
J. Plasma Phys. (2023), vol. 89, 955890201 © The Author(s), 2023.
Published by Cambridge University Press

1

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.
doi:10.1017/S0022377823000235

The DESC stellarator code suite
Part 3: Quasi-symmetry optimization

D.W. Dudt 1, R. Conlin 1, D. Panici 1 and E. Kolemen 1,†
1Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

(Received 31 October 2022; revised 1 March 2023; accepted 2 March 2023)

The DESC stellarator optimization code takes advantage of advanced numerical methods
to search the full parameter space much faster than conventional tools. Only a
single equilibrium solution is needed at each optimization step thanks to automatic
differentiation, which efficiently provides exact derivative information. A Gauss–Newton
trust-region optimization method uses second-order derivative information to take large
steps in parameter space and converges rapidly. With just-in-time compilation and GPU
portability, high-dimensional stellarator optimization runs take orders of magnitude
less computation time with DESC compared to other approaches. This paper presents
the theory of the DESC fixed-boundary local optimization algorithm along with
demonstrations of how to easily implement it in the code. Example quasi-symmetry
optimizations are shown and compared to results from conventional tools. Three different
forms of quasi-symmetry objectives are available in DESC, and their relative advantages
are discussed in detail. In the examples presented, the triple product formulation yields the
best optimization results in terms of minimized computation time and particle transport.
This paper concludes with an explanation of how the modular code suite can be extended
to accommodate other types of optimization problems.

Key words: fusion plasma, plasma confinement, plasma devices

1. Introduction
1.1. Motivation

Stellarators are an attractive candidate for fusion energy generation due to their
potential for steady-state operation and reduced susceptibility to major disruptions. Unlike
axisymmetric configurations such as tokamaks, the three-dimensional (3D) magnetic
geometry of stellarators unfortunately does not guarantee that all charged particles will
be confined by these devices. Trapped particles, which do not sample full magnetic field
lines, are subject to radial drifts that can cause them to cross magnetic flux surfaces
and leave the plasma volume. This necessitates stellarator optimization: the search for
magnetic geometries that maximize the confinement of charged particles. There are
many other physics and engineering objectives that are also important qualities of an
‘optimal’ stellarator design, including the stability of the equilibrium magnetic field and
the complexity of the coils needed to generate that field. The design space of stellarators is

† Email address for correspondence: ekolemen@princeton.edu

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4557-3529
https://orcid.org/0000-0001-8366-2111
https://orcid.org/0000-0003-0736-4360
https://orcid.org/0000-0003-4212-3247
mailto:ekolemen@princeton.edu
https://doi.org/10.1017/S0022377823000235

2 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

very large – their 3D external magnetic fields posses approximately an order of magnitude
more degrees of freedom than tokamaks (Boozer 2015) – and this high-dimensional
optimization problem is computationally challenging. Developing efficient methods to
search this large parameter space and find optimal solutions is essential for the continued
improvement of stellarator performance towards practical energy production.

An ideal magnetohydrodynamic (MHD) static equilibrium magnetic field B and current
density J satisfies

J × B = ∇p, (1.1a)

∇ × B = μ0J , (1.1b)

∇ · B = 0, (1.1c)

throughout the plasma volume, where μ0 is the magnetic constant and p is the pressure.
Magnetic field lines are generally chaotic in 3D geometries, but nested flux surfaces are
desirable for achieving higher plasma pressures. This additional requirement of magnetic
surfaces is given by

B · ∇ψ = 0, (1.2)

where 2πψ is the toroidal magnetic flux through a surface of constant toroidal angle φ.
Equilibrium solutions that meet the criteria of (1.1) and (1.2) are uniquely defined by
the shape of their boundary surface along with the pressure and rotational transform (or
plasma current density) profiles (Kruskal & Kulsrud 1958). Stellarator optimization seeks
to find configurations with the most desirable properties in the landscape of these free
variables.

1.2. Literature review
Attempts have been made to avoid searching this high-dimensional space by directly
constructing optimized stellarators using expansions in the distance from the magnetic axis
(Landreman & Sengupta 2018; Landreman, Sengupta & Plunk 2019; Plunk, Landreman
& Helander 2019). While these methods may provide useful starting points for further
optimization, they are inadequate for designing realistic stellarators with acceptable
confinement near the plasma edge. The traditional approach to this problem is through
fixed-boundary optimization, which was pioneered by Nührenberg & Zille (1988). The
boundary shape is typically assumed to posses stellarator symmetry and parametrized in a
finite double Fourier series of the form:

Rb(θ, φ) =
N∑

n=−N

M∑
m=0

Rb
mn cos(mθ − nNFPφ), (1.3a)

Zb(θ, φ) =
N∑

n=−N

M∑
m=0

Zb
mn sin(mθ − nNFPφ), (1.3b)

where θ is an arbitrary poloidal angle, (R, φ,Z) are the toroidal coordinates and NFP is
the number of (toroidal) field periods of the device. For a given set of desired profiles,
the Fourier coefficients {Rb

mn,Zb
mn} are then used as the optimization parameters to search

for an equilibrium with target properties. A set of coils that can produce this desired
plasma boundary is then found through a second optimization stage, which must consider
manufacturing constraints. Single-stage methods that combine the equilibrium and coil
optimization problems have also been explored recently and promise faster computation
times (Giuliani et al. 2022).

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

The DESC stellarator code suite. Part 3 3

Stellarator optimization is therefore cast as a conventional multidimensional
optimization problem, and a plethora of algorithms are available for problems of this
type. Derivative-free routines have been used in the past, such as Brent’s method
as implemented in the ROSE code (Drevlak et al. 2019). These approaches are
inexpensive per iteration, but can suffer from slow convergence and are best suited for
smaller problems. Large-scale nonlinear optimization is significantly aided by gradient
information, but analytic derivatives are difficult to obtain for complex objectives.
In the Levenberg–Mardquart algorithm used by the STELLOPT code (Spong et al.
1998), the required derivatives are computed through finite differences. The cost of this
approach is that it requires numerous equilibrium evaluations, and since this scales with
dimensionality, it can put a practical limit on the boundary resolution (M,N) available to
study. Furthermore, finite differences approximations are very sensitive to the step size,
which can make this approach inaccurate and unreliable. Recent progress has been made
through the use of adjoint methods, as in the ALPOpt code (Paul, Landreman & Antonsen
2021). The adjoint approach reduces the computation burden to only two equilibrium
solutions and avoids the noise of numerical derivatives (Antonsen, Paul & Landreman
2019; Paul et al. 2020). Adjoint methods are labour-intensive to implement, however, and
are not applicable for all desired objectives and derivate orders.

Another method for obtaining gradient information is automatic differentiation: a
programmatic technique that exploits the primitive operations underlying all mathematical
instructions to efficiently compute exact derivatives of arbitrary (differentiable) functions
to any order. Automatic differentiation (AD) is trivial to implement in modern
programming languages and is already being used in the new stellarator coil design code
FOCUSADD (McGreivy, Hudson & Zhu 2021), but has not yet been incorporated into
other optimization objectives. The bottleneck process for stellarator optimization is the
equilibrium calculations that most physics and engineering objectives depend on, and
all of the existing codes – STELLOPT, ROSE, ALPOpt, SIMSOPT (Landreman et al.
2021), etc. – primarily rely on the equilibrium solver VMEC (Hirshman & Whitson 1983).
Since VMEC was written in FORTRAN without support for automatic differentiation,
this approach is not available for these optimization codes and they are limited to using
inaccurate or expensive gradient information.

1.3. Optimization with DESC
DESC (Dudt et al. 2023) is a pseudo-spectral equilibrium solver written in Python with
the latest numerical techniques, and has now developed into a full stellarator optimization
code with this equilibrium solver at its core. Unlike the decentralized approach of other
stellarator optimization suites that wrap their algorithms around calls to external codes
that evaluate each objective, DESC’s philosophy is to compute everything ‘in-house’.
This requires re-writing existing programs as part of the DESC package, but it allows
derivative information to freely propagate throughout the code and results in significant
performance improvements. The centralized design of DESC offers many significant
advantages over existing stellarator optimization tools. First and foremost, the use of AD
through the JAX package (Bradbury et al. 2018) provides exact derivative information
from a single equilibrium solution. The computation time is therefore independent of the
size of the optimization space, in contrast to finite difference gradients which require a
number of equilibrium calculations that scales linearly with the number of optimization
parameters. Since AD is exact it can also improve robustness and convergence over
numerical derivatives. In comparison to adjoint methods, AD can theoretically be used
with any deterministic optimization objective, is much easier to implement, and can
compute higher orders of derivatives with no additional coding. Furthermore, the single

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

4 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

equilibrium required at each optimization step is found using a perturbation of the previous
solution as the initial guess, which converges much faster than a ‘cold start’. Computing
equilibrium solutions has historically been the bottleneck of the stellarator optimization
process, and this approach minimizes that burden. Altogether, DESC provides a tool
to efficiently search the stellarator optimization landscape and locate configurations of
interest.

This is the final paper in a three-part series about the DESC stellarator code suite. Part
1 (Panici et al. 2022) highlights the advantages of the DESC equilibrium solver through a
comparison to VMEC. Part 2 (Conlin et al. 2022) presents the novel perturbation and
continuation methods available in DESC. This paper, Part 3, explains the theory and
practice of how these tools can be combined to solve stellarator optimization problems
with DESC. Section 2 details how the optimization problem is formulated and solved
in conjunction with the equilibrium problem. Different metrics of quasi-symmetry are
then defined as examples of optimization objectives, and code snippets are given to
demonstrate how this optimization can be performed with DESC. In § 3, the results of a
quasi-symmetry optimization problem are presented for a low-dimensional example that is
easy to visualize. The effects of using different quasi-symmetry objectives and numerical
options are compared and contrasted. These results are intended to demonstrate the tools
that DESC provides, not to show a novel quasi-symmetric result. Speed comparisons are
also made between DESC and STELLOPT to reveal how the computation times of both
codes scale for larger problems. This paper only covers fixed-boundary optimization and
not coil optimization, which is a natural extension and still under development. Global and
stochastic optimization methods, such as particle swarm and genetic algorithms both used
by STELLOPT and ROSE, are not discussed but could be included in a future version of
the code.

2. Methods
2.1. Equilibrium solver

As explained in a previous publication (Dudt & Kolemen 2020), DESC solves the
inverse equilibrium problem by minimizing the MHD force balance errors at a series
of collocation points. The inverse coordinate mapping is given by R = R(ρ, θ, ζ), Z =
Z(ρ, θ, ζ) and λ = λ(ρ, θ, ζ), where (R, φ,Z) are the toroidal coordinates, (ρ, ϑ, ζ) are
straight field-line coordinates corresponding to the choice of toroidal angle ζ = φ and
the poloidal angle is related to the coordinate used in the boundary parametrization (1.3)
through ϑ = θ + λ(ρ, θ, ζ). Nested flux surfaces are assumed and the flux surface label
is chosen to be ρ = √

ψ/ψedge. This map between the flux and toroidal coordinate systems
is discretized with global Fourier–Zernike basis sets, and the spectral coefficients are
denoted as Rlmn, Zlmn and λlmn (l, m and n are the radial, poloidal and toroidal mode
numbers, respectively, of the basis functions).

Let the MHD equilibrium force balance error be defined as F = J × B − ∇p, which
has a radial and helical component:

fρ = (
√

g(BζJθ − BθJζ)− p′)|∇ρ|, (2.1a)

fβ = √
gJρ|β|, (2.1b)

where β = Bζ∇θ − Bθ∇ζ and
√

g is the Jacobian of the (ρ, θ, ζ) computational
coordinate system. Evaluating each function at a series of coordinates results in a system

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

The DESC stellarator code suite. Part 3 5

of nonlinear equations of the form:

f (x, c) =
[

fρ,i
fβ,j

]
, (2.2)

where i = 0, . . . , I and j = 0, . . . , J denote the ith and jth collocation points for each
function. Here, x represents the independent variables, which are a subset of the spectral
coefficients Rlmn, Zlmn and λlmn such that the boundary conditions R(ρ = 1) = Rb(θ, φ) and
Z(ρ = 1) = Zb(θ, φ) are satisfied. The vector c is all of the parameters that define a unique
equilibrium problem, which includes the boundary coefficients Rb

mn and Zb
mn, coefficients

for the profiles p(ρ) and ι(ρ), and the total flux through the boundary surface ψedge. An
equilibrium is defined as the least-squares solution:

x∗ = arg min
x

|f (x, c)|2, (2.3)

for a fixed set of parameters c, and is typically solved with a quasi-Newton method.

2.2. Optimization approach
Stellarator optimization desires to find equilibrium solutions that also satisfy secondary
objectives. Let the system of equations g(x, c) represent a set of costs that are desired
to be minimized. Examples of quasi-symmetry objective functions are given in § 2.3, but
these could be any general engineering or physics target. The optimal configuration is
defined as the least-squares solution:

c∗ = arg min
c

|g(x∗, c)|2, (2.4)

where x∗ is the equilibrium solution given by (2.3) for the set of parameters c∗.
DESC employs a constrained optimization approach similar to the prediction-correction

continuation method for solving systems of equations (Yu & Dutton 1998). Starting from
an initial equilibrium solution (x∗

k, ck) that it not optimal, the parameters are perturbed
to a new state (xk+1, ck+1) = (x∗

k +
x, ck +
c) that better satisfies the objective:
|g(xk+1, ck+1)|2 < |g(xk, ck)|2. The perturbation is restricted to a subspace that maintains
the equilibrium constraint and is performed using a trust region Newton method as
detailed in the remainder of this section. Equilibrium force balance is never satisfied
exactly, however, and this ‘prediction’ step may violate the equilibrium constraints slightly.
Therefore, the equilibrium problem is then re-solved with the new parameters ck+1 to get
the corresponding equilibrium state x∗

k+1, but this ‘correction’ step should be a minor
adjustment from the perturbed state xk+1. This process is then iterated until a set of
parameters c∗ are found that satisfy the objectives to the desired tolerance, and the Newton
methods are expected to yield quadratic convergence. These iterations can also be included
in a broader optimization loop that changes the resolution and dimensionality of the
problem at each step.

The optimization algorithm implemented in DESC can be summarized by the
pseudocode in Listing 1. Stopping criteria are determined by relative tolerances on the
cost function values and step sizes, in addition to maximum numbers of iterations.

1 while optimization stopping criteria are not met:
2
3 perturb equilibrium solution to improve objective
4
5 while equilibrium stopping criteria are not met:
6
7 solve equilibrium force balance

Listing 1 Pseudocode outlining the DESC optimization algorithm.

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

6 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

The derivation of the optimal perturbations begins by Taylor expanding both the
constraint (equilibrium) and objective functions about the current state:

f (x +
x, c +
c) = f (x, c)+ ∂f
∂x

x + ∂f

∂c

c

+ 1
2
∂2f
∂x2

x
xT + 1
2
∂2f
∂c2

c
cT + ∂2f
∂x∂c

x
cT, (2.5a)

g(x + Δx, c + Δc) = g(x, c)+ ∂g
∂x

Δx + ∂g
∂c

Δc

+ 1
2
∂2g
∂x2

ΔxΔxT + 1
2
∂2g
∂c2

ΔcΔcT + ∂2g
∂x∂c

ΔxΔcT . (2.5b)

The perturbations themselves are assumed to be a combination of first and second-order
terms:

Δx = εx1 + ε2x2, (2.6a)

Δc = εc1 + ε2c2, (2.6b)

where ε � 1 is some small parameter.
This paper refers to the ‘order’ of a method by the number of terms included in the

perturbation expansion (2.6). However, the terminology typically used in the optimization
literature would be a degree higher than this. The discrepancy is because the Jacobian
matrices of first derivatives such as ∂g/∂c give the Hessian matrices of second derivatives
for the scalar least-squares problem in (2.4).

2.2.1. First order
Substituting (2.6) into (2.5) and collecting only the terms up to order ε yields:

0 = f (x, c)+ ∂f
∂x
εx1 + ∂f

∂c
εc1, (2.7a)

0 = g(x, c)+ ∂g
∂x
εx1 + ∂g

∂c
εc1. (2.7b)

Equation (2.7a) can be solved for εx1 in terms of εc1:

∂f
∂x
εx1 = −f (x, c)− ∂f

∂c
εc1, (2.8)

and substituting this expression into (2.7b) gives an equation for the first-order parameter
perturbation: [

∂g
∂x

(
∂f
∂x

)−1
∂f
∂c

− ∂g
∂c

]
εc1 = g(x, c)− ∂g

∂x

(
∂f
∂x

)−1

f (x, c). (2.9)

Equation (2.9) is a linear system that can be solved for the optimal perturbation εc1 using
a trust-region step, as explained in § 2.2.3. The corresponding change to the independent
variables, εx1, is then determined from (2.8). All of the Jacobian matrices are computed
through automatic differentiation and ∂ f /∂x is typically already know from solving the
equilibrium problem (2.3) at the previous optimization step. A pseudo-inverse is taken for
the term (∂ f /∂x)−1.

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

The DESC stellarator code suite. Part 3 7

2.2.2. Second order
Collecting the terms proportional to ε2 that were omitted from (2.5) yields:

0 = ∂f
∂x
ε2x2 + ∂f

∂c
ε2c2 + 1

2
∂2f
∂x2

ε2x1xT
1

+ 1
2
∂2f
∂c2

ε2c1cT
1 + ∂2f

∂x∂c
ε2x1cT

1 , (2.10a)

0 = ∂g
∂x
ε2x2 + ∂g

∂c
ε2c2 + 1

2
∂2g
∂x2

ε2x1xT
1

+ 1
2
∂2g
∂c2

ε2c1cT
1 + ∂2g

∂x∂c
ε2x1cT

1 . (2.10b)

In a similar process, (2.10a) can be solved for εx2 in terms of εc1 and εc2:

∂f
∂x
ε2x2 = −∂f

∂c
ε2c2 − 1

2
∂2f
∂x2

ε2x1xT
1

− 1
2
∂2f
∂c2

ε2c1cT
1 − ∂2f

∂x∂c
ε2x1cT

1 , (2.11)

and substituting this expression into (2.10b) gives an equation for the second-order
parameter perturbation:

[(
∂g
∂x

) (
∂f
∂x

)−1
∂f
∂c

− ∂g
∂c

]
ε2c2

= 1
2

[
∂2g
∂x2

−
(
∂g
∂x

) (
∂f
∂x

)−1
∂2f
∂x2

]
ε2x1xT

1

+ 1
2

[
∂2g
∂c2

−
(
∂g
∂x

) (
∂f
∂x

)−1
∂2f
∂c2

]
ε2c1cT

1

+
[
∂2g
∂x∂c

−
(
∂g
∂x

) (
∂f
∂x

)−1
∂2f
∂x∂c

]
ε2x1cT

1 . (2.12)

Trust-region steps are again used to solve for the second-order correction to the
optimal perturbation, εc2, and then the independent variables, εx2, using (2.12) and
(2.11), respectively. One difference is that the trust-region radius used for the second-order
terms is restricted to be a fraction of the magnitude of the first-order step. Note that the
same matrix appears on the left-hand sides of (2.9) and (2.12), so once the single-value
decomposition is known from the first-order solution, it does not have to be recomputed
for the second-order solution. Also note that the Hessian matrices on the right-hand side
of (2.12) are not needed in full, but can be efficiently computed with Jacobian-vector
products. Therefore, this second-order approximation requires relatively little additional
computation time after the first-order solution is found, and the extra accuracy in
representing the parameter space is usually worth the trade-off. This adaptive procedure
helps to ensure the optimization is robust to different initial conditions.

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

8 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

2.2.3. Trust-region step
Equations (2.8), (2.9), (2.11) and (2.12) are all linear systems of the form Ay = b.

A trust-region method is used instead of taking the full Newton step, which improves
convergence while far from the optimum (Nocedal & Wright 2006). This involves casting
these equations into a problem of the form:

miny|Ay − b|2, |y| ≤ δ, (2.13)

where δ is the trust-region radius. The solution requires a single-value decomposition of
the matrix A, but this computation time is typically insignificant compared to the automatic
differentiation used to evaluate the matrix. The trust region radius is chosen through an
adaptive procedure based on the ratio of the cost reduction predicted by the model to the
actual reduction achieved by the new equilibrium solution. If this reduction ratio is above
0.75 and the trust-region radius is restricting the optimizer from taking the full Newton
step, then the radius is doubled for the next iteration. The trust-region radius is reduced to
a quarter of its former size if the reduction ratio is below 0.25 – this includes prospective
steps that fail to actually reduce the cost function, which are rejected.

2.3. Quasi-symmetry objective functions
Charged particle confinement is not guaranteed in three-dimensional toroidal geometries,
and this is typically the primary objective of stellarator optimization. Since neoclassical
confinement calculations are historically too expensive to run within an optimization
loop, quasi-symmetry is a popular proxy function for particle confinement that is
much cheaper to compute. Quasi-symmetry ensures particles remain close to flux
surfaces by approximately conserving some canonical momentum (Rodriguez, Helander
& Bhattacharjee 2020). The formal definition of a quasi-symmetric magnetic field is the
existence of a vector field u such that:

B × u = ∇ψ, (2.14a)

u · ∇B = 0, (2.14b)

∇ · u = 0. (2.14c)

However, this definition is not amenable to computational analysis. Three other
quasi-symmetry objective functions are implemented in DESC, and although they are
theoretically equivalent, each one can have distinct numerical consequences in practice.

2.3.1. Boozer coordinates
A magnetic field is quasi-symmetric if its magnitude can be written in the form:

|B| = B(ψ,MϑB − NζB), (2.15)

where ϑB and ζB are the poloidal and toroidal angles in Boozer coordinates, respectively,
and M, N ∈ Z determine the type of quasi-symmetry. The optimization objective function
derived from this definition is

f B = {Bmn | m �= M, n �= N}, (2.16)

where Bmn are the Fourier coefficients of |B| in Boozer coordinates on a particular surface,
and the m = n = 0 mode is always excluded. This corresponds to the set of non-symmetric

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

The DESC stellarator code suite. Part 3 9

Boozer modes, which must vanish in quasi-symmetry. An associated scalar, dimensionless
metric is

f̂B = |f B|√∑
m,n

B2
mn

, (2.17)

which is commonly used to quantify the departure from true quasi-symmetry. This is
the traditional definition of quasi-symmetry and the normalized scalar has the convenient
property of always being in the range f̂B ∈ [0, 1). However, the transformation to Boozer
coordinates can be computationally expensive. DESC uses the same Boozer coordinate
transformation algorithm as BOOZ_XFORM, but was rewritten within the Python code
to work with automatic differentiation. This implementation does not take advantage
of ‘generalized’ Boozer coordinates and therefore assumes that an equilibrium exists
(Rodriguez & Bhattacharjee 2021a,b), but the force balance is generally never satisfied
to machine precision for numerical solutions. Furthermore, this definition only quantifies
the ‘global’ deviation from quasi-symmetry on each flux surface rather than providing a
‘local’ deviation throughout the surface.

2.3.2. Two-term
A magnetic field is also quasi-symmetric if the quantity

C = (B × ∇ψ) · ∇B
B · ∇B

(2.18)

is a flux function: C = C(ψ). This definition assumes J · ∇ρ = Jρ = 0, which is less
restrictive than the requirement of force balance used in the true Boozer form, but must
hold in equilibrium by (2.1b) with the same caveat about numerical resolution. In Boozer
coordinates, this flux function is also equivalent to

C = MG + NI
M ι- − N

. (2.19)

The covariant components of the magnetic field in Boozer coordinates can be computed
in any flux coordinate system by

G = 〈Bζ 〉, (2.20a)

I = 〈Bθ 〉, (2.20b)

where the flux surface average of a quantity Q is defined as

〈Q〉 ≡

∫ 2π

0

∫ 2π

0
Q

√
g dθ dζ∫ 2π

0

∫ 2π

0

√
g dθ dζ

. (2.21)

A more useful form that avoids computational singularities is

fC = (M ι- − N)(B × ∇ψ) · ∇B − (MG + NI)B · ∇B. (2.22)

Evaluating this function at a series of collocation points on a given surface yields the
vector form:

f C = {fC(θi, ζj) | i ∈ [0, 2π), j ∈ [0, 2π/NFP)}. (2.23)

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

10 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

These residuals have units of T3; a dimensionless scalar metric is chosen to be

f̂C = 〈|fC|〉
〈B〉3

. (2.24)

This quasi-symmetry objective does not rely on a transformation to Boozer coordinates,
but it still requires specifying the helicity of the quasi-symmetry. Unlike the Boozer form,
this two-term definition can reveal the local quasi-symmetry errors within each surface.

2.3.3. Triple product
Finally, a magnetic field is also quasi-symmetric if the function

fT = ∇ψ × ∇B · ∇(B · ∇B) (2.25)

vanishes throughout the region of interest. Similarly, this function is evaluated at a series
of collocation points to yield the vector form:

f T = {fT(θi, ζj) | i ∈ [0, 2π), j ∈ [0, 2π/NFP)}. (2.26)

This function has units of T4/m2; a dimensionless scalar metric is chosen to be

f̂T(ψ) = 〈R〉2〈|fT |〉
〈B〉4

. (2.27)

The triple product form benefits from the same advantages as the two-term definition: it
does not rely on a transformation to Boozer coordinates and provides local errors rather
than a flux-surface quantity. Furthermore, it does not assume any equilibrium conditions or
require the helicity to be specified a priori, which could be useful for certain optimization
scenarios. This form is also more amenable to optimizing for quasi-symmetry throughout a
volume rather than a single flux surface, which may not be physically achievable but could
still have practical applications (Garren & Boozer 1991a,b). The triple product formula
does require higher-order derivatives of the magnetic field than the two-term form, but
that is not a limitation for fully spectral codes like DESC, where all of these derivatives
can be computed analytically from the basis functions.

3. Results
3.1. Code implementation

DESC is designed to have an approachable user-interface through Python scripts,
similar to the SIMSOPT framework. The code snippet in Listing 2 demonstrates
how to run DESC as it was used to generate the results in § 3.2. This example
shows the QuasisymmetryTwoTerm function corresponding to f C, targeting
quasi-helical symmetry. It is also normalized using the same denominator as
(2.24). The syntax for the objective functions QuasisymmetryBoozer and
QuasisymmetryTripleProduct corresponding to f B and f T , respectively, are
similar.

The ‘opt_subspace’ argument is a transformation matrix that can be used to
restrict the optimization parameters to a custom subspace. In this example, it is used to
optimize over two boundary coefficients given in the double-angle Fourier series basis
of (1.3). DESC uses a different but equivalent basis from this VMEC convention, and
the vmec_boundary_subspace function relates them through standard trigonometric
identities. The results presented in this paper were run with the default options in DESC,

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

The DESC stellarator code suite. Part 3 11

but the numerical resolution, target surfaces, stopping criteria and all other options can be
fully customized.

Although it is not shown in this example, multiple optimization objectives can be
targeted together with relative weighting between them. Examples of other objectives that
are available in DESC include geometric quantities such as the plasma volume and aspect
ratio. The code is designed in a modular structure so that new objective functions can
easily be added to the existing framework.

8 from desc import set_device
9 set_device("gpu") # if running on a GPU

10
11 from desc.equilibrium import Equilibrium
12 from desc.objectives import (
13 ObjectiveFunction,
14 QuasisymmetryTwoTerm,
15 get_fixed_boundary_constraints,
16)
17 from desc.vmec_utils import vmec_boundary_subspace
18
19 # load an initial equilibrium solution
20 eq = Equilibrium.load("path/to/equilibrium.h5")
21
22 QH = (1, eq.NFP) # type of quasi-symmetry
23
24 # objective function to optimize
25 objective = ObjectiveFunction(
26 QuasisymmetryTwoTerm(helicity=QH, norm=True),
27 get_fixed_boundary_constraints(),
28)
29 # optimization variables
30 perturb_options = {
31 "dRb": True, # optimize R boundary mode RBC(2,1)
32 "dZb": True, # optimize Z boundary mode ZBS(2,1)
33 "opt_subspace": vmec_boundary_subspace(
34 eq, RBC=[2, 1], ZBS=[2, 1]
35),
36 }
37
38 # run optimization
39 eq.optimize(objective, perturb_options=perturb_options)

Listing 2 Example code to run quasi-helical symmetry optimization using the two-term
objective function.

3.2. Quasi-symmetry optimization
This section demonstrates the capability of DESC to optimize stellarator equilibria,
using quasi-symmetry as an example objective function. As the initial state, the m = 1,
n = 2 boundary modes for both Rb and Zb in (1.3) of a quasi-helically symmetric
STELLOPT benchmark solution (Landreman 2019) were modified to degrade the
quality of quasi-symmetry. The equilibrium was then optimized for quasi-symmetry
on the last closed flux surface (ρ = 1) in this two-dimensional parameter space with
all other boundary modes and profiles held fixed at the benchmark solution values.
The optimization was performed using each of the three objective functions described
previously, and with both first- and second-order optimization methods. This simple design
space was chosen for comparison to a previous study of this problem (Rodriguez, Paul &
Bhattacharjee 2022), and it lends itself well to visualization. Note that in the example used
here (in contrast to the previous study), quasi-symmetry is only being targeted on a single
flux surface (instead of multiple surfaces) and the rotational transform profile (instead of
the current profile) is held fixed during optimization.

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

12 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

FIGURE 1. Quasi-symmetry optimization paths using the Boozer coordinate objective in
DESC. The STELLOPT optimization path is shown for comparison.

Figures 1–3 show the optimization paths of the DESC first- and second-order methods
for each of the three quasi-symmetry objectives. The STELLOPT optimization path for
its Boozer form objective is included in figure 1, and the final solution is also indicated
in figures 2 and 3 for reference. The optimization landscape shown in grey scale in
these plots are the respective dimensionless scalar error metrics given in § 2.3, which are
proportional but not equivalent to the least-squares cost functions that are actually being
minimized. Comparing across all three figures reveals that each of the objective functions
has a similar narrow valley of quasi-symmetric solutions, although the global minima are
not identical and are still far from perfect quasi-symmetry. The DESC optimization runs
targeting the Boozer coordinate and two-term objectives converge to results very close to
the STELLOPT solution, while the triple product minimum is farther along the valley.

Although these two optimization codes converge to similar results, their paths to arrive
there from the initial configuration are very different. The Levenberg–Marquadt algorithm
in STELLOPT rarely permits the full Gauss–Newton step in favour of a more conservative
approach that is often closer to the steepest descent direction. DESC’s algorithm is
conceptually similar with an adaptive trust-region radius to improve robustness, but allows
the full Gauss–Newton step whenever possible. As a consequence, DESC converges to the
optimum in a few large steps while STELLOPT requires nearly a hundred smaller steps to
traverse the optimization landscape in this example (see figure 1). In a process analogous
to geodesic acceleration in the Levenberg–Marquadt algorithm, the optimization step size
in DESC is further increased by including higher-order approximations. Contrasting the
first- and second-order results reveals that the additional derivative information enables
the optimizer to take slightly larger steps, which can cause faster convergence in fewer
iterations.

Figure 4 displays the impact of optimizing the two m = 1, n = 2 Fourier coefficients
on the boundary surface geometry. A qualitative picture of the quasi-helical symmetry
optimization is given in figure 5 through a comparison of |B| in Boozer coordinates
between the initial and final configurations. The contours of the optimized solution
clearly have the desired slope of 4/1 that the original stellarator was lacking, although

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

The DESC stellarator code suite. Part 3 13

FIGURE 2. Quasi-symmetry optimization paths using the two-term objective in DESC. The
optimal STELLOPT solution is shown for comparison.

FIGURE 3. Quasi-symmetry optimization paths using the triple product objective in DESC.
The optimal STELLOPT solution is shown for comparison.

the minimum and maximum field strengths on the surface were also modified in the
process. The deviation from true quasi-symmetry in these plots can be quantified as
f̂B = 0.33 and f̂B = 0.02, respectively, and all of the quasi-symmetry errors for each of
the equilibrium solutions are compared in figure 6. However, all of these metrics are
only used as proxy functions for the true goal of particle confinement. To validate that
the quasi-symmetry optimization does improve the confinement properties, the NEO
(Nemov et al. 1999) and SFINCS codes (Landreman et al. 2014) were run on the
solutions to calculate their neoclassical confinement and the results for each equilibrium

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

14 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

FIGURE 4. Comparison of the boundary surfaces for the initial equilibrium (blue)
and optimized solution (green) targeting the triple product measure of quasi-symmetry.
Cross-sections are shown at each quarter of a field period: φ = 0,π/(2NFP),π/NFP, 3π/
(2NFP).

are also included in figure 6. The quasi-symmetry errors were all computed in DESC,
including for the STELLOPT solution which was re-computed with the DESC equilibrium
solver. The optimal boundary coefficients from each solution were also used to compute
high-resolution VMEC equilibria for inputs to NEO and SFINCS, including for the DESC
solutions. Since the first- and second-order results converged to nearly the same boundary
Fourier coefficients in each case, the errors were only evaluated for the second-order
DESC results.

A surprising result is that all four of the optimized solutions have nearly equivalent
values for the three different quasi-symmetry errors, despite each solution targeting a
different form during optimization. This suggests that the optimization landscape is flat
near the global minimum: all of the equilibria in the phase space ‘valley’ have similar
levels of quasi-symmetry. The confinement results tell a different story, however. Here, εeff
is the effective ripple in the 1/ν regime and is commonly used as a measure of particle
transport (Nemov et al. 1999). The f̂P and f̂Q are the normalized particle and heat fluxes of
the ions:

f̂P = R̄
n̄v̄

〈∫
d3vfivmi · ∇ρ

〉
, (3.1a)

f̂Q = R̄
n̄v̄3m̄

〈∫
d3vfi

miv
2

2
vmi · ∇ρ

〉
, (3.1b)

where R̄ = 1 m, n̄ = 1 × 1020 m−3, v̄ =
√

2T̄/m̄, T̄ = 1 keV and m̄ is the proton mass.
All of the optimized solutions substantially reduced the effective ripple and both fluxes,
confirming that quasi-symmetry is correlated with neoclassical confinement; but the

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

The DESC stellarator code suite. Part 3 15

(a)

(b)

FIGURE 5. Contours of magnetic field magnitude in Boozer coordinates at the boundary surface
ρ = 1 for the (a) initial equilibrium and (b) optimized solution targeting the triple product
measure of quasi-symmetry.

relationship is complex. The DESC optimization targeting the triple product metric,
which converged to a result farther away in parameter space from the other solutions,
achieved nearly an order of magnitude better confinement than the others according to
these measures. This lack of correlation supports previous claims that quasi-symmetry is
not an accurate indicator of transport levels (Martin & Landreman 2020; Rodriguez et al.
2022). The triple product quasi-symmetry measure is the only one that does not depend
on equilibrium conditions, and this independence from the force balance constraints could
aid the optimization process. Unlike the other two metrics which depend on flux surface
averaged quantities, the truly local nature of the triple product definition could also explain
why it was the most effective proxy for confinement in this optimization example.

3.3. Computation speed
Computation times for running realistic quasi-symmetry optimization problems in DESC
were benchmarked against STELLOPT. STELLOPT is a parallelized FORTRAN code that
runs on multiple CPUs, while DESC is a Python code aided by just-in-time compilation
that is currently compatible with a single CPU or GPU. All tests were run on the Traverse
computing cluster at Princeton University using AMD EPYC 7281 model CPUs, which

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

16 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

FIGURE 6. Comparison of quasi-symmetry and neoclassical confinement errors for the initial
and optimized configurations. Only the second-order DESC results are shown. The three
quasi-symmetry metrics were computed in DESC; the effective ripple was computed with NEO
from VMEC equilibria; the particle and heat fluxes were computed in SFINCS also using VMEC
equilibria.

have 16 cores, and NVIDIA V100 Tensor Core GPUs, which have 32 GB of memory. The
same numerical resolutions were used between the two codes for a fair comparison.

Table 1 gives the computation times of a single step of the STELLOPT Levenberg–
Marquadt optimization algorithm for a range of phase space dimensions and at different
levels of parallelization. The number of optimization parameters used corresponds to
optimizing all of the stellarator-symmetric boundary modes within the resolution M,N ≤
1, 2, 3, 4, excluding the major radius. Since the bottleneck process of the STELLOPT
algorithm is computing gradients through finite differences at each optimization step,
its computation time is expected to increase linearly with the number of optimization
parameters, and decrease linearly with the number of parallel CPUs that are sharing the
workload. The timing data in this table confirm that scaling – the longer run times of
larger optimization problems can be reduced through greater parallelization. However,
for a moderately sized problem on a demanding number of state-of-the-art CPU cores,
STELLOPT still takes several minutes per iteration, which results in hours of total
computation time.

In contrast, table 2 gives the computation times for a single Gauss–Newton trust-region
optimization step in DESC, broken down between the perturbation and equilibrium solve
involved at each iteration. Only the first-order optimization method was tested to give the
closest comparison to STELLOPT, but including the second-order terms does not add
significantly to the perturbation times as explained previously. The equilibrium solve time
is heavily dependent on the number of Gauss–Newton steps required to solve (2.3) to
the desired tolerances. The average times shown in this table are for ten iterations of
the equilibrium subproblem, but in practice, the number will vary between optimizer
iterations (larger optimization steps typically require more force balance correction).
Thanks to the use of automatic differentiation, the computation times are independent of
the number of optimization parameters – these results included all 560 boundary modes

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

The DESC stellarator code suite. Part 3 17

Number of Optimization Parameters

CPUs 8 24 48 80

2 362 939 1757 2831
4 188 399 665 1074
8 150 246 346 550
16 118 180 234 322

TABLE 1. STELLOPT computation times (in seconds). The VMEC equilibrium inputs
used were MPOL = 9, NTOR = 8, NS_ARRAY = 17 33 65 and FTOL_ARRAY =
1 × 10−8 1 × 10−10 1 × 10−12. The BOOZ_XFORM optimization inputs used were
MBOZ = 17, NBOZ = 16 and TARGET_HELICITY(65) = 0.

Initial Iteration Subsequent Iterations

Objective Perturb Solve Total Perturb Solve Total

fC 1 GPU 157 33 190 2 3 5
fT 1 GPU 89 33 122 2 3 5
fB 1 CPU 763 174 937 409 24 434
fC 1 CPU 165 168 333 12 25 37
fT 1 CPU 250 169 419 16 23 39

TABLE 2. DESC computation times (in seconds) for 560 optimization parameters. The
numerical resolution used was L = M = N = 8 for the equilibria and M = N = 16 for the
Boozer spectrum with the fB objective. Quasi-symmetry was targeted on the ρ = 1 surface.

in the M,N ≤ 8 equilibrium resolution. Because the objective functions get compiled
to work with automatic differentiation the first time they are called, the initial iteration
takes substantially longer than subsequent ones. The benefit is that calls to the compiled
functions can then be evaluated much faster, yielding large savings in the long run when
many optimization steps are required. These functions only need to be recompiled if the
resolution of the equilibrium changes, which typically does not occur in a traditional
optimization procedure. Even with a high level of parallelization in STELLOPT, the
reliance on finite differencing prevents it from approaching the speed of automatic
differentiation for large numbers of optimization parameters.

This table also reveals a large speedup of running on a GPU: the compile times are
roughly halved and iterations are approximately 8 times faster than on the CPU for this
problem. It is important to note that the same code can run on either a CPU or GPU
without any modifications required by the user. Special attention is needed for discussion
of the quasi-symmetry objective fB: because the conversion to Boozer coordinates requires
re-evaluating Fourier basis functions in the new coordinates, differentiating through
this function with automatic differentiation is very memory intensive. The numerical
resolution used in these tests was too large to run the Boozer form on the GPU with limited
memory capacity. The perturbation time of the Boozer form on the CPU is also much
slower than the other quasi-symmetry objectives, but it is still a significant improvement
over STELLOPT especially when considering the number of CPUs and optimization
parameters involved. Whether running on a single CPU or GPU, the total run time is
orders of magnitude faster using DESC compared to STELLOPT.

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

18 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

4. Conclusions

DESC is designed to be the next-generation stellarator optimization code. Its unique
architecture allows it to take advantage of automatic differentiation and seamlessly pass
that derivative information from its equilibrium solver to the optimizer, resulting in
dramatic speed improvements over existing tools. This paper has explained the DESC
optimization approach and demonstrated the simplicity of using the Python code. Through
examples of quasi-symmetry optimization, it has been shown that DESC can achieve
similar if not better quality results as conventional tools in orders of magnitude less
computation time. The primary difference from the STELLOPT implementation explained
by Rodriguez et al. (2022) is that the spectral discretization and automatic differentiation
used in DESC enable the quasi-symmetry functions and their derivatives to be evaluated
more accurately and efficiently compared to finite differences. Even other modern
optimization tools like SIMSOPT are not designed for this level of speed performance.
The triple product metric proved to be the best quasi-symmetry objective for this example
problem, which could be due to its lack of physics assumptions and its numerical
advantages. However, more test cases are needed to confirm if this result is case-specific or
generalizes to other problems. The purpose has been to showcase the potential of DESC,
and discovering reactor-relevant stellarator designs is left for future work.

As an open source software with a modular structure, the DESC code suite is continually
improving upon existing performance and expanding to provide new functionality. The
example quasi-symmetry optimizations used default options, but there is great flexibility
in specifying alternatives to better accommodate certain problems. Quasi-symmetry was
provided as an example optimization objective due to its popularity in the literature, but
other physics and engineering objectives should be added and used in tandem. Thanks
to automatic differentiation, the process of incorporating new optimization targets with
exact derivative information is relatively simple for the developer. There is also room to
add alternatives to the Gauss–Newton trust-region optimization method, such as global
optimization algorithms. More work is needed to better understand the trade-offs between
robustness and convergence speed among the various possibilities. Plans to extend DESC
to handle free-boundary equilibria and single-stage coil optimization are already under
development. Anyone who is interested in taking advantage of these capabilities is strongly
encouraged to install and use the publicly available code, and recommendations for
additional features are always welcome.

Due to its efficient computations, DESC is well positioned to perform a large-scale
exploration of the stellarator design space. The perturbation and continuation methods
could provide physical insight on the bifurcation of tokamaks into quasi-axisymmetric
stellarators (Plunk & Helander 2018; Plunk 2020). DESC could also be used to generate a
large database of equilibria that could then be analysed with the aid of machine learning
techniques to identify regions in the parameter landscape that deserve closer attention.
Another important application is equilibrium reconstruction, which is an optimization
problem to find the equilibrium parameters that best match experimental diagnostics. The
rate of generating full equilibria reconstructions with conventional tools is disappointingly
slow (Hanson et al. 2009), but DESC could be used to provide timely analysis of
experiments. Whether improving the usefulness of existing devices or discovering better
designs for future reactors, the optimization capabilities of DESC open new possibilities
for stellarator research that were previously unavailable.

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377823000235

The DESC stellarator code suite. Part 3 19

Acknowledgements

Thank you to E. Rodriguez for many insightful conversations about the nature of
quasi-symmetry and its potential for stellarator optimization, and to A. Mollen and
E. Paul for their instruction on the SFINCS code. Thank you to the SIMSOPT development
team, whose Python version of BOOZ_XFORM was the basis for the implementation in
DESC.

Editor Per Helander thanks the referees for their advice in evaluating this article.

Declaration of interest

The authors report no conflict of interest.

Funding

This work was supported by the U.S. Department of Energy under contract numbers
DE-AC02-09CH11466, DE-SC0022005 and Field Work Proposal No. 1019. The United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for
United States Government purposes.

Data availability statement

The data that support the findings of this study are openly available in the DESC
repository at https://github.com/PlasmaControl/DESC/tree/master/publications.

REFERENCES

ANTONSEN, T., PAUL, E.J. & LANDREMAN, M. 2019 Adjoint approach to calculating shape gradients for
three-dimensional magnetic confinement equilibria. J. Plasma Phys. 85, 905850207.

BOOZER, A.H. 2015 Stellarator design. J. Plasma Phys. 81, 515810606.
BRADBURY, J., FROSTIG, R., HAWKINS, P., JOHNSON, M.J., LEARY, C., MACLAURIN, D., NECULA,

G., PASZKE, A., VANDERPLAS, J., WANDERMAN-MILNE, S. & ZHANG, Q. 2018 JAX:
composable transformations of Python+NumPy programs. Version 0.4.6. http://github.com/google/
jax

CONLIN, R., DUDT, D.W., PANICI, D. & KOLEMEN, E. 2022 The DESC stellarator code suite part II:
perturbation and continuation methods. J. Plasma Phys. doi: 10.48550/ARXIV.2203.15927

DREVLAK, M., BEIDLER, C.D., GEIGER, J., HELANDER, P. & TURKIN, Y. 2019 Optimisation of
stellarator equilibria with ROSE. Nucl. Fusion 59, 016010.

DUDT, D.W., CONLIN, W., PANICI, D., UNALMIS, K., KIM, P. & KOLEMEN, E. 2023 Desc. Available
at: https://github.com/PlasmaControl/DESC.

DUDT, D.W. & KOLEMEN, E. 2020 Desc: a stellarator equilibrium solver. Phys. Plasmas 27, 102513.
GARREN, D.A. & BOOZER, A.H. 1991a Existence of quasihelically symmetric stellarators. Phys. Fluids

B 3, 2822–2834.
GARREN, D.A. & BOOZER, A.H. 1991b Magnetic field strength of toroidal plasma equilibria. Phys. Fluids

B 3, 2805–2821.
GIULIANI, A., WECHSUNG, F., CERFON, A., STADLER, G. & LANDREMAN, M. 2022 Single-stage

gradient-based stellarator coil design: optimization for near-axis quasi-symmetry. J. Comput. Phys.
459, 111147.

HANSON, J.D., HIRSHMAN, S.P., KNOWLTON, S.F., LAO, L.L., LAZARUS, E.A. & SHIELDS, J.M.
2009 V3fit: a code for three-dimensional equilibrium reconstruction. Nucl. Fusion 49, 075031.

HIRSHMAN, S.P. & WHITSON, J.C. 1983 Steepest-descent moment method for three-dimensional
magnetohydrodynamic equilibria. Phys. Fluids 26, 3553–3568.

KRUSKAL, M.D. & KULSRUD, R.M. 1958 Equilibrium of a magnetically confined plasma in a toroid.
Phys. Fluids 1, 265–274.

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://github.com/PlasmaControl/DESC/tree/master/publications
http://github.com/google/jax
http://github.com/google/jax
https://github.com/PlasmaControl/DESC
https://doi.org/10.1017/S0022377823000235

20 D.W. Dudt, R. Conlin, D. Panici and E. Kolemen

LANDREMAN, M. 2019 stellopt_scenarios. https://github.com/landreman/stellopt_scenarios/tree/master/
34DOF_varyBoundary_targetQuasisymmetry

LANDREMAN, M., MEDASANI, B., WECHSUNG, F., GIULIANI, A., JORGE, R. & ZHU, C. 2021 Simsopt:
a flexible framework for stellarator optimization. J. Open Source Softw. 6, 3525.

LANDREMAN, M. & SENGUPTA, W. 2018 Direct construction of optimized stellarator shapes. Part 1.
Theory in cylindrical coordinates. J. Plasma Phys. 84, 905840616.

LANDREMAN, M., SENGUPTA, W. & PLUNK, G.G. 2019 Direct construction of optimized stellarator
shapes. Part 2. Numerical quasisymmetric solutions. J. Plasma Phys. 85, 905850103.

LANDREMAN, M., SMITH, H.M., MOLLEN, A. & HELANDER, P. 2014 Comparison of particle
trajectories and collision operators for collisional transport in nonaxisymmetric plasmas. Phys.
Plasmas 21, 042503.

MARTIN, M.F. & LANDREMAN, M. 2020 Impurity temperature screening in stellarators close to
quasisymmetry. J. Plasma Phys. 86, 905860317.

MCGREIVY, N., HUDSON, S.R. & ZHU, C. 2021 Optimized finite-build stellarator coils using automatic
differentiation. Nucl. Fusion 61, 026020.

NEMOV, V.V., KASILOV, S.V., KERNBICHLER, W. & HEYN, M.F. 1999 Evaluation of 1/ν neoclassical
transport in stellarators. Phys. Plasmas 6, 4622–4632.

NOCEDAL, J. & WRIGHT, S.J. 2006 Numerical Optimization, 2nd edn. Springer.
NÜHRENBERG, J. & ZILLE, R. 1988 Quasi-helically symmetric toroidal stellarators. Phys. Lett. A 129,

113–117.
PANICI, D., CONLIN, R., DUDT, D.W. & KOLEMEN, E. 2022 The DESC stellarator code suite part I:

quick and accurate equilibria computations. J. Plasma Phys. doi: 10.48550/ARXIV.2203.17173
PAUL, E.J., ANTONSEN, T., LANDREMAN, M. & COOPER, W.A. 2020 Adjoint approach to calculating

shape gradients for three-dimensional magnetic confinement equilibria. Part 2. Applications. J.
Plasma Phys. 86, 905850207.

PAUL, E.J., LANDREMAN, M. & ANTONSEN, T. 2021 Gradient-based optimization of 3D MHD
equilibria. J. Plasma Phys. 87, 905870214.

PLUNK, G.G. 2020 Perturbing an axisymmetric magnetic equilibrium to obtain a quasi-axisymmetric
stellarator. J. Plasma Phys. 86, 905860409.

PLUNK, G.G. & HELANDER, P. 2018 Quasi-axisymmetric magnetic fields: weakly non-axisymmetric case
in a vacuum. J. Plasma Phys. 84, 905840205.

PLUNK, G.G., LANDREMAN, M. & HELANDER, P. 2019 Direct construction of optimized stellarator
shapes. Part 3. Omnigenity near the magnetic axis. J. Plasma Phys. 85, 905850602.

RODRIGUEZ, E. & BHATTACHARJEE, A. 2021a Solving the problem of overdetermination of
quasisymmetric equilibrium solutions by near-axis expansions. I. Generalized force balance. Phys.
Plasmas 28, 012508.

RODRIGUEZ, E. & BHATTACHARJEE, A. 2021b Solving the problem of overdetermination of
quasisymmetric equilibrium solutions by near-axis expansions. II. Circular axis stellarator solutions.
Phys. Plasmas 28, 012509.

RODRIGUEZ, E., HELANDER, P. & BHATTACHARJEE, A. 2020 Necessary and sufficient conditions for
quasisymmetry. Phys. Plasmas 27, 062501.

RODRIGUEZ, E., PAUL, E.J. & BHATTACHARJEE, A. 2022 Measures of quasisymmetry for stellarators.
J. Plasma Phys. 88, 905880109.

SPONG, D.A., HIRSHMAN, S.P., WHITSON, J.C., BATCHELOR, D.B., CARRERAS, B.A., LYNCH, V.E.
& ROME, J.A. 1998 J* optimization of small aspect ratio stellarator/tokamak hybrid devices. Phys.
Plasmas 5, 1752–1758.

YU, Z. & DUTTON, R.W. 1998 Second order Newton iteration method and its application to mos compact
modeling and circuit simulation. VLSI Design 6, 141–145.

https://doi.org/10.1017/S0022377823000235 Published online by Cambridge University Press

https://github.com/landreman/stellopt_scenarios/tree/master/34DOF_varyBoundary_targetQuasisymmetry
https://github.com/landreman/stellopt_scenarios/tree/master/34DOF_varyBoundary_targetQuasisymmetry
https://doi.org/10.1017/S0022377823000235

	1 Introduction
	1.1 Motivation
	1.2 Literature review
	1.3 Optimization with DESC

	2 Methods
	2.1 Equilibrium solver
	2.2 Optimization approach
	2.2.1 First order
	2.2.2 Second order
	2.2.3 Trust-region step

	2.3 Quasi-symmetry objective functions
	2.3.1 Boozer coordinates
	2.3.2 Two-term
	2.3.3 Triple product

	3 Results
	3.1 Code implementation
	3.2 Quasi-symmetry optimization
	3.3 Computation speed

	4 Conclusions
	References

