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ON A RELATIONSHIP BETWEEN RECORD VALUES AND ROSS'S
MODEL OF ALGORITHM EFFICIENCY

DIETMAR PFEIFER,* Technical University Aachen

Recently Ross «1981), (1983), Chapter 4.6) has developed a simple Markov chain
model for an average-case analysis of the simplex algorithm in linear programming.
Characteristically, this algorithm moves through the extreme points of the feasible
region in such a way that only those points are successively considered which improve
the actual value of the gain function (see e.g. Hadley (1962)). If we assume the N (say)
extreme points to be arranged in such a way that the first point gives the largest and the
Nth point the smallest value of the gain function, then the steps of the algorithm can
appropriately be described by a finite Markov chain S1'···' SN with state space
{I, ... ,N} such that

1
(1) P(S1 = k) =-,

N

1
1~ k ~Nand P(Sn+1 = k IS; = i) =-.-,

z-l
l~k<i~N

with 1 being an absorbing state. For this model Ross (1981), (1983) has shown that if
TN denotes the number of steps required to reach state 1 for the first time then TN is
approximately (for large N) Poisson distributed over N with mean log N. Here we shall
demonstrate that this result can also be obtained by record value theory. In fact, if
{Xn ; n EN} is an i.i.d. sequence of random variables following a uniform distribution
over {I, ... ,N}, then {Sn; 1~ n ~ N} is identically distributed with the lower record
value sequence {XU n ; 1~ n ~N} where

U 1 = 1,(2) {
min {k; x,<XuJ if x.;» 1,

U +1 =
n Ui; otherwise.

This follows readily by arguments as in Shorrock (1972). Especially, TN is identically
distributed with T = min {n; Xu = I}.

Unfortunately, distribution theory for records from discrete distributions is rather
cumbersome; however, to obtain the asymptotic results as indicated, we can use a
continuous approximation in the following way. Obviously, nothing is seriously changed
if we assume the random variables {X,: n EN} to be uniformly distributed over
{lIN, ... , (N -l)/N, I} except that now T = min {n; X U n = lIN} = min {n; X U n < 2/N}.
But for large N, we may approximately assume the Xn's to be uniformly distributed
over the unit interval; then T is close to the stopping time T* = min {n; XU n < 2/N}
where now {Un; n EN} is the associated record time sequence. But as is known from
record value theory (see Shorrock (1972)), {-log X U n ; n EN} forms the arrival time
sequence of a unit-rate Poisson process implying that T* follows exactly a Poisson
distribution with mean log N + 1 - log 2 = log N. This gives the desired result. Moreover,
the above arguments suggest that for the original Markov chain {S1' ... , SN} and large

Received 12 October 1984; revision received 30 January 1985.
*Postal address: Institut fiir Statistik und Wirtschaftsmathematik, RWTH Aachen,

Wiillnerstrasse 3, D-5100 Aachen, W. Germany.

470

https://doi.org/10.2307/1427154 Published online by Cambridge University Press

https://doi.org/10.2307/1427154


Letters to the editor 471

N{-log Sn/N; 1~ n ~N} behaves approximately as the first N arrival times Zl' ... ,ZN
of a unit rate Poisson process, or equivalently,

(3) S; ~int (N exp (-Zn)) + 1, 1~ n ~N.
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