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INFINITE SERIES AND THE DERIVED SET OF THE
AGGREGATE OF THE FRACTIONAL PARTS
OF ITS PARTIAL SUMS

S. AuDINARAYANA MOORTHY

The aim of this paper is to study the relationship between the
nature of an infinite series of real terms in which the general
term tends to zero and the derived set (set of limit points) of
the aggregate of the fractional parts of its partial sums. For
all types of series (in which the nth term tends to zero) we

determine the derived set.

We denote by F the set of the fractional parts of the partial
sums of the series, and by F' the derived set of F . The

principal results of the paper can be stated as follows:

1. the series is convergent if and only if F has at most one

limit point in [0, 1] or F'c {0, 1} ;

2. the series, if non-oscillatory, is divergent if and only if
F'=10,1];

3. if the series is oscillatory, F' 1is a closed sub-interval

of [0, 1] or [0, 1] - (a, b) , where (a, b) g (o, 1) .

1. Introduction and notation

This paper concerns itself with the study of the relationship between
the nature of an infinite series of real terms in which the #nth term

tends to zero and the derived set of the aggregate of the fractional parts
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of its partial sums. Also, the derived set is determined for all types of

series in which the nth term tends to zero.

In this paper, Sn denotes the nth partial sum of the infinite

oo
series Z u, in which u, > 03 fn denotes the fractional part of
n=1 .

Sn 5 (fn) , the sequence fl, f2, cees fn, ... 3 F , the set of the

fractional parts of its partial sums; and F' , the derived set of F .

The largest integer not greater than Sn , [Sn] , 1s denoted by In .

2. Main theorems

THEOREM 2.1. The series ) U, in which u, >0, is convergent if
and only if F has at most one limit point in [0, 1] or F'c {0, 1} .

Closely related to this theorem is

THEOREM 2.1A. The series ) u, in which u, >0, is convergent if
and only if the sequence (fn) 18 convergent or oscillates between the two
values 0 and 1 .

THEOREM 2.2, A non-oscillatory series in which the nth term tends

to zero is divergent if and only if F' = [0, 1] .

Note. That F' = [0, 1] for a divergent series of positive terms is
known (see [I], Part I, Chapter 3, Problem 101, p. 23). The proof given in

this paper is on independent lines.

THEOREM 2.3. For an oscillatory series in which the nth term tends
to zero F' 1is a closed sub-interval of [0, 1], or [0, 1] - (a, D) ,
where (a, D) ¢ (o, 1)

Note. F’' may be [0, 1] or may take any of the following forms:
la, p] , [0, al ulb, 11, [0, alu {1}, {0} ulb, 1] , where
O=a<b=1l.

3. Proof of Theorem 2.1

For convenience, the first half of the theorem is split into two

lemmas that follow.
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LEMMA 3.1. IF ¥ u, converges to a non-integral value, s, then

the sequence (fn) tends to the fractional part of s .

The proof is simple.

REMARK. In this case F has at most one limit point, that is, F'
is null or a single-element set.

LEMMA 3.2. If Zun converges to an integer, then F has no limit
point in (0, 1) ; that is, F'c {0, 1} .

Proof. Let the series converge to an integer I . If F 1is finite,
it has no limit points and F' =@ . Assume, then, that F is infinite.
Let, if possible, a be a limit point of F in (0, 1) . Choose a
positive € < min(a, 1-a) and also any positive & < min(a-e, l-a-€)

Now we have

0<d<a-e<a<o+e <1-6 <1.

Since Sn + I , corresponding to this § there exists a positive

integer N such that

n >N implies I-§ < Sn < I+§
Also, since a is a limit point of F , there exist infinitely many
members fn of F in (oa-£, a+e) and we can choose an fm in this
interval with m > N . Since m > N ,

I-§ < S < I+
m
This implies
I-6 < Im+fm < I+ ,
and so
e-§ < fm < e+,
vhere ¢ =1 - Im is an integer. But 0 = fm <1 and 0 < § <1 and so

we have -1 < ¢ < 2 , implying that ¢ =0 or 1 . If ¢ =0

Offm<6<a-e;
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if e=1,

a+e < 1-§ < f% <1

In either case we have the contradiction fh f (o-g, a+te) . Hence F has

no limit point in (0, 1) ; that is, its limit point (or limit points)
must lie outside (0, 1) . Also, F 1is finite implies F' = @ . Thus in

all cases, F'c {0, 1} .

We will now prove the second half of Theorem 2.1; namely: <Zf u_ -0

n
and F' 1is a single-element set, or a subset of {0, 1} , then E:un is
convergent.

CASE (i). Let F' =@ . Clearly F 1is a finite set. If F
contains only one element g of (fh) , then f% =g for all
sufficiently large n and u_ =+ 0 implies I - I -0 . BSince I

n n n-1 n
and Iﬁ-l are integers, we should have In = Jh for all n exceeding a
sufficiently large positive integer N . The series, therefore, converges
+ .
to IN g

If F contains the elements gl, Gos v gk , let

1 [

for 1=1=<k, 0X< 61, 62 < 1 . Choose now any positive

1-62) . (Note: every fh is a g; for some < .)

8, = min[lgi-gj|) » T#J ,and §,= max(lgi—gj|) . Since 0=sg,<1

e < min(Gl,
Since un »> 0 , corresponding to this € , there exists a positive

integer N such that »n > N implies lSn—Sn_lI < € ; that is,

IIn_Iﬁ—l-(fh-l_fh)l <€

—62—5 < lh—In_ < 62+e ,

1

which results in the inequality -1 < In_Ih 1 < 1 since g < 1-62 .

Therefore, In = Iﬁ-l for all n >N . Hence Ifh_fh-ll <eg< 51 . But

https://doi.org/10.1017/50004972700006079 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700006079

Infinite series and the derived set 257

=7 for all »n > N . Hence

this, by definition of 61 , implies f el

n
= = = > 1

Sn In + fh IN + fh SN for n =2 N and the series converges to

SN .
CASE (ii). Let F' contain the lone element § , O < £ <1 . Here

F 1is an infinite set and its only limit point is § . Clearly £ 1is a

limit point of (fh] . We first prove the convergence of (fh) by proving
that its only limit point is & . Later we prove that the convergence of
(fh) , under the condition that un > 0 1implies the convergence of the

series z un .

If £ is not the only limit point of (fh) , let 9, be another
limit point of it. Choose a positive number § < min(&, 1-&, ]g—gll] , 50

that the interval (&-8, £48) 1lies completely within [0, 1] and does not
contain g, - Outside the interval (£-6, £+8) , there exist only

finitely many members of the aggregate F since & 1is its only limit
point; and it is possible that some (or all) of these are the limit points
of the sequence (fh] . Our assumption that F' = {{} implies that the
only limit point of (fh) , around which an infinity of its distinct
members cluster, is & . Hence the other limit points of the sequence

[fh) are members of it, each occurring in it an infinite number of times.

Let gy> o 9 be the limit points of (fh) lying outside the

closed interval [E-8, E+6] . (Note that one of £ -8 and £ + 8§ or
both can be limit points of (fh) .) Since outside (&-8, £+8) there are

at most finitely many members of (fh) which are not limit points of it,
there must be a stage in the sequence beyond which fh is one of
gys --+» Gp OT fh € (£-6, £+8] , that is, there exists a positive integer

Nl such that =n > Nl implies

(1) fp€lgys --os g} v [E-6, £48] .

Let 61 be the least of the positive differences between any two
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members of the set
{gl’ teey gk’ E—(S, E+6}

and 6, the greatest of the same. Since 0 < 61, §, <1, we can choose a ,

2

positive € < min(6

2
1 1—62) . As in Case (i), the condition u, > 0 will
result in the inequality

<f

(2) fn_l-fn—E<In-I n-1

- +
n-1 fﬁ €

which holds for all #n greater than a certain positive integer N2 . If

N> max(Nl, N2) , n >N implies (1) and (2). But (1) clearly implies
- < i < 1- i - -
lfh fh-ll 62 , and since € <1 62 , (2) should give -1 < In Iﬁ—l <1.

. . . - _ <
Hence, again as in Case (i), In In-l and Ifh fh—ll € for n>N.

Since gl repeats itself an infinite number of times, there exists a

positive integer m > N such that fﬁ =g, - Hence
lgl_fm—ll = Ifm—fm—ll <ec< 61 N
But, if 9, # fﬁ-l , we should have |gl— m—l' > 61 , by definition of
61 . Therefore, g9, = f& = a1 In a similar way we have, also,
f =f . So we should have

m m+1
9y =y =y = Fysn = -

But then F 1is a finite set, that is F' = @ , which is a contradiction.

Hence (fh) is convergent to & .

The convergence of (f%) implies fh -f + 0 , which, together

n-1
with the condition u, > 0 , implies In - In-l + 0 : and this leads to
the conclusion that (In) converges to an integer I . Therefore, the

sequence Lsn) is convergent, that is, Z:un is convergent.

CASE (iii). Let F' be a non-empty subset of {0, 1} . Clearly, F

is an infinite set.
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Iet 0 <a <1 . Consider the series z:vn » Where v, T ta and
vn = un for n >1 . For the uv-series, let gn denote the fractional
part of its nth partial sum and G , the range of the sequence (gn)
Clearly, 9, equals the fractional part of fh +a .

We prove that if F' = {0} or {1} or {0, 1}, then G' = {a} ,

which, by Case (ii) implies convergence of the wv-series and hence of
Yu_ .
n
(a) First, let F' = {0} . Choose a positive € < min(a, 1l-a) , so
that
0<eg, o~e<a<ate <1.

Since O is the only limit point of F , at most finitely many members of

F 1lie in the interval (€, 1) . We can easily verify that g9; £ (o, a+e)

implies f; € (e, 1) . Hence, at most a finite number of members of ¢
lie outside (&, a+€) . Thus o is the only limit point of ¢ ; that is,
G¢' = {a} .

(b) 1If F' = {1} , only a finite number of members of F 1lie in the
interval (0, 1-€) and g; ¢ (a-€, a) implies f% € (0, 1-g) . Hence, as

in (a), G' = {a} .

(¢) 1If F' = {0, 1} , there exist only finitely many members in the
interval (e, 1-€) and g9; f (0-g, a+e) implies f; € (e, 1-g) , so that,

again, o 1is the only limit point of G .

Thus, G' = {a} , if @ # F' c {0, 1} , and Case (iii) is now disposed
of.

If 0 and 1 are the only limit points of the sequence (fh) , then

we could prove, practically on the same lines as above, that o is the

only limit point of [gn) . Thus &%1) is convergent and this leads to
the convergence of z:un

Theorem 2.1 is completely proved. We have, by the way, proved Theorem
2.1A also.
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REMARK 3.3. If F' = {0} or {1} or {0, 1} , then, the series
must converge to an integer; for, otherwise, by Lemma 3.1, F' must
contain a non-zero real number less than 1 . The different implications

of the three cases may be stated as follows:
(a) F' = {0} 4if and only if
(i) there exists a subsequence of (Sn) which tends to

the integer, say I , through values greater than
I,

(ii) Sn < I for at most finitely many = ;

(b) F' = {1} 4if and only if
(i) there exists a subsequence of Lsn) which tends to
I +through values less than I ,
(ii) s, > I for at most finitely many n ;
(¢) FP'= {0, 1} if and only if there exist subsequences of

[Sn) tending to I from either side of it.

The above results can be proved easily and we omit their proof.

4. Proof of Theorem 2.2

Suppose, first, that the series Z:un diverges to 4« ., For any

o € (0, 1) we shall prove that there exists a member of F in any

neighbourhood of o .
Consider m + a , where m 1is any positive integer. Since Sn + o

there exists a positive integer ¥ such that »n > N implies m + o < Sn .

Let m' be the least positive integer such that m + a < Sm’ . Clearly,
m uniquely determines m' and m > e implies m' -+ o _ Further we have
< <
Sm,_l < mia Sm, .

(We take So to be O here.] Since Upr = Sm' - Sm'-l +0 as m=> o,

the length of the interval E%n’—l’ Sﬁ,) can be made as small as desired

by making m sufficiently large. Now choose a positive € < min(a, 1-a) ,
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so that
(3) 0<a-€e<o<o+e <1,

.
and allow the interval to diminish to a length less than g by taking m
sufficiently large. Since m + a € E%",_l, Sm,) » M+ a tg cannot lie

inside the interval. Hence

(%) mio-g < Sm'-l < mq < Sm, < mrate ,

and by inequality (3) we have

m<S , . <mua<S ,<ml,
m m

which implies

Therefore (U4) gives
a-g < fﬁ'-l =a < fh, < o+e ,
showing that o 1is a limit point of F . Also O and 1 , which are

limit points of (0, 1) are limit points of F also. Hence F is

everywhere dense in [0, 1] ; that is, F' = [0, 1]
Ir Y u, diverges to -* , then Y (—un) diverges to +* . The

fractional part of the nth partial sum, —Sn , of ¥ (-un] is 1 - f%
if fh #0 , and 0 1if fn = 0 . Clearly the set of the fractional parts
of the partial sums —Sn is everywhere dense in [0, 1] if and only if F
is everywhere dense in [0, 1] . Thus, in this case also, F' = [0, 1] ,
and this completes the proof of the first half of the theorem.

If F' = {0, 1] , certainly the series Z u, cannot converge by
Theorem 2.1: and since the series is assumed to be non-oscillatory, the
series is divergent. Theorem 2.2 iS5 now completely proved.

REMARK 4.1. 1If u, > 0 and Y u, oscillates between finite and

infinite limits or between -*© and +~ , we should still have F’' = [0, 1]

since (Sn contains a subsequence that diverges to +® , or -« .
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5. Proof of Theorem 2.3
We now prove a lemma that is used in the proof of Theorem 2.3.
LEMMA 5.1. Let A, A be the limit superior and limit inferior of
the set of values within which the bounded series Y. u, inwhich u >0

oscillates. Let A denote the closed interval [\, A] and Fy s the set

of the fractional parts of the members of A . Then F, =F' , if A does

A

not contain any integer; <if A contains an integer, then

FAu{l}=F’u{0,l}.

Proof. It is known (see [/], Part I, Chapter 3, Problem 100, p. 23)
that for an oscillatory series in which the #nth term tends to zero, the
sequence of partial sums is everywhere dense between its limit superior and

limit inferior. Thus, if s € [A, A] , there exists a subsequence of (Sn)
that tends to 8 . Hence it follows that the set of values within which

the series Zun oscillates is [A, A]l =4 .

Suppose that A does not contain any integer. If o € F, (a # 0) ,

there exists an integer I , such that I + a € 4 . Hence a subsequence of
(Sn] converges to I +a . If Fl is the set of the fractional parts of
its members, we have, by Lemma 3.1, Fl' = {a} . Clearly Fl C F and so

F]:CF' implying that o € F' . Thus '.FACF’ .

If, on the other hand, o € F' | there exists a subsequence (_fm )0?_1
0 i=

of (fn) tending to o . Let the corresponding subsequence of (Sn) be

o
Sm ] i=1 °
7

Since the series is bounded, (Sm ) either converges or
Z
oscillates within finite limits. (We do not know if the difference between
consecutive members of this sequence tends to zero.) If it converges to
b , then, by Lemma 3.1, the sequence (fm ) tends to bf , the fractional
i
part of b . Hence a =bf . Clearly, b €A and so a € FA . If the

sequence (Sm J oscillates, it has a convergent subsequence; and since
1
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its corresponding subsequence of fractional parts fbeing a subsequence of

Lﬂ".) ) also tends to o , it follows, as in the previous case, that
7

[ = p!
a € EA . Thus F'cC EA . Hence FA F

If A contains an integer, we have to alter the result as
F,u {1} = F' v {0, 1} , which can be proved easily.
Proof of Theorem 2.3. Case (i). Let A=A <1 .

(a) Let A and A lie between two consecutive integers. Also let

none of them be an integer. If Af and Af denote the fractional parts

of A and X, then F, = [Af, Aj.] . So, by Lemma 5.1, F' = [xf, Af] .

(b) If A 1is an integer, A is not an integer and F, = [0, ATJ
since Af = 0 . Clearly there exists a subsequence of (Sn) which tends

to A through values greater than A . By Remark 3.3 (a), 0 ¢ F’' . If

there is 1o subsequence of (Sn) tending to A through values less than

it, then, again by (b) of the remark, 1 f F' . 1In this case, the result
Fy u {1} = F" v {0, 1} implies Fy u {1} = F' v {1} . The result reduces
to
L =
F'=F, = [o, Af]

since 1 1is not a member of F, or F'

A
If there 75 a subsequence of (Sn) which tends to A through values
less than it, then there exists a subsequence of [fh) tending to 1 and

1 €F' . Mready, O € F' and we have F’ u {0, 1} = F' . Thus, in this

case,
F' = [o, Af]u{l}= (o, 11 - (A, 1)
(¢) If A is an integer, X is not an integer and Af =0 . Here
FA = {0} v [Xf, l] . In this case 1 € F' . If there exists a subsequence
of (Sn) vhich tends to A through values greater than it, then 0 ¢ F’ 5

otherwise 0 § F’' . Hence
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F' v {0, 1} =F, v {1}

implies
F'u {0} = [Af, 1] v {0},
which implies
F' = [A, 1
B 1]
if 0 ¢ F' , and

F' = [)\f, l] U {0} = [Os l] - (O, )‘f) H

if 0 €F’'

(d) If none of A and A is an integer, then [A] 1lies between
A and A, and Fy = D\f., 1) v [o, Af] . Since A-XA <1, Af'< )‘f and

hence

F,u {1} = fo, Af] u D‘f’ 1]

Since A < [A] < A, there exists subsequences of (Sn) tending to [A]

frem either side of it (by Remark 3.3 (c¢)) and so 0 and 1 € F' .

Therefore, in this case,
F' = [o, Af] v [xf, 1] = [0, 1] - (Af, Af)

Case (ii). If A - A =2 1 , we can prove, on the lines of Case (i),
that F' = [0, 1] . If the series has infinite oscillation, then also, by
Remark 4.1, F' = [o, 1]

The proof of Theorem 2.3 is now complete.
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