ON THE BERNSTEIN-SZEGÖ THEOREM FOR COMPLEX POLYNOMIALS

D. A. BRANNAN AND CH. POMMERENKE

Let $p(z)$ be a complex polynomial of degree less than or equal to n. Generalizing the well-known Bernstein theorem, Szegö (3) has shown that

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqq n \max _{|z|=1}|\operatorname{Re} p(z)| .
$$

We shall give a partial generalization of this result.
Theorem. Let $p(z)$ be a polynomial of degree at most n. Let R be the radius of the largest disc contained in $G=\{p(z):|z|<1\}$. Then

$$
\max _{|z|=1}\left|p^{\prime}(z)\right|<e R n .
$$

Since $R \leqq \max _{|z|=1}|\operatorname{Re} p(z)|$, we obtain Szegö's result, but with a worse constant. It would be interesting to see whether it is possible to replace the constant e by 1 . If so, $R z^{n}$ would be an extremal for all n, and $R\left(z^{n / 2}+\frac{1}{2} z^{n}\right)$ another extremal for even n.
The proof is based on the following result of Ahlfors (1) (cf., e.g., 2, p. 321). This result corresponds to the estimate $\lambda \geqq \frac{1}{2}$ for the Landau constant.

Lemma (Ahlfors). If $f(z)$ is regular in $|z|<1$, then

$$
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \leqq 2 R(f) \quad(|z|<1),
$$

where $R(f) \leqq \infty$ is the supremum of the radii of all discs contained in the plane domain $\{f(z):|z|<1\}$.

Proof of the theorem. Let $f(z)$ map $|z|<1$ conformally and one-to-one onto the universal covering surface of G. Then $p(z)$ is subordinate to $f(z)$; that is, $p(z)=f(\phi(z))$, where $\phi(z)$ is regular in $|z|<1$ and satisfies $|\phi(z)|<1$. It follows that

$$
\left|\phi^{\prime}(z)\right| \leqq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}} \quad(|z|<1) .
$$

From the lemma we therefore obtain

$$
\left|\phi^{\prime}(z)\right|=\left|\phi^{\prime}(z) f^{\prime}(\phi(z))\right| \leqq \frac{1-|\phi(z)|^{2}}{1-|z|^{2}}\left|f^{\prime}(\phi(z))\right| \leqq \frac{2 R}{1-|z|^{2}} .
$$

Received November 17, 1967.

Since $p^{\prime}(z) / z^{n-1}$ is regular at infinity, the maximum principle shows that for $0<r<1$

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqq \max _{|z|=r}\left|\frac{p^{\prime}(z)}{z^{n-1}}\right| \leqq \frac{2 R}{r^{n-1}\left(1-r^{2}\right)}
$$

The choice $r=[(n-1) /(n+1)]^{\frac{1}{2}}$ makes the right-hand side minimal. We obtain

$$
\max _{|z|=1}\left|p^{\prime}(z)\right| \leqq 2 R\left(\frac{n+1}{n-1}\right)^{(n-1) / 2} \frac{n+1}{2}<R \frac{n(1-1 / n)}{(1-1 / 2 n)(1-1 / n)^{n}}<e R n
$$

We wish to thank Professor Rahman for discussing this problem with us.

References

1. L. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc. 43 (1938), 359-364.
2. G. M. Golusin, Geometrische Funktionentheorie, Hochschulbücher für Mathematik, Bd. 31 (VEB Deutscher Verlag der Wissenschaften, Berlin, 1957).
3. G. Szegö, Über einen Satz des Herrn Serge Bernstein, Schr. Königsb. gelehrt. Ges. Natur. Kl. 5 (1928), 59-70.

University of Maryland, College Park, Maryland;
Technische Universität, Berlin, Germany

