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INFINITE SERIES AND THE DERIVED SET OF THE
AGGREGATE OF THE FRACTIONAL PARTS

OF ITS PARTIAL SUMS

S, AUDINARAYANA MOORTHY

The aim of this paper is to study the relationship between the

nature of an infinite series of real terms in which the general

term tends to zero and the derived set (set of limit points) of

the aggregate of the fractional parts of its partial sums. For

all types of series (in which the nth term tends to zero) we

determine the derived set.

We denote by F the set of the fractional parts of the partial

sums of the series, and by F' the derived set of F . The

principal results of the paper can be stated as follows:

1. the series is convergent if and only if F has at most one

limit point in [0, l] or F' c {0, 1} ;

2. the series, if non-oscillatory, is divergent if and only if

F' = [0, 1] ;

3. if the series is oscillatory, F' is a closed sub-interval

of [0, 1] or [0, 1] - (a, b) , where (a, b) £ (0, l) .

1. Introduction and notation

This paper concerns itself with the study of the relationship between

the nature of an infinite series of real terms in which the nth term

tends to zero and the derived set of the aggregate of the fractional parts
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of its partial sums. Also, the derived set is determined for all types of

series in which the nth term tends to zero.

In this paper, 5 denotes the nth partial sum of the infinite

oo

series Y, u ^n which u •* 0 ; / denotes the fractional part of
n = l • n n

S n ' ( ? * ) ' t h e s e 1 u e n c e f x > f 2 > •••> f n > ••• '> F ' t h e s e t o f t h e

fractional parts of its partial sums; and F' , the derived set of F .

The largest integer not greater than 5 , [S ] , is denoted by J

2. Main theorems

THEOREM 2 .1 . The series Y, u > ̂ n which u + 0 , i s convergent if

and only if F has at most one limit point in [0, 1] or F' c {0, 1} .

Closely related to this theorem is

THEOREM 2.1 A. The series £ u , in which u + 0 , i s convergent if

and only if the sequence [f ) is convergent or oscillates between the two

values 0 and 1 .

THEOREM 2.2. A non-oscillatory series in which the nth term tends

to zero is divergent if and only if F' = [0, l ] .

Note. That F' = [0, l ] for a divergent series of positive terms i s

known (see [ J ] , Part I , Chapter 3 , Problem 101, p . 23). The proof given in

t h i s paper is on independent l i n e s .

THEOREM 2.3. For an oscillatory series in which the nth term tends

to zero F' is a closed sub-interval of [0, l ] , or [0, l ] - (a, b) ,

where (a , b) g: (0, l ) .

Note. F' may be [0, l ] or may take any of the following forms:

[a, b] , [0, a] u [b, 1] , [0, a] u {1} , {0} u [b, l ] , where

0 5 a < b 5 1 .

3. Proof of Theorem 2.1

For convenience, the first half of the theorem is split into two

lemmas that follow.
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LEMMA 3.1. If Y, u converges to a non-integral value, s , then

the sequence (f ) tends to the fractional part of s .

The proof is simple.

REMARK. In this case F has at most one limit point, that is, F'

is null or a single-element set.

LEMMA 3.2. If £ u converges to an integer, then F has no limit

point in (0, l) ; that is, F' c {0, 1} .

Proof. Let the series converge to an integer I . If F is finite,

it has no limit points and F' = 0 . Assume, then, that F is infinite.

Let, if possible, a be a limit point of F in (0, l) . Choose a

positive e < min(a, 1-a) and also any positive 6 < min(a-e, 1-a-e) .

Now we have

0 < 6 < a-e < a < a+e < 1-6 < l .

Since 5 -*• I , corresponding to this 6 there exists a positive

integer N such that

n > N implies 1-6 < S < 1+6 .

Also, since a is a limit point of F , there exist infinitely many

members / of F in (a-e, a+e) and we can choose an / in this

interval with m > N . Since m > N ,

1-6 < S < 1+6 .
m

This implies

IS

and so

c-6 < fm< c+6 ,

where a - I - I is an integer. But 0 £ f < 1 and 0 < 6 < 1 and so
m m

w e h a v e - 1 < e < 2 , i m p l y i n g t h a t e = 0 o r 1 . I f e = 0 ,

0 5 / < 6 < a-e ;
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if c = 1 ,

a+e < 1-6 < / < 1 .
m

In e i ther case we have the contradiction / $ (a -e , a+e) . Hence F has

no l imi t point in (0, l ) ; that i s , i t s l imit point (or l imit points)

must l i e outside (0, l ) . Also, F is f in i te implies F' = 0 . Thus in

a l l cases, F' c {0, 1} .

We wil l now prove the second half of Theorem 2 . 1 ; namely: if u •* 0

and F' is a single-element set, or a subset of {0, 1} j then £ u is

convergent.

CASE ( i ) . Let F' = 0 . Clearly F is a f in i te se t . If F

contains only one element g of (/^) , then f = g for a l l

suff ic ient ly large n and u -*• 0 implies I - I -*• 0 . Since J

and I . are in tegers , we should have 1=1 for a l l n exceeding a

suff ic ient ly large posi t ive integer N . The se r i e s , therefore, converges

to Is+ G •

I f F contains the elements g , g , . . . , g, , l e t

6X = min(|g^-^.l) , i * j , and 6g = m a x ( | ^ - ^ . | ) . Since 0 < ̂  < 1

for l < i < i ; , 0 < 6 , 6 2 < 1 . Choose now any posit ive

e < min(6 , l-6p) . (Note: every / i s a g. for some i .)

Since u •*• 0 , corresponding to th is E , there exists a positive

integer N such that n > N implies \S -S | < e ; that i s ,

Jn ~

But /K - /w_1 £ |/n-/w_1| £ 6g and so the ahove inequality gives

-62-e < I
n-

I
n_1 < <S2+e ,

which resu l t s in the inequali ty -1 < I -I ., < 1 since e < 1-6^ .
n n—± 2

Therefore, J^ = ̂ n_x for a l l n > N . Hence \f -f | < e < 6, . But
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t h i s , by definit ion of 6 , implies / = f for a l l n > N . Hence

S = I + f = I,, + /•„, = 5,, for n > N and the ser ies converges to
n n J n N J N N &

SN •

CASE (ii) . Let F' contain the lone element E, , 0 < E, < 1 . Here

F is an infinite set and its only limit point is E, . Clearly E, is a

limit point of (/ ) • We first prove the convergence of (/ ) by proving

that its only limit point is E, . Later we prove that the convergence of

(/ ) , under the condition that u •*• 0 implies the convergence of the

series Y u
L* n

If £ is not the only limit point of [f ) , let g be another

limit point of it. Choose a positive number 6 < min(£, l-£, \E,-g. |) , so

that the interval (5-6, £+6) lies completely within [0, l] and does not

contain g . Outside the interval (£-<5, £+6) , there exist only

finitely many members of the aggregate F since E, is its only limit

point; and it is possible that some (or all) of these are the limit points

of the sequence (/ J . Our assumption that F' = {E,} implies that the

only limit point of (/ ) , around which an infinity of its distinct

members cluster, is E, . Hence the other limit points of the sequence

(/ J are members of it, each occurring in it an infinite number of times.

Let g , ..., g, be the limit points of (/ ) lying outside the

closed interval [E,-6, £+6] . [Note that one of E, - 6 and E, + 6 or

both can be limit points of (/ ) .) Since outside (£-6, £+6) there are

at most finitely many members of (/ ) which are not limit points of it,

there must be a stage in the sequence beyond which f is one of

g , ..., g^ or / € tC-6, £+6] , that is, there exists a positive integer

N such that n > N implies

(1) fn € {gx, .-., 9k] u [e-«, £+6] •

Let 6 be the least of the positive differences between any two
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members of the set

{g±, ..., gk, £-6, C+6}

and 6 the greatest of the same. Since 0 < 6 , 6? < 1 , we can choose a

positive e < min(6 , l-8~) • As in Case (i), the condition u •* 0 will

result in the inequality

^ ^l-fn-Z<In- V l < 4-1 " 4 + £ '

which holds for all « greater than a certain positive integer flL . If

N > max(# , N ) , n > N implies (1) and (2). But (l) clearly implies

1/ -/„ n | < 6 and since e < 1-6 , (2) should give -1 < I -I < 1 .
ft Ti—X d. c Yl rl—J-

Hence, again as in Case (i), I = I and 1/ -/ _n I < e f o r n > N .

Since g repeats itself an infinite number of times, there exists a

positive integer m > N such that fm
=8-\ • Hence

1*1-4-11 " 14-4-11 < e < 5! •
But, i f g, t fm -. , we should have |^ —/ | > 6 , by definit ion of

6 . Therefore, g = f = / . . In a similar way we have, a l so ,

fm - fm+1 • S o w e should have

But then F is a finite set, that is F' = 0 , which is a contradiction.

Hence (/ ) is convergent to £ .

The convergence of (/ ) implies f - f •*• 0 , which, together

with the condition u •*• 0 , implies I -I -*• 0 : and this leads to

the conclusion that [I ) converges to an integer I . Therefore, the

sequence [S J is convergent, that is, Y, u ^s convergent.

CASE (iii) . Let F' be a non-empty subset of {0, l} . Clearly, F

is an infinite set.
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Let 0 < a < 1 . Consider the series £ u , where u = u. + a and

u = u for n > 1 . For the u-series, let ^ denote the fractional

part of its nth partial sum and G , the range of the sequence [g ) .

Clearly, g equals the fractional part of / + a .

We prove that if F' = {0} or {1} or {0, 1} , then G' = {a} ,

which, by Case (ii) implies convergence of the u-series and hence of

(a) First, let F' = {0} . Choose a positive e < min(a, 1-a) , so

that

0 < e , a-e < a < a+e < 1 .

Since 0 is the only limit point of F , at most finitely many members of

F lie in the interval (E, 1) . We can easily verify that g. ̂  (a, a+e)

implies /. € (e, l) . Hence, at most a finite number of members of G

lie outside (a, a+e) . Thus a is the only limit point of G ; that is,

G' = {a} .

(b) If F' = {l} , only a finite number of members of F lie in the

interval (0, 1-e) and g. $ (a-e, a) implies /. e (0, 1-e) . Hence, as

in (a), G' = {a} .

(c) If F' = {0, l} , there exist only finitely many members in the

interval (e, 1-e) and g^ { (a-e, a+e) implies /\ € (e, 1-e) , so that,

again, a is the only limit point of G .

Thus, G' = {a} , if 0 + F' c {0, l} , and Case (iii) is now disposed

of.

If 0 and 1 are the only limit points of the sequence [f ) , then

we could prove, practically on the same lines as above, that a is the

only limit point of [g ) . Thus (g ) is convergent and this leads to

the convergence of £ u

Theorem 2.1 is completely proved. We have, by the way, proved Theorem

2.1A also.
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REMARK 3.3. If F' = {0} or {l} or {0, 1} , then, the series

must converge to an integer; for, otherwise, by Lemma 3.1, F' must

contain a non-zero real number less than 1 . The different implications

of the three cases may be stated as follows:

(a) F' = {0} if and only if

(i) there exists a subsequence of (5 ) which tends to

the integer, say J , through values greater than

I ,

(ii) 5 < I for at most finitely many n ;

(b) F' = {1} if and only if

(i) there exists a subsequence of [s ) which tends to

J through values less than J ,

(ii) 5 > I for at most finitely many n ;

(c) F' = {0, 1} if and only if there exist subsequences of

[S ) tending to J from either side of it.

The above results can tie proved easily and we omit their proof.

4. Proof of Theorem 2.2

Suppose, first, that the series Y,u diverges to +°° . For any

a € (0, 1) we shall prove that there exists a member of F in any

neighbourhood of a .

Consider m + a , where m is any positive integer. Since 5 •*• °° ,

there exists a positive integer N such that n > N implies m + a < S .

Let m' be the least positive integer such that m + a < S , . Clearly,

m uniquely determines m' and m -*• °° implies m' •* °° . Further we have

S . , 5 m-Kx < S , .
m'-l m'

(We take S to be 0 here.) Since u,=S,-S,-*-0 as m->-°°,

the length of the interval \S , , S ,J can be made as small as desired

by making m sufficiently large. Now choose a positive e < min(a, 1-a) ,
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so that

(3) 0 < ct-e < a < a+e < 1 ,

and allow the interval to diminish to a length less than e by taking m

sufficiently large. Since m + a € [s , , , S ,) , m + a ± e cannot lie

inside the interval. Hence

(It) m+ct-e < Sm ,_1 £ m+a < S ^ , s m+ot+e ,

and by inequality (3) we have

m < S , < m+a < S , < m+1 ,

which implies

m'-l m

Therefore (k) gives

showing that a is a limit point of F . Also 0 and 1 , which are

limit points of (0,1) are limit points of F also. Hence F is

everywhere dense in [0, l] ; that is, F' = [0, l] .

If Y. u diverges to -» , then £ {-u ) diverges to +00 . The

fractional part of the nth partial sum, -S , of £ [-u ) is 1 - f

if / t 0 , and 0 if / = 0 . Clearly the set of the fractional parts

of the partial sums -S is everywhere dense in [0, l] if and only if F

is everywhere dense in [0, l] . Thus, in this case also, F' = [0, l] ,

and this completes the proof of the first half of the theorem.

If F' = [0, l] , certainly the series £ u cannot converge by

Theorem 2.1: and since the series is assumed to be non-oscillatory, the

series is divergent. Theorem 2.2 is now completely proved.

REMARK 4.1 . If u •*• 0 and £ u oscillates between finite and

infinite limits or between -°° and +°° , we should still have F' = [0, l]

since (S J contains a subsequence that diverges to +°° , or -<=° .
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5. Proof of Theorem 2.3

We now prove a lemma that is used in the proof of Theorem 2.3 .

LEMMA 5.1 . Let A, X be the limit superior and limit inferior of

the set of values within which the bounded series Y u in which u •* 0
'-• n n

oscillates. Let A denote the closed interval [X, A] and F , the set

of the fractional parts of the members of A . Then F.=F'tif A does

not contain any integer; if A contains an integer, then

FA u {1} = F' u {0, 1} .

Proof. It is known (see [I], Part I, Chapter 3, Problem 100, p. 23)

that for an oscillatory series in which the rzth term tends to zero, the

sequence of partial sums is everywhere dense between its limit superior and

limit inferior. Thus, if s € [X, A] , there exists a subsequence of [s )

that tends to s . Hence it follows that the set of values within which

the series Y, u oscillates is [X, A] = A .

Suppose that A does not contain any integer. If a € F. (a jt 0) ,

there exists an integer I , such that I + a € A . Hence a subsequence of

[s ) converges to I + a . If F is the set of the fractional parts of

its members, we have, by Lemma 3.1, F' = {a} . Clearly F. c F and so

F^c F' implying that a f f . Thus FA c F' .

If, on the other hand, a € F' , there exists a subsequence (/ ) .
m. i*—1

of (/ J tending to a , Let the corresponding subsequence of (5 ) be

(5 )v_i • Since the series is bounded, (5 ) either converges or
i mi

oscillates within finite limits. (We do not know if the difference between

consecutive members of this sequence tends to zero.) If it converges to

b , then, by Lemma 3.1, the sequence (/ ) tends to b. , the fractional

part of b . Hence a = b. . Clearly, b € A and so a € P' . If the

sequence (S^ J oscillates, it has a convergent subsequence; and since
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i ts corresponding subsequence of fractional parts (being a subsequence of

[f ) ) also tends to a , i t follows, as in the previous case, that
m.'

a € F' Thus F' c F . Hence F^ = F' .

If A contains an integer, we have to alter the result as

F. u {1} = F' u {0, l} , which can be proved easily.
n

Proof of Theorem 2.3. Case ( i ) . Let A-X < 1 .

(a) Let X and A l i e between two consecutive integers . Also l e t

none of them be an integer. If A~ and X~ denote the fractional parts

of A and X , then F. = [X,,, AJ . So, by Lemma 5 .1 , F' = [X_, AJ .
H J I I I

(b) If X is an integer, A i s not an integer and F. = [o, A_]
" J

since A/. = 0 . Clearly there exists a subsequence of (s ) which tends

to X through values greater than X . By Remark 3.3 (a), 0 f F' . If

there is no subsequence of (5 ) tending to X through values less than

it, then, again by (b) of the remark, 1 ̂  F' . In this case, the result

F. u {l} = F' u {0, 1} implies F. u {l} = F' u {l} . The result reduces

to

F' = FA = [0, Af]

since 1 is not a member of F. or F' .

If there is a subsequence of (5 ) which tends to X through values
n

less than i t , then there exists a subsequence of (/ ) tending to 1 and

I f f 1 . Already, 0 € F' and we have F' u {0, 1} = F' . Thus, in th i s

case,

F' = [0, Af] u {1} = [0, 1] - [Kf, l) .

(c) If A is an integer, X is not an integer and A~ = 0 . Here

Pj = {0} u [Xj,, l) . In this case 1 € F' . If there exists a subsequence

of (S ) which tends to A through values greater than it, then 0 € F' ;

otherwise 0 ̂  F' . Hence
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F' u {0, 1} = F. u {1}

implies

which implies

F' u {0} = [>„, lj u {0} ,

F> = [\f,

if 0 f F' , and

f" = [\f, l] u {0} = [0, 1] - (0, \f) ,

if 0 € F' .

(d) If none of X and A is an integer, then [A] lies between

X and A , and F. = \\f, l) u [o, A J . Since A-X < 1 , A~ < X̂ , and

hence

FA u {1} = [0, Af] u [\f, lj .

Since X < [A] < A , there exists subsequences of (5 ) tending to [A]

from either side of it (by Remark 3-3 (c)) and so 0 and 1 ( F' .

Therefore, in this case,

F' = [0, Af] u [Xf, l] = [0, 1] - [Af, Xf) .

Case (ii) . If A - X > 1 , we can prove, on the lines of Case (i),

that F' = [0, l] . If the series has infinite oscillation, then also, by-

Remark U.I, F' = [0, 1] .

The proof of Theorem 2.3 is now complete.
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