (Ya)aeK be a family of completely regular spaces and for any (a,/?) e K
X K, let lsom(Ya,Yp) be the set of homeomorphisms of Ya onto Yp. If u e
Isom(7a,y8), then w* e Isom(^(^) ,^c(yj) with «*(x):= X ° «, X e ^ c (^ )
(locally w-convex algebra of C-valued continuous functions on Yp in the com-
pact-open topology). Then, the map

(3.10) Isom(Ya,Yp) - I som(^(y / } ) , ^ (7 j ) : u ~ u*

is a bijection: Indeed, if u, v e Isom(7a, 7^), with w* = u*, then for any x e

^(Yp) we have x ° " = X ° v< a nd hence (Urysohn's lemma), u = v; that is, (3.10)
is 1-1. Moreover, every g e Isom(^c(7^), ̂ c(7a)) defines a ' j e Isom(2«(^c(7a)),
aK(^c(^))) = Isom(7a,7^) with 'g(x):=X°g, x e ^ W O - s i n c e by hy-
pothesis one has 3K(^c(7a)) = 7a, a e A: (see [9, Chapter III, Theorem 9.2]).

homeo

Now, given a fibre bundle i- = (E,p, X) and an atlas J ^ = {(£/„, <pa, 7a)}aof £,
let A = {(t/a), (X^a),(7a)} be the respective system of transition functions on X
(see (1.10), (1.13)). Then, A defines a (dual) system of transition functions
A = {(Ua),(kafi),(1fc(Ya))}aoa X, where the maps XQ/3 are given by

(3.11) Xa/J: UanUfi^ lsom(Ve(Yfi),Ve(Ya)): x - \aP(x):= [X^x)}*

(see (3.10)). The continuity of Xay8 follows by that of A^a: Ua O Up -*
lsoms(Ya,Yp), when IsomC^c(7^) ,^C(YJ) is endowed with the topology of
I s o m i ( 7 a , 7^) via the bijection (3.10).
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Now, we assume the local equicontinuity of lsoms(Ya,Yfi). (The last assump-
tion is valid if, for instance, Ya, Yp are metric spaces and by Isom(Ya, Yp) one
means isometries [3, Chapter X, §3.1, Examples, 2)].) Then (Theorem 1.2), one
obtains a locally w-convex algebra bundle #(£) = (E, ir, X) of fibre type ^c{Ya),
whose bundle space is given by E = (Ua([/a X %(Ya)))/ ~ , where " ~ " is the
equivalence relation (1.14) and the projection ir. E -* X is defined by (1.15). That
is, # (£) is an object of J>{X) (category of locally w-convex algebra bundles).

Moreover, if h: £ = (E, p, X) -> £' = (E',p', X) is a bundle morphism in
) , then a morphism

(3.12)

between the corresponding locally w-convex algebra bundles can be defined as
follows: If

(3.13) h x = h \ p - l { x ) : p - \ x ) = Y a ^ Y ' = p ' - \ x ) ,
homeo homeo

x e Ua, is the (canonical) continuous map defined by h: £ -* £' (see (3.1)), then
the continuous map

(3.14) Ma: Ua X VC(Y;) ^Uax Vc{Ya): (x,g) ~ (x,hx<>g)

defines a continuous map /x: \Ja(Ua X ^C{Y^)) -> Ua(C/a X ^c{Ya)), so that
f-\u xv(Y1):= !"•«• ^ ' s directly verifiable that [i is compatible with the equivalence
relation (1.14), whence |u defines a continuous map

(3.15) V(h): £' = (U(£/.x «&)))/- - E =

(see Theorem 1.2). Thus, the map

(3.16) <g(h)x - V(h)l-Hx): *'-\x) ^ Ve(Y:) - Vc(Ya) ^ v-l(x)
ISO ISO

for any x e X, is a continuous algebra morphism, since (3.14), (3.15) imply

nh)x(g) = g°hx,g*K(Ya).
So, now we get

THEOREM 3.2. Let $(X) (resp. ?F{X)) be the category of locally m-convex
algebra bundles {resp. of fibre bundles) such that IsomJ(ya, Yp) is locally equicon-
tinuous, Ya, a e K, being a completely regular space the fibre o / ^ e &{X). Then,
there exists a contravariant functor

(3.17) <g
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The next result identifies the algebra of continuous sections of the bundle
defined by (3.17) for a £ = (E,p, X) e &(X), as the algebra of C-valued
continuous functions on E. That is we have

THEOREM 3.3. Let £ = (E,p, X) be a fibre bundle {that is, an object of
over a paracompact space X, of fibre type a locally compact space Ya (a e K) and
^(1) = I the corresponding locally m-convex algebra bundle defined by Theorem
3.2. Then, one has

(3.18) Ve(E) =

within an isomorphism of locally m-convex algebras.

PROOF. By Theorems 2.1, 3.2 (see also (2.6), (3.11)) one gets the next isomor-
phism of locally m-convex algebras:

(3.19) r ( f ) = J : = {f s ( f j : fa(x) = la^x)rp(x), x<=Uan U^}

On the other hand, by considering a chart <pa: Uax Ya-+ p~l(Ua) c E one
defines the correspondence

(3.20) ^)3/^/.s/'9.e«'c(l/.xy.).

Thus, by considering the following (canonical) topological-algebraic isomorphism

(3.21) «: Vc(Ua X Ya) - Ve(Ua,Vc(Ya)): / „ - / „ ,

where

(3-22) Ua(x)](y):=fa(x,y),

(see [4, page 265, Theorem 5.3]), one defines the map

(3.23) d:Ve(E)->&:f~9(f)=f=(fa)a:= (<o(/oqpB))a.

Indeed, for any x e Ua n t/g, j a G 7a, one has by (1.5), <pa(x, >»„) =
?/»(*, \»«(*X.V«)), such that Ux^yJ = fp(x)(\pa(x)(ya)), that is /a(x) =
X ^ # i b i f/ ^ (see (3.19)). Moreover, # is an algebra morphism, since for any
/ , g G #c(£) one has / • g = / ~ g by (3.20). (Similarly for the linearity of 6.)
Now, 0 is 1-1, since for every/, g G #C(.E) with 0(/) = ^(g) one has (/„) = (ga),
that is, fa = ga for any a. Thus, fa = ga for any a (see (3.20)) and therefore
/ = g. Furthermore, $ is onto: So, if f = (fo) e 36 we define a continuous map
fa- UaXYa^C: (x,y)^fa(x,y):= (fa(x))(y) (see [4, page 265, Theorem
5.3]). By considering {ipa}aeK, a partition of unity subordinate to the open
covering p~\Ua) of E, one has / := Ha^Ja G <<?(£) such that fl(/) = ( f j = f
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(see (3.23)). Finally, 6 is bicontinuous: Indeed, the definition of the topology of
c Tltt^c(Ua,^c(

Ya)) implies that 6 is continuous if and only if qa°i°6 =
i

u-l°p'a is continuous, where qa. naVe(Ua,Ve(Ya)) ^ Vc(Ua,Vc(Ytt)) is the
canonical projection and p'a: <€c(lJa X Ya) -» Ve(E): fa ~ p'a{fa) := fa » p^ now,
the last map is certainly continuous. Conversely, if fs -» 0|<j, then (fs)a =
"(/« ° "Pa) ~~* ®\v(<j <£(Y » (see (3-23)), for any a e K, such that the bicontinuity
of (3.21) shows that u'\(ft)a) = (/,)„ -» 0 on Ve(Ua X Ya), for every a e K.
Thus, by definition of the topology of compact convergence on E — Uap~1(^a),
fs = Ea^a(/S)aconverges to 0 on ^C(E), and this completes the proof.

THEOREM 3.4. Let &(X) be the category of locally m-convex algebra bundles and
'^(X) the category of fibre bundles having completely regular bundle spaces—
locally compact fibres with X a paracompact space. Then, the functor #

£ -> %(£) (see Theorem 3.2) is fully faithful [7].

PROOF. If hlyh2: £ = (£, p, X) -»£' = (£ ' , p', X) are two morphisms in
^ ( X ) , such that ^(/ij) = #(/i2): #(£') -» # (O (see (3.12)), one has the equal-
ity of continuous morphisms

iso iso

between the corresponding topological algebras of sections (see Theorem 3.3).
Moreover, since E, E' are completely regular spaces, we have the homeomor-
phisms 3R(Ve(E)) = E, m(Ve(E')) = E' (see [9, Chapter III, Theorem 9.2]),
such that by (3.16) and the hypothesis concerning the fibres of £, £', we have
hx = h2: E -* E', which, in fact, shows that # is faithful.

On the other hand, if £ = (E, p, X), £' = (£ ' , p', X) are objects of '&{X), let
h: #(£') -» «"(£) be a morphism in the category £{X). Then, T(h):
r ( ^ ( D ) = ^ c ( £ / ) ~* rc^(£)) s ^ ( f ) is a continuous morphism of locally
w-convex algebras (see Theorem 3.3). Hence, by the hypotheses for E and E',
Wl(T(h)): E -» E' is a morphism in «f(X) such that V(W(T(h))) = h (see (3.6),
(3.7), (3.15), (3.16)), that is, «• K/M//.

The categories ^"(X) and '&(X) as above are not in general (anti)equivalent.
Under suitable conditions with respect to the (locally convex algebra) fibre of
^ e ^ ( I ) we take a category antiequivalence between the previous categories, as
Corollary 3.1 below, shows.

Now, let £ be a topological algebra bundle (object of <?( X)) whose fibre Ma,
a G K, admits a functional representation, that is ^(3K(Ma)) = Ma, within an
isomorphism of topological algebras. This is valid, for instance, in case of a
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semi-simple, w-barreled Ptak locally convex algebra Ma (for example, a semi-
simple Frechet locally convex algebra is of this type, cf. [10, Corollary 3.1]) for
which the corresponding Gel'fand map ga: Ma -* ^c(3R(Ma)), a e K, is an
onto map (that is, ga is an algebraic onto isomorphism; see [10, Theorem 3.1]).
Then, for the corresponding spectrum bundle 9W(£) e ^{X) (Theorem 3.2) one
has ^(Tt(£)) = | , such that the functor (3.17) is essentially surjective [7], in such

ISO

a way that Theorem 3.4 implies the next result.

COROLLARY 3.1. Let 'S'(X) be the category of topological algebra bundles over a
paracompact space X whose fibres admit functional representations. Moreover, let
'JF(X) be the category of fibre bundles having completely regular spaces and locally
compact fibres. Then, one has

(3.24)
within a category antiequivalence.

SCHOLIUM 3.1. Let ^a{X) be the category of holomorphic fibre bundles over a
complex manifold X with fibres (complex manifolds) Ya, a e K, and the obvious
morphisms. Then, there exists a contravariant functor
(3-25) a: ^ ( A - ) - » * „ ( * ) : «-»„(£) ,

where $a{X) is the category, whose objects are topological algebra bundles over
X of fribre type the locally w-convex algebras o{Ya)a^K, of C-valued holomor-
phic functions on Ya (see [9, Chapter II, Section 10, Example 10.3]). Moreover, if
I \ a (£)) is the algebra of holomorphic sections of | = (£,p,Ar)eJ^(A'), then
(3.26) a (£ ) = T(a (0 ) ,

within an isomorphism of locally w-convex algebras; this can be shown by
adapting Theorems 2.1, 3.3 to the present framework. Moreover, let '&a(X)
denote the category of holomorphic fibre bundles £ e .Wa(X) having Stein mani-
folds as bundle spaces. Then, analogously to Theorem 3.4, we also have that the
functor a: &a(X) -> Sa{X) (see (3.25)) is fully faithful.

Furthermore, let '£n(X) be the category of locally w-convex algebra bundles
£ e Sa(X), whose fibres Ma, a e K, admit "analytic representations", in the
sense that a(Tt(Ma)) = Ma, within an isomorphism of locally w-convex algebras
(see the analogous remarks before Corollary 3.1). This happens, for example, if
Ma is a Stein algebra; that is, a topological algebra isomorphic to the Frechet
algebra of holomorphic functions on a Stein space (see [9, Chapter III, Section 9,
Example 9.3, (9.39)]. Then, via analogous considerations to those of Corollary 3.1
(see also (3.26) and [9, Chapter III, Section 9, Example 9.3, Theorem 9.3]), one
gets

(3.27)

within a category antiequivalence.
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Finally, we note that the relations (3.18), (3.26) specialize to the facts that
VC(XX Y)= Wc(X,<gc(Y)) and a(X X Y) = a(X,a(Y)) within isomorphisms
(see [9, Chapter VI, Section 4]).

4.

APPENDIX. In Section 3 we defined the spectrum bundle 2R(£) of a given
topological algebra bundle £ = (L, P, X) (see (3.4), (3.5)). In this section we
supply another realization of 2ft(|), via the spectrum of the topological algebra
of sections F(£).

Thus, we come first to the identification of L as the spectrum of the topological
algebra a(£) (see Theorem 4.1). So, for Ua e <% (: open covering of X) we
consider the map

(4.1) i,o: Ua X r(£) - Ma: (x,y) ~ Va(x,y):= ta(y(x))

such that the partial map

(4.2) I).,,: r ( 0 - Ma: y ~ V , ( Y ) = = I» . (* ,Y) ,

with x G Ua, is a continuous algebra morphism, as composition of the continuous
morphisms

(4-3) r(i)->T(Ua,Z)^«c{Ua,Ma)->Ma

where ia is the canonical restriction map, / the isomorphism (2.3) and ea x the
(canonical) evaluation map, that is,

Vc{Ua, Ma) 3 Ta ̂  eajra):= ra{x) e Ma.

LEMMA 4.1. If X is a compact space and Ma = M, for every a e K, then (4.2) is
a continuous epimorphism.

PROOF. If a e M and {>^a}a is a partition of unity subordinated to # (finite
covering of X), we define Ya(^):= <Pa(x, ta(x)a), x G Ua and ya(x) = O(x),
x e Ua. It is clear that the above maps are continuous such that y := Haya is a
section of | . Thus, one gets TJO,X(Y) = ta(y(x)) = ta(Zaya) = a.

Now, by considering the continuous map

(4.4) va: UaX W(Ma) ^ Wl(T(Z)): (xa,Xa) ~ Xa°Va,Xa

the map v: T s Uo(t/O x 3K(MJ) -» 3R(r((O) such that v\UaXmMay= "«. i s a

well defined continuous map compatible with the equivalence relation " ~ "
defined in (3.5), in the sense that tx,t2 G T and tx ~ t2, implies v{tx) = v(t2).
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Hence, v yields a continuous map

(4.5) *:Lsr/~-»3R(r(0)
which is, in particular, a homeomorphism under suitable conditions for the base
space X and the fibre Ma of the topological algebra bundle £ (Theorem 4.1). To
get the desired identification some additional comments are necessary. Thus, the
following lemmas are analogous to those of [5, Lemmas 1.1, 2.1] within the
present framework.

LEMMA 4.2. Let £ = {E, IT, X) be a topological algebra bundle of fibre type a
topological algebra M and Ql= {Ua}a an open covering of X. For Ua G Ql and
f e #c( X, M) whose support is contained in Ua, we define

y(x):=q>a{x,f(x)), x&Ua,

:= O(x), x 0 Ua.

Then, y G T(£) such that ta ° y = f\Ua.

LEMMA 4.3. / / N is a topological fK-algebra (A is a commutative topological
algebra; [8]), then every regular ideal of N is also an A-ideal.

In the sequel by a Waelbroeck algebra we mean a unital (topological) ^-algebra
(: its group of units is an open set, [9, Chapter I, Definition 5.2]) with a
continuous inversion.

LEMMA 4.4. Let £ be a topological algebra bundle over a compact space X with
fibre a Waelbroeck algebra M, and let %- {Ua}a^K be an open covering of X.
Then, a 2-sided ideal I of T(t-) is proper if and only if for some x0 G X, every
Ua G <2f with x0 e Ua and every y G / , ta(y(x0)) # 1 (: identity of M).

PROOF. We suppose that for every x G X there is some Ua3 x and yx e / such
that ta(y(x)) = 1 e M. Then (/a(yx(j)))~1 exists for all y in a neighborhood
Nx c Ua. We shrink {£/„} to get neighborhoods Vx, Wx satisfying Vx<zVxQ Wx

c Wx c Nx. If Xj, / = 1,...,«, are such that {V } to define a finite covering of
X, then we can consider ft G ^(X) in such a way that /, = 1 on Vx_, /, = 0 off
wx,> ° < fi(x) < 1. f o r a11 x G X. Thus, the relation

= 0, otherwise,
defines a continuous map g,: X -> M, since x •-> (?a (y^X^c)))"1 is continuous,
and moreover support{gt) c t /a . So, there is a section y, G F(£) such that
;«,(V/(^)) = gi(x) (Lemma 4.2) and, moreover, ta ((y, • yx){x)) = 1, for x G f̂  ,
while y,:= y, • yx G /. If {>p,}"=1 is a partition of unity subordinate to the
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covering {Vx.}, then ^, • y, e / (Lemma 4.3, for N = I \£ ) and A = ^(X)), so
that y:= E ^ i / ^ • y, G ^ But, for any x e X = \J?_1VX there is some Fx 3 x
such that /„ (?(*)) = Y.Hj-1tJ(x)tai(.yJ(x)) = E ^ / x ) -'l = 1, that is, /cannot
be a proper ideal of T(\). Conversely, we suppose that / is a proper ideal. Then,
by considering for every x e X the existence of a Ua 3 x with ta(y(x)) = l e M ,
for a y e / , one has y(x) = 1, a contradiction, since / is a proper ideal.

Now, by a Gel'fand-Mazur (topological) algebra we mean a topological algebra
E such that for every (2-sided proper) maximal regular closed ideal M c E one
has E/M = C, within a topological algebraic isomorphism [9, Chapter IV,
Definition 9.5]. This definition is equivalent with saying that every (2-sided)
closed regular maximal ideal of E is the kernel on a continuous character of E
(see [9, Chapter IV, Section 9(5)]).

Thus, we are in the position to prove the following basic result.

THEOREM 4.1. Let £ = (E, ir, X) be a topological algebra bundle over a compact
space X of fibre type a commutative Gel'fand-Mazur Waelbroeck algebra M, and let
Ql = {Ua}a be an open covering of X. Then,

(4.6) L

within a homeomorphism (see (4.5)).

PROOF. If pa is the composition Ua X 'SR(M)^-* T -» L, then by (4.4) one has

0° Pa = "«, s u c h t h a t e is injective. Indeed, if 6(y) = d(y'), with y = pa(xa, x j ,
y' = Pp(xti> Xp), in L, to show y = / , it suffices to prove (xa, x j ~ (xp, xp)
(see (3.5)). So, 6(y) = 8(y') entails

(4-7) "«(*«, Xa) = "p(x

and hence xa = x^ e UaC\ Up. For if xa + Xp, since X is Hausdorff, there exist
open sets Wa, Wp with xa e Wa c t/a and x$e WpQ Up and Wan Wp= 0.
Thus, one gets / e «"(A") such that / (x^) = 1, / = 0 off Wp and 0 < f(x) < 1
for every x & X. Then, for / : = f-leV{X,M) ( ( / • l)(x) := / ( * ) • 1; 1 is the
identity of M), we can find a y e F(£) (Lemma 4.2) such that va(xa, XCXY)

 =

X«(/(*«) • 1) = / (*«) = 0 and Pj8(x^, x^Xv) = X/»(/(*/i) • 1) = /(*/.) = L t h a t
is, ",(xo, x o ) ^ "/sC /̂s. X ŝ) a contradiction to (4.7). Now, for x = xa = xfie Ua

n Up one has r\ax = XO^(JC)^>JC such that by (4.2), (4.7) xa°Va,x = Xp°Vp,x>
that is, (xa ° ^ap(x))°Vp,x = Xp ° Vp,x- But i\p x is an epimorphism (Lemma 4.1)
so that X*pa(xXxa) = X^ (s e e (3-3))-

We prove next that 0 is surjective: Indeed, if x G ^ ( T ( | ) ) , then ker(x) = / is
a (2-sided) closed maximal ideal of F(£), such that for some x0, every Ua<Xo e <&
and any y e / we have ta(y(x0)) ¥= 1 (Lemma 4.4), that is, -qax (I) =£ M. We
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prove that t)aXo{I) is a maximal ideal. Thus, by Lemma 4.1, i)aXo(/) is an ideal
of M and let / be a maximal ideal such that t\a Xo(I) ^ /. But Tj~io(7) is an ideal
in I\£) (Lemma 4.1) so that the relation I c T)~io(7) implies / = n«,io(^) and
therefore / = i)a>Xo(I), a contradiction. Thus, rjatX(t(I) = 70 is a (2-sided) closed
(M is a ^-algebra) maximal ideal, so that let %a

 G Ti(M) with Io = ker(xa).
Consequently, one gets an element (x0, xa) e t/a X 9ft (Af) such that ^(^O'Xa)
= X since ker(x) = ker(Xa ° va,Xo^ therefore 8(pa(x0, x j ) = X, by the very
definitions. In particular, one can prove that x = Xa ° 'Jo,* > where x0 e X is
uniquely defined (the proof is a similar one as that for the injectivity of 6).

Finally, since L is compact [4] and 9ft (T(£)) Hausdorff [9, Chapter III, Section
1], one has immediately the continuity of 6~l, which completes the proof.

SCHOLIUM 4.1. One might ask to have an analogous situation to that of
Theorem 3.4 concerning the ("spectrum") functor 3ft: i(X) -> 3F(X). Thus, we
notice that 3K is full and faithful, if for every % = (E,<IT,X)& £{X), the base
space X is compact and its fibre M a unital commutative locally m-convex Waelbroeck
algebra admitting a functional representation, such that s/ut(M) (self-homeomor-
phisms of M) is an equicontinuous subset of Hom(M, M). In this respect, the
hypothesis that M admits a functional representation entails that the algebra of
sections r(£) admits also a functional representation and this leads to fullness
and faithfulness of ffll; see Theorem 4.1.

Moreover, suppose that for every | = (E, p, X) £ ir(Ar), the bundle space E
is completely regular and its fibre Y a compact space; besides we consider the
structure group s/ut(Y) endowed with the topology of compact convergence.
Thus, one proves that the "spectrum functor" Wl is essentially surjective, so that
the above categories £{X) and &(X) are antiequivalent. However, we remark
that the last conclusion about W is attained under a stronger hypothesis than
that for the similar result concerning the functor # (see Theorem 3.4, Corollary
3.1).
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