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ABSTRACT. Anderson and Ohm have introduced valuations of 
monoid rings k[T] where k is a field and T a cancellative torsion-free 
commutative monoid. We study the residue class fields in question 
and solve a problem concerning the pure transcendence of the 
residue fields. 

1. Introduction. In this paper we give a solution to a problem posed by 
Anderson and Ohm on valuations of group rings ( [1], p. 149). We do this in a 
general setting by working with quotient fields of group rings and twisted group 
rings. Throughout k will denote a field, A a torsion-free additive abelian 
group and k(A) the quotient field of the group ring k[A] or the twisted group 
ring kT[A ], which are known to be integral domains. Even though the latter rings 
have been studied extensively, little is known about the quotient field k(A). The 
problem in [1] quickly leads to the question as to when the field extension 
k(A)/k is purely transcendental (Proposition 3.1). Consideration of a natural 
valuation (Corollary 2.3) provides the answer. 

Dealing with monoid rings, one would expect that the order structure of the 
monoid may have even a stronger influence on the factoriality of monoid rings. 
This is taken in Corollary 2.4. It is interesting to compare our proof with that 
of Gilmer and Parker in [5, 4], where a stronger result is presented. 

In Section 4 we show how twisted group rings arise in the description of 
residue class fields of natural valuations defined on group rings. 

We denote by R' the set of non-zero elements of R. It is also worthwhile to 
mention an often used fact on group rings. A torsion-free (abelian) group A 
carries a total order ^ (which we can think of being fixed), so we may write an 
element y ¥= 0 in the group ring k[A] uniquely as a finite sum 
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m 

7 = 2 apc"1 (0 ¥* at G k, ax < . . . < am m A). 
i = i 

An element of k(A) is the quotient of two such expressions. 
The authors are grateful to Professor Laszlo Fuchs for stimulating cor­

respondence on the main problem discussed in the paper. The form of the 
statement of Corollary 2.2 is due to him. They are also thankful to Professor 
Jack Ohm for many insights and to the referee for his generous and encouraging 
comments on earlier versions of this work. 

2. k(A) as quotient field of an UFD. We begin with an easy observation. 

PROPOSITION 2.0. Let B be a subgroup of the torsion-free abelian group A and 
{at:i G / } a family of elements of A. Then the set {xai:i G / } ç k(A) is 
algebraically independent over k(B) if and only if the set {«•:/ G / } is linearly 
independent (over Z) mod B. Thus ifA/B is free abelian, then k(A)/k(B) is purely 
transcendental. 

PROOF. If nxax + . . . + ntat = /? G B(nt G Z) is a non-trivial relation, say 
« ! , . . . , ns > 0, ns+x, . . . , nt < 0, then 

(x"')"1 • • • (*"')"' - * V 5 + , r ^ + 1 • • • (x"')""' = 0 

shows that JC"1, . . . , xa< are algebraically dependent over k(B). On the other 
hand, if al9 . . . , at are linearly independent mod B then no expression of the 
form 2 yx"'a' + ---+"'aiy G k[B]) can vanish because no terms with formally 
different exponents can cancel. • 

The next result, which is as easy, leads to the converse. 

THEOREM 2.1. Let k(A) be the quotient field of the group ring k[A] or twisted 
group ring kT[A]. Let R be a unique factorization domain (UFD) having k(A) as 
its quotient field. If U(R) is the group of units ofR, then the quotient AIA C\ U(R) 
is free abelian. 

PROOF. Consider the group of divisibility (k(A) )7U(R) which is free abelian, 
since R is an UFD ( [7], p. 118). If 0:(k(A))' -> (k(A) )7U(R) is the canonical 
semi-valuation, then 0 restricted to A has kernel A n U(R). Thus the image 
AI A n U(R) is free. • 

COROLLARY 2.2. Let k(A) be as in the hypothesis of Theorem 2.1 and B a 
subgroup of A. The field extension k(A)lk(B) is purely transcendental if and only 
ifAIB is free. (Then B is a summand of A). 

PROOF. If k(A)lk(B) is purely transcendental, we can take R to be a suitable 
polynomial ring over k(B) and A Pi U(R) = B. By Theorem 2.1, AI B will be 
free. The converse is Proposition 2.0. • 
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In the following result, the case when A:[v4 ] is an ordinary group ring was also 
communicated by Warren L. May. 

COROLLARY 2.3. In both the ordinary and twisted group ring cases, the field 
extension k(A)/k is purely transcendental if and only if A is free abelian. 

If S is a torsion-free cancellative monoid, then S has the structure of a totally 
ordered monoid. It is not necessary that S be positively ordered; i.e., 0 ^ S. 
Gilmer and Parker [5] have characterized monoid rings k[S] which are factorial. 
If k[S] is factorial, it is not true that S is a free monoid ( [4], Theorem 14.16). 
The case, when it is indeed so, is influenced by the way S is totally ordered. We 
first present a weaker version as a corollary to Theorem 2.1. 

COROLLARY 2.4. Let S be a monoid and k a field. Assume that S is positively 
ordered in some ordering of S. If the monoid ring k[S] is factorial, then the group 
hull of S is free abelian. 

The authors are thankful to the referee for drawing their attention to the 
following stronger result ([4], Theorem 14.16). A direct proof in our spirit 
would use the semi-valuation 8 that appears in the proof of Theorem 2.1. 

THEOREM 2.5 (Gilmer and Parker). Let S be a monoid and k afield. Then the 
following conditions are equivalent for the monoid ring k[S]: 
(1) S is a free monoid isomorphic to the direct sum 0 Z + of copies of the monoid of 
non -negative in tegers 
(2) k[S] is a polynomial ring 
(3) k[S] is factorial and the monoid S is positively ordered in some ordering 
ofS. 

The converse of Corollary 2.4, of course, is not true, as is seen by taking 
S = {0, 2, 3, . . . } ; the monoid ring k[S] in this case is not even integrally 
closed. 

On the other hand, combining Pontryagin's example (Proposition 2.15, p. 101 
in [6] ) with Corollary 2.4, we get an example of a non-free abelian group G 
having the following properties: 

(i) The group ring k[G] is factorial 
(ii) For no ordering P of G, the monoid ring k[P] is factorial. 

3. The problem posed by Anderson and Ohm. We now turn to the problem 
posed in [1]. Let T be a cancellative torsion-free commutative monoid and 
<j>:T —> C a monoid homomorphism into a totally ordered abelian group C. 
Clearly, <j> can be extended uniquely to a group homomorphism <j>:A —> C, where 
A denotes the group hull of T. Observe that, for any field k, the quotient fields 
k(T) and k(A) of the semigroup ring k(T) and the group ring k[A] are 
identical. 
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Recall ( [1], p. 147) that the infimum valuation v:&[r]' —» C is defined by 

v(^aA= inf {#Yl.)} 

Evidently, k is a subfield of the residue class field kv of the valuation v. In [1] an 
example (p. 149) is given, where kv/k is purely transcendental and the problem 
is posed to characterize the groups C for which the residue class field kv is an 
infinite pure transcendental extension of k. Surprisingly, the pure transcenden­
tal character of kv/k depends only on the kernel of <f>, as we shall show below. 
First, a preparatory result, which may be deduced from Propositions 1.3 and 1.4 
of[ l ] . 

PROPOSITION 3.1. The residue class field kv is isomorphic to the field k(H) 
where H = ker 4>. 

PROOF. We adopt the notation of [1]. We will show that the valuation ring 
Rv of v satisfies Rv = k(H) + Mv where Mv is its maximal ideal; as k(H) n 
Mv = 0, that Rv/Mv = k(H) will follow at once. Since inclusion in one way is 
obvious, it suffices to prove Rv Q k(H) + Mv. 

Let f/g be a unit in Rv, where f g ^ k[T]. We may assume that v(f) = 
v(g) = 0. We may write 

m n 

/ = 2 a,xa' + fl9 g = 2 bjxÏJ + g l (ah bj G k) 
z = l j=\ 

where az, j8- G H and fx = 0 or v(/J) > 0, and gj = 0 or v{gx) > 0. Thus 
fl9 gx e Mv, while f = 2 ^ and 17 = 2 i ^ e ^ [ i / ] . Since 

/ / g - f/Tj = (/,g - g l / ) / g ( g - gx) e Mv 

and £/TJ e ^ ( / / ) , it follows t h a t / / g G ^( i / ) + Mv. • 

We see that if <j> is an injective map, then kv coincides with k. Otherwise, kv/k 
is a transcendental extension. Combining Corollary 2.3 and Proposition 3.1, we 
obtain: 

THEOREM 3.2. Let 4>:A —> C be a group homomorphism of the torsion-free 
abelian group A into a totally ordered abelian group C, and v the infimum valuation 
of the field k(A) defined via <j>. Then the residue class field kv of v is a purely 
transcendental extension of k if and only if ker <£> is free. 

Notice that k(H)/k is a finitely generated extension if and only if H is a 
finitely generated group. With this observation, the question posed by Anderson 
and Ohm is readily answered: 
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COROLLARY 3.3. With the same notation as in the theorem, kv/k is an infinite 
pure transcendental extension if and only if ker <j> is free and not finitely 
generated. 

4. The twisted group ring. In [1], Anderson and Ohm defined certain other 
valuations of monoid rings (Proposition 2.1, p. 150). We will show in this 
section how twisted group rings naturally appear as subrings of the residue class 
fields in question. 

Let C be a totally ordered abelian group and let w.k' —> C be a valuation of 
the field k. Let T, cj>, A and <f> be as in Section 3. Recall that the Anderson-Ohm 
valuation v of k[T] into C is defined by 

vl^aax
a)= inf {n(flj + *(af-) } 

W l ' / i = l,2,. . . ,5 

where a„ G i " and a- ¥= a, for / ¥= i. We are interested in the residue class field 
of v, where v is naturally extended to the quotient field k(T) of k[T]. 

We recall next the definition of twisted group rings ([1], p. 154). Let F 
be a field and H a torsion-free abelian group. An F-twisting of H is a map 
T:H X H —> F' satisfying the following conditions: 

(i) r(a, p) = T(& a) and 
(ii) r(a, pyr{a + 0, y) = rtf, y)r(a, p + y) 

for all a, /?, y G / / . The twisted group ring FT[H] of 7/ over F with respect to the 
twisting T is defined as follows: FT[H] = ®aŒHFxa, the F-vector space with 
basis {xa}aŒH; multiplication is defined distributively via xax^ = T(OL, P)xa+^. 
The twisted group ring is indeed a domain. For this and other relevant remarks, 
we refer to [1], p. 154. 

To find the residue class field kv of the Anderson-Ohm valuation v, we will 
first define a ku- twisting r of the subgroup H = <j>~l(cj>(A) n u(k) ) of A; here 
&M is the residue field of u. We will denote by Ru and Rv the valuation rings of u 
and v respectively. Let 0U:RU~> ku be the natural homomorphism and Mu and 
Mv the maximal ideals of Ru and i?v respectively. 

Choose a family { j y } Y G / / of elements of k as follows: Fix an ordering ^ of 
7/ as an ordered group. If y = 0 in H, choose yy = 1; if y > 0 in / / , then 
<£(y) e u(k') so that we may choose yy G k' with w(jy) = 4>(y)l if y < 0 in i/, 
choose 7y = y[_\y 

PROPOSITION 4.1. The map T:H X H —> k'u defined by T( (a, ft) ) = 

^(JW/?. )^ V 1 ) gives a ku-twisting of H. 

PROOF. Note that T goes into k'u as 
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so that ya+pyâl J7^1 is a unit of the valuation ring of u. It remains to verify 
Properties (i) and (ii) of the twisting. Property (i) is clearly valid. As for (ii), 
if a, ft and y e H, then write ya+p = eyayp and y(a+fi+y = Wa+pyy w h i l e 

JWos+y) = /%^+Y a n d yp+y = tyyy where e, 77, /X and X are units of the 
valuation ring of u. From this we get TJC = JUÀ so that 

r( (a, 0) )r( (a + ft y) ) = r( (0, y) )r( (a, 0 + y) ), 

as wanted. • 

PROPOSITION 4.2. The residue class field kv of the Anderson-Ohm valuation is 
the quotient field of the twisted group ring kr

u[H]9 where the twisting r is given as 
in Proposition 4.1. 

Proposition 4.2 will be immediate from Propositions 4.4 and 4.5. 

LEMMA 4.3. Let f g e k[T]' and assume that flg is a unit of Rv. Then there 
exist integers s, t ^ 1 and elements a, b, f, gx e k[T] with the following 
properties: 

(i) a = 2 J = 1 aax
a\ b = 2 j = 1 6 ^ with u(aa) 4 «a,.) = 0 = u(bp) 4 

<K/*/) /or #// / = 1, 2 , . . . , s and] = 1,2,... 9t 
(ii) v(/i) > 0 and v(gx) > 0 and 
(m)f/g = (a+fx)/(b 4 g l ) . 

PROOF. Clearly / and g are non-zero elements and we may write / = 
2 ; = i aax

ai 4- fx and g = 2 j = i bpxrJ 4 gx, for some s, t i^ 1 with w(#a) 4-
</>(<*,) = w(fy) + <t>(Pj) for a l l ' / , 7 (1 ^ i ^ j , 1 ^ y ^ O ' a n d 
v(f\) > VC0 and v(g]) > v(g). If we multiply the numerator and denominator 
by bp x~^x we get the desired representation, after an obvious change of 
notation. 

PROPOSITION 4.4. Define a mapping \p:Rv —> kT
u(H) as follows: If fig e Mv 

then yp(f/g) = 0. If fl g is a unit of Rv, choose a representation fI g = (a 4 f)l 
(b + gj) as m Lemma 4.3 0«d define 

77iew //*e mapping \p is well-defined and \{J maps Rv onto kT
u(H). 

PROOF. Notice in the first place that u(aaya) = u(aa) 4- <£(«,-) = 0 so that 
*M(flal.J

;al)
 e ku> similarity 6u(bfiyfi) e fcM so that ^ goes into kT

u(H)L 

Let us write « = 2 / = i 0u(aaya)x
ai with a similar expression for b. We have 

shown above that âlb e kT
u(H). 

To show T// is well defined, let / / g = (c 4 f2)/(d 4 g2) be another 
representation of / / g as in Lemma 4.3, where 
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= ( i c Y x 4 a n d J = ( i : A / - ) , 

with p, q = 1, w(cy ) 4- ^>(ŷ ) = u(d8 ) + <#>(5m) = 0 for all e and m involved 
and v(f2) > 0 and v(g2) > 0. We want to show âlb = ~cld. We will show 
âd = be in kT

u[H]. 
Let X e H be an exponent that appears with a non-zero coefficient Jx in the 

product âd. Taking into account the twisting T in question, this coefficient ~zx is 
given by 

(i) 

We will show that Ix also appears as a non-zero coefficient of b~c. To this effect, 
we consider the equality of the two representations for fig which gives 

(2) (a + f0(d + g2) = (b + gl)(c + f2) 

Now X appears as an exponent with a non-zero coefficient in the expression for 
the term on the left side of (2), and so also in the expression for the term on the 
right side of (2). Comparing these coefficients, we get 

2 aads I + a s u m 2 W/i of terms wh, where u(whyx) > 0 

( 3 ) / \ I \ = I 2 bocY + a sum 2 w'hf of terms Wh, where u(w'h,yx) > 0 
\pj + ye = \ Hj Ye! \ W I 

Moreover u(aad8 yx) = 0 = u(bpcy yx). If we multiply both sides of (3) by yx 

and apply the mapping 0U9 we get 

(4) 2 0u(aadKyx) = 2 ^M(V jx) 
« /+5;n=A ' m fij+ye=\ 

The term on the right side of (4) is easily checked to appear as coefficient of x 
in the expression for b'c in the twisted ring kT[H] and it is, of course, Ix as we 
wanted to prove. Thus every non-zero coefficient of âd appears in the ex­
pression for b'c and by symmetry we have âd = b'c. 

Finally, it is clear that xp is onto. This completes the proof of Proposi­
tion 4.4. 

PROPOSITION 4.5. The mapping \p defined in Proposition 4.4 is a homomorphism 
of rings. 
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PROOF. This is routine and is facilitated by working with units of Rv: If 
0 = 2 aax

ai and b = 2 b^J with u(aa) + <£<>;) = 0 = w ( ^ ) + «jfy) then 
^(0 + 6) = I//(Û) + *K*) and *Ktf&) = \p(a)\p(b), the latter product being in the 
twisted group ring. 

We now can solve a more general problem than the one posed in [1]: 

COROLLARY 4.6. Let A, k, u and H be as in the introduction of this section. Ifv 
is the Anderson-Ohm valuation of k(A) extending the valuation u of k, then the 
residue class field kv is a purely transcendental extension of the residue class field 
ku if and only if the subgroup H is free abelian. • 
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