GENERALIZED JACOBIAN VARIETIES AND SEPARABLE
ABELIAN EXTENSIONS OF FUNCTION FIELDS

HISASI MORIKAWA

Using Frobenius automorphisms ingeniouslly, S. Lang has established an
elegant theory of unramified class fields of function fields in several variables
over finite fields [2]. As an application of class field theory and theory of
reduction he has proved that any separable unramified abelian extension of a
function field of one variable comes from @ pull back of a separable ingeny of
its jacobian variety [3].

In the present paper, first we shall prove that any separable abelian ex-
tension of a function field of one variable over a perfect field comes from a
pull back of a separable homomorphism onto a suitable generalized jacobian
variety of the ground field. Secondly, on the base of the pull back theory, we
shall show a theory of class fields of function fields of one variable over a
perfect field. Especially the class field theory of function fields over finite fields
will be treated completely.

The author wishes to express his hearty thanks to Mr. Y. Taniyama who

has given advices to him constantly.

NoraTIions

Throughout this paper we use following notations :

k . a perfect field of characteristic p, where p may be zero,

K/k : a regular extension of dimension one,

L/K: a separable abelian extension of degree » which is also regular over &,

G(L/K)={e1, &, . . ., en}: the galois group of L/K,

{Mi, ..., M,: a set of places of K/k containing all the places ramified
in L/K, where it may be empty,

e; . the index of ramification of M; in L/K,

M, ..., M all the places of L/k on M;, -
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iy : the maximal ideal of the valuation ring of M; in K/k,

m;;: the maximal ideal of the valuation ring of M;; in L/k.

§ 1. Generalized jacobian varieties of extension fields

1.1. We start with local rings

r ki

(1) o=k+ NOAMY (=1
t=1j=1

(2) o=k+ Nmy (zix 1),

i=1

where we assume that NpxoC 9. We say that a divisor a(@) of L/k(K/k) is
o()-equivalent to zero, if a=(f) (@=(f)) with f(f) in 0o(5). We mean also
by o(5)-equivalence relation its prolongation in any constant extension of
L/k(K/E). Let Cy(Cs) be a projective model of L/k(K/k) which has a point
M(M) such that i) the local ring at M(M) is o() and ii) Co=Co— M
(C%=Cs— M) is everywhere regular.’ Let Jo(Jo) be the generalized jacobian
variety associated with o(0)-equivalence relation on C3(Cy) and ¢o(¢s) be a
canonical mapping of C5(C%) into J,(J5) where we assume that Jo(J5) is defined
over k£ by Chow’s method.?

In section 1 and 2 we shall use only the following properties of Jo: 1) the
subgroup consisting of all the k-rational points of J, is isomorphic to the group
of o-equivalence classes of degree zero of L/k, 2) if g is the dimension of Jo
and P, ..., P, are independent generic points of Cj over %, then ¢,(P,+ . ..
+ P;)® is a generic point of J, over k2 and k(¢o(Pi+ ...+ Po))=k(¢(P),

« o5 90(Pg))s,Y 3) if m > 2g, for any point y of J, there exist points Py, . . .,
Pn of C§ such that y=¢o(P,+ ...+ Pm), and 4) ¢, is biregular mapping
between C7 and ¢,(Cs).

1.2. Nyxo C7 implies that the trace mapping #,,5 of C3 onto C} induces
the trace mapping (homomorphism) 7,5 of Jo onto Jp:

(3) 70,590(a) = @5(70,5(a)),

where a runs over divisors of degree zero of C5. The galois automorphisms

b Such a model always exists. Cf. Theorem 5, pp. 174 [4].
2 Cf. Theorem 2, pp. 185 [1].
8 90(Pi+ ...+ Py) means oo(P1)+ ... +Po(Py).

Y k(t1, ..., t;)s means the subfield of k(¢ . .., #y) consisting of elements fixed by
any permutation of suffices,
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e, . . ., £ also induce the automorphisms 7(z1), . . ., 7(en) of Jo:
(1) 2(e)e(a) = ¢(a™) (v=1,2...,n),
where a runs over divisors of degree zero of C{.

1.3. Let %, ..., x» be independent generic points of J, over %2 and B,

be the locus of > (d,, —#(e,)) %, over &” Then B, is a subgroup variety
v=1

defined over k. Let A, be the quotient group variety of Jo, by B, and 8, be

the natural separable homomorphism of Js onto Ao,.

LemMa 1. If P is a point of Cs, then the points ¢o( P™7) —7(e,) @o( P)
(v=1,2, ..., n) do not depend on the choice of P.

Proof. Let @ be another point of C5. Then we observe that ¢o( P© =@ ™)
=¢((P= Q)" ™") =9le,) ¢o(P— Q). This proves the lemma.
We put

(5) bol(ey) = @o( P™71) — 7(ey) ¢o(P) (v=1,2 ..., n.
Lemma 2. Boyle.) boley) = Bobole,) (p, v=1,2, ..., n).

Proof. Let P be a point of Ci. Then, since G(L/K) is abelian, we observe
that

Bon(ea) boley) = Bynle) (€ P27 = 7(e,) ¢o( P))
= Bn"/](su)(‘,—%(Ps"—l) — ¢o(P)) + Bonle)(@o( P) — 7ey) @5(P))
= Bor(e,) (¢o( PP = P))
= Ro@o( PO PR
= Bol@o) P77 —5(e,) @o( P*7)) = Bolo( P 7YY = p(e,) @p(P*7))
= Bobo(E»).

Prorosition 1. Bobolese,) = Bobole,) + Bobole,) (g, v=12,..., n).

Proof. Let P be a point of C5. Then, since G(L/K) is abelian, by virtue
of Lemma 1 and 2, we get

1

Bobolese,) = Bol o PHT 5T — (e, e,) 0p( P))
= Bol@u( P97 — () €0 P 7)) + Bor(e) (9o PT") = 5(e) €0 P))
= Bo(l‘vno(Ps\'_l) - 77(54)?0(1))) + BD(?D(PEV_12 - 'ﬂ(Ev)“[D(P))

% dr, means the identity automorphism of /o,
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"Hence we have
Babn(Epeu) = ﬂObD(Sy_) + @obo(Eu).
1.4. We say that a local ring o(3) is co-ample relative to L/K, if there

exists an integral element & in L/k over o(d) such that tryx& & m(o)(m(3)),
where m(o)(m(9)) means the maximal ideal of 0(d).

LEMMA 3. Let h be a positive integer satisfying 0 < h <mn. Then, if o is
co-ample relative to L/K and L/K is cyclic, there exists mo set of points {P,
v« Pun, R} of Ci such that

¢-h

¢o(PS+ .. .+ P+ R —Pi—...=Pwm—-R)=0,
where ¢ is a generator of G(L/K).

Proof. We may assume that & is algebraically closed. Suppose that {P;,
..., Pmn, R} is a set of points of Ci satisfying the above condition. Let f
be the function in o such that

e=h

(H=P 7'+ ... +Pom+R " =P~ ...—Pm—-R.

Since Ny« is a constant, we may assume that Nyxf=1 and f=1 mod m(o).
Let ¢ be an integral element over o such that tr,x¢ € m(o). Put
p=£4+ se‘lf_*_es-zfns-l 4.+ es“("”‘fus-w...+s—("‘3’.
Then we have
Y =tryxé mod m(o)
and f¢° =¢. Hence, putting ¢, = (tr£)*¢, we have ¢1=1 mod m(o). This
shows that all the places contained in (¢,)o and (¢1)» are unramified in L/K.
Putting a= Pi+ . . . + Pms, we observe that
(H)=a""—a+R™"=R=(¢) - (g
Namely R = R=(¢) +a— ((¢1) +0a)"". Let m, be the multiplicity of R in
n—1
(¢y) +a and b be the divisor (¢)) +a— S3m,R*". Then we observe that b*"
v=0

—b=0. Since all the places contained in b are unramified, we have degb=0
mod z. On the other hand we have

e~h - n-l -y nol —(V+1)
R —R=>XmR™ - XmR" .
v=u

v=0

Therefore we observe that
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0 for »xh O
My — My—1 = 1 for o=h
-1 for »=0, n,

n=1

where m=m,. This shows that >\m,=nmy+(n—h)= —h modn. This
v=0

n-1
contradictes >,m, =deg (¢1) +a—6=0 mod n.
v=1

ProrosiTion 2. If L/K is cyclic and v is co-ample relative to L/K, then

e = Bobolc’) (»=1,2,..., n)is an isomorphism.

Proof. Let m be a positive integer such that m»n = 2dimJ, and R be a
point of C5. Then we have

=V

@(RY — R) = (9(e") — dsp) ¢o(R) + (SOD(RE_U) —7(e") ¢s(R)).
This shows that
¢o(R* = R) — bole")

belongs te B,. Now we suppose that Bob,(¢”) =0 for an & satisfying 0 < h < n.

Then we observe that
Bo(@o(R*™" = R) — ¢o(R*™" = R) + by()) = 0.

On the other hand, by virtue of Proposition 1, we have Boby(e”) = nfpbs(c) =0,

hence we get
Bobs(R*™ = R™) + (mm + 1) Bobole) = 0.

Namely ¢o(R*™" = R+ (mn+1)bs(c) belongs to B,. Since nm = 2dim J,
and (3,, — 7(e))(Jo) = By, there exists a set of points {P;, . . ., Pms} of C5 such
that

(Brp =N (P4 . . .+ Pum) = — (85, —7(e)) ¢o(R)
+¢o(RT" = R + (mm+ 1) bole).
Therefore we have
@o(Pi+ ...+ Pun+R) —¢o(Pi + ...+ Pig+ R
+ 2ol PT) =06 o Pi)) + (¢6(R™) = 1(e) 0(R))
= (mn+ 1) bo(e) + ¢o(RT" ~R*).

On the other hand ¢,(P; ") = 7(e) ¢o( Pi) = ¢o(RY) — 7(e) ¢u(R) = bole) (i=1, 2,
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., nm), hence we have

e—1 e~h

‘Po(P1+...+an+R—Pi_l"‘...—P;rm—R )=0

This contradicts Lemma 3.

§2. A proof of the pull back theorem

We use following notations:

By,5 : the irreducible component of 7,';(0) containning {0},

Ap,5: the quotient group variety of J, by Bo,s,

ao,5 : the natural separable homomorphism J, onto Ap,3,

%p,5 : the homomorphism of Ay onto J5 such that o5 = 7o, 50,5,

ap,5(ev) 1 ao,5bo(e) (r=12 ..., n).

2.1. Let %' be a finitely normal extension of 2 over which B, is defined
and s be any antomorphism of %'/k. Then B; ; is also a component of z;'5(0)
and is also a subgroup of #%,';(0). Since % is perfect, the irreducible group
B,,5 is defined over k2  Therefore By, Ao,5, ao,5 and 7%, 5 are also defined
over k.

LemMma 1. Let A be a commutative group variety of dimension g and i be
a homomorphism of A onto a generalized jacobian variety Js of dimension g,
where A, A and Js are defined over k. Let y be a point of A such that 1y is a
generic point of ?5(5%*) over k. Then, if k(y)/k(1y) is purely inseparable, A is

purely inseparable.

Proof. Let C be the locus of y over 2-and »i, ¥, . . . , ¥¢ are independent
generic points of € over k. Then Ayi, 3, ..., A¥¢ are independent generic

=% q . . 0 -
points of ¢5(CY) over £ and D)Ay; is a generic point of J5 over k. This shows
=1
[ 7
that >)y; is a generic point of 4 over k. On the other hand k(2]1y.) = k(iy,
i=1 i=1

g . o
.« v -, 232)sY hence Z(_Eixy,-) =FAy, « oo, A)s =k, o .., ¥p)5 =k(zzyi)*

1= 1=
where k( )* means the maximal separable subfield of 2( ) aver k(>34y).

This shows that 2 is purely inseparable.
LEMMA 2. ap,57(ev) = ao,5 (r=12...,n).

Proof. Since o, 5(Bo) =m0,5(8:'(0)) =0 and B, is irreducible, we have
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Bo,5 D B,. Hence ap,5(d,,—7(e,)) =0 (v=1,2,..., n).
ProposiTION 3. 70,5 is separable and
755(0) ={ao5(e) 1 v=1,2, ..., n}

Proof. Let A* be the quotient group variety of Ay s by {ao5(e) : v =1,
2, ..., ny and 7 be the natural separable homorphism of A, onto A* Let
4 be the homomorphism of A* onto J5 such that %p,5=4Ar. Let P be a generic
point of C& over . Then we have
700, 5P0(P™) = 7ao.5(1(e,) $o(P) + bo(e.)) = ran, 57(e.) @o( P) = rao,5 o P).
Since Z(¢,(P))/k(mo,590(P)) is separable, we have
E(ran,590(P)) = E(mp,505(P)) = E(Aras, 5¢o(P)).

Hence, by virtue of Lemma 1, 4 is an isomorphism. This proves the proposition.

2.2. Let A} be the quotient group variety of A, by {Bobs(e) : v=1, 2,
.., n} and 1, be the natural separable homorphism of A, onto Aj. Then

we have

Toﬁv?’o(PEv_l) =710B07(e.) €o(P) + 10 Bobole,) = 10 BoPo(P).

On the other hand, since 7o,5 = zo708o With a homomorphism z, of A, onto Js,
we have E(70809:(P)) D klno5¢0(P)). Hence E(ypBo€o(P)) = Elrp 5¢:(P))
= k(¢5(#0,5(P)). We denote by ¢, the biregular mapping of Ci onto 18, ¢s(C3)
such that:

</Jn(;l'o,3(P)) = 70Bo¥o( P).

Lemma 3. Let (aij) be an n-square matrix with integral elements respect

with a valuation ring k+wm. If (g, ..., &) is a vector which is non-zero
modulo m and det (a;;) =0 mod m?*, then
Ayl . . .Qin
(g, ..., &) e £(0,...,0  modm?
ant « -« «Qnn

Proof. Since k+m is a valuation ring, we have unimodular matrices U
and V such that

Ulai)V

is a diagonal matrix with (%24 m)-integral elements which do not belong to
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m?*!. This shows that

(& oo @VU N U@HVIVIE(,...,0 mod m?*?,

r  hg
Lemma 4. Let L/K be cyclic and >\ >.d; M;; be the discriminant duyx of

i=14=1
L/K. Puto=Fk+ ‘f\ ﬂl md’ *1. Then for any o-integral element g satisfying Nix &
=1j=
=1 mod f\ ﬂ m“"+l there exists an o-integral element & such that

i=1j=

g=(n=1) j4e=1 . +e—(n=2
€ g

e+ g+ e L+
does mot belong to mi*! (i=1,2,...,7; j=1,2, ..., h)

Proof. After changing the second suffices, we may assume that M; ; = M: 7,
(1=1,2,...,7; j=1,2,..., k). We denote by Ly the subfield of L/K
corresponding to (¢™*). Then L/L, completely ramifies at Mi,i, . . ., Min,.
Let £(; be an o-integral element of L such that the multiplicity of M;, 5, in the

discriminant drx(&5) of &% is d; and %4, be an o-integral element of L such

that ¢ =1 mod m{*;} and »¢ =0 mod mi¥ '} for m; % My
We put &, = 7., &% and &4, =£&5) (] 01, hi— 1). Since the multi-

plicity M;,; in the discriminant dyjz,(£4,5) of $<,~, 7, is not greater than d;, if we

put
g-hi, (1=-1)

aij = (&, 1)) G, j=12 ..., e)

we have a matrix (a@;) such that det (aij) = Ny, (8,7 (deg,Ea, ) £ 0

mod m@# 7t

1+e=4 . e (R (i-1)-1)

Since g% 0 mod my,x,, putting gi=g we have (g, ...,

&) % (0,...,0) modmi, . Hence, by virtue of Lemma 3, we have an integer
vy’ such that i) 0 <»# < ey and ii)

& 4 e=hy (=0 14e=i4 e hy(i=v-1) di’+1
ggiai, vir = 2} (&) g $ *=0 mod m# 5.
= i=
Moreover, we have
[ S TR L V] &, e~ &, vt R D= et pemih, (im0 -1
g (iE;giai, \«¢I) = E (5(! ) g ¢ )

e=hy(e=1) g4e=it .. pem(h, (-0 +5"-1)
= 2.7(5!1 ,_1)) ¥ g v

£0  modmiA

Put é= >)£}. Then we observe that
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= e=2 _1+ei4 4o (D) A E-J 1+e~ 1l pemg—n
2&7g =23 27(&h)
i=0 i=15=0

r hi e .
v e=h (-1 pie=l4 e (R (I-114Hj-1)

= (: ; ) L] g i

i=1j=11=1
_ cz' )c—h L8 premth e lh-ntien
= (&t 5 4

=1

d, +1

£0 mod mi;

This proves the lemma.

Lemma 5. If L/K is cyclic and ¢; (i=1,2, ..., 7) are coprime to p, then

we can choose e; — 1 instead of di in Lemma 4.

Proof. Let z;; be an o-integral element such that

i M=t Tij,
where ¢ is a primitive root of unity.
On the other hand, since Nyxg=1 mod m;;, there exists an integer »;; such
that

zm‘viJlei

g=e mod m;;.

r Mg
Putting &; =i ;% "% and £= >)>,%&; we have

i=13=1

$+$E-‘g+ . +EE i1y 1+s—1+ L+e=(n=2)
mod m{ v " (G=1,2,...,7; 7=12 ..., ).

This proves the lemma.

LEmMMA 6. Let L/ K be cyclic and 2211,, M;; be the diskriminant of L/K.

t 1j=1
r h; —
Put o=k+ N ﬂm"’ and o' =k+ ﬂ ﬂ m“”“"”+1 Then for any element f in
i=1j=1 £=1j=1

YN K we have ¢o((f)) =0.

Proof. Since ¢, does not depend on k, we may assume that k is algebrai-
cally closed. Let H be the kernel of natural homomorphism of J, onto the
ordinary jacobian variety. Then the quotient variety of AZ by (108,)(H) is
an abelian variety. Hence, by virtue of the universal property of ordinary
jacobian varieties, we observe that ¢o((f)) belongs to (7o Bo)(H). Namely
there exists an o-integral element g such that ¢o((7)) = 708095(2)) = ¢o((Nox)).
Therefore it is sufficient to prove ¢o((Nyxg)) =0 for any g satisfying Nyxg=1

https://doi.org/10.1017/5002776300002208X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002208X

240 HISASI MORIKAWA

mod ﬂ ﬂ m““"‘d”’rl Let g be such an element. Then, by virtue of Lemma 4,
therei 1t;)clsts. an o-integral element & such that h=£+£ g+£ g + ..
TG e g0 ot belong to mPFT (i=1,2, ..., 7; j=1,2 .

k). Since yh™ =h+&(WNuxg~1) and £(Nyxg—1) =0 mod N A m¥otdstt e

i=1j=1
have

r hi

g h=1 mod N N\ m*%,

i=1j=1

Let EZa,, M;; be the positive divisor such that

=1j=1

a=(h) - EEGUMJ

i=1j=1
has no M;; with non-zero multiplicity. Then, since B '/h=g"%0 modm;

r ki
(i=1,2,...,7; j=1,2,..., k), we have (220.,1\4,,)9_ SV ai M.

i=13=1 i=13=1
This shows that

ol (N @) = 1o BoPola — a° ) = 70 Bo(@nla) — 7(e) ¥ola) — (dega) bole)) = 0.

This proves the lemma.

ProposiTION 4. Let L/ K be cyclic and o=k + ﬂ ﬂ m:’;’ be co-ample relative to
i= J =
r hg

L/K. Let EEd., ;i be the diskriminant of L/K and put o =k+ (\ [ m”“"d”"1

i=1j5= i=1j=1

and o =o' N K. Then 7, 3(0) = G(L/K).

Proof. By virtue of Lemma 6, the mapping ¢o of Cx onto 7oB0¢(Cs)
can be extended to a homomorphism x of J5 onto A;. We denote by 7y, the
natural homomorphism of Jy' onto J,. Then from the definition of x we have
7oBoTo’, 0 = ume’,5°- On the other hand r;,l, 5(0) is irreducible and o is co-ample
relative to L/K, the number of irreducible components of (7p8s70",5") (0) is
exactly #. Let B* be the union of the components containing elements of
mg. 5(0) and A* be the quotient variety of Jo by B*. Let r* be the homo-
morphism of A, onto A* such that r*Bo7,0 is the natural homomorphism of
Jor onto A*. By virtue of Proposition 8, J3' is the quotient variety of J,' by
e 5(0), hence there exists a homomorphism 2 of J3 onto A™ such that y*Bo7o’,o
=ny,5. Let P be a generic point of CBf‘:, over k. Then i¢s (7,5 (P))
=71"(Bo¢o(P)). This means Z(P5'(7o,5'(P))) =E(r*Bo9o(P)). Therefore we
have r*7(0) =77*(0). Namely A*=A*. This proves that the number of
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components of 7. ;,(0) is exactly n. Hence by virtue of Proposition 2, we have
T »(0) = G(L/K).

Lemma 7. Let L=L,L; and o, 02 and o be local rings of L, L. and L,
respectively. Then, if Ny,0 Co; and n;) 5(0) = G(Li/K) (i=1, 2), we have

”;.1_6(0) = G(L/K).

Proof. We denote by [e,]; the element of G(L;/K) induced by ¢. Then

we have

@0;,570, 0:b0(es) = oy, 570, 0 (Lol P ) = 7(ey) @o( P))
= oy, 5 Yo o, 0 (P)HT)
— a0, 57(LevJ0) Po,(75,0,(P))
= ao;,5b0,([e.])) = ao,5,([es]:).

On the other hand «;;(0) S ﬂ (ap;570s0;) 7(0), hence we observe that
i=1

ao,5(ey) = ap,5b0(ey) =0 implies ao,;,5b0;([ev]i) =0 (z=1, 2).

This shows that ap5(e,) =0 for e, =xe. By virtue of Proposition 3, this proves

the lemma.

r N

ProrosiTioN 5. Let o=k+ N Nm}? be co-ample relative to L/K and
i=1j=1
r h;

r  hi
N DVdijMij be the diskriminant of L/K. Put o =k+ N Nm;Z+a* gpd o = o

i=1j=1 i=1j=1
N K. Then, if L/K is abelian, 7, ,,(0) = G(L/K).

Proof. Let L; be any cyclic extension of K in L. Then o,,=0MNL; is co-
ample and oz, =o' N L; and, by virtue of Proposition 4, the proposition is true
for this o;;. On the other hand L is composed by cyclic extensions L;, hence,

by virtue of Lemma 7, we get the proposition.

2.3. We say that a separable extension L/k of K/k comes from a pull
back of a separable homomorphism 4 of a commutative group variety onto a
generalized jacobian variety J5 of K/k, if there exists a model of L/k which is
biregularly equivalent to 2™ (¢5(C%)) and G(L/K) =47*(0).

Putting A= A, 5 and 2 =7, 5, from Proposition 5, we have

TueoreM 1. Let K/k be a regular extension of dimension one over a perfect
field k and L/k be a separable abelian extension of K/k which is also regular
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over k. Then L/k comes from a pull back of a separable homomorphism of a
commutative group variety onto a generalized jacobian variety associated a suitable

local ring.

§ 3. Class field theory

3.1. We denote by Ga and G respectively the affine line with addition
of coordinates as group multiplication and the affine line with origin deleted
and multiplication of coordinates as group multiplication. We mean by affine
groups the group varieties which are biregularlly equivalent to entire affine space.
An affine group H has a chain of affine subgroups H=H, D H; . .. D H,={e}
such that H;/H;+: (i=1,2,..., r—1) are birationally isomorphic to Ga.

By virtue of the structure theorem of generalized jacobian varieties” the
kernel of the natural homomorphism of J, onto the ordinary jacobian variety
is birationally isomorphic to a group variety

(3 3 deg Mi)—1
(Gm) 72271 X Hy,
hi

i.e., the direct product of G with itself ((33>)deg M;;) —1) times by an affine

i=13=1

r hg
group H, where o=%k+ N Nm#(vij = 1).

i=1j=1

3.2. If we put

r hg
(6) oo=k+ﬂﬂm,~,-
i=1j=1
and
(7) f=k+ Nm;,

then Jo, and J5, have no affine subgroup.

ProposiTION 6. Jo, and Jo, have only a finite number of points of given

order.

Proof. The kernel of natural homomorphism of J5,(J5,) onto the ordinary
jacobian variety is isomorphic to a direct product of G». Hence the kernel has
only a finite number of points of given order. On the other hand ordinary

jacobian varieties have only a finite number of points of given order. Therefore

) Cf. Theorem 12, [5].
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Jo.{J5,) has only a finite number 6f points of given order.

LemMMmA 1. Nijx0p C 0.

r hi
Proof. Let f be any element of N MNm;;. Then we have Nyx(1+f1)

i=13=1

.
=142/ + 2"+ ...+ Nuyxc/=1 mod Nini;. This proves the lemma.
v v>p i=1

This lemma shows the existence of the trace mapping (homomorphism)
70,5, Of Jo, onto Js,. On the other hand 0, D 9,, hence there exists the injection

homomorphism po,, 5, of J5, into Jo, such that
00, 50?5(a) = ?Do(;f;:, b‘o(ﬁ)),

where @ runs over divisors of degree zero on Cj,.
LEMMA 2. m0,,5P0,, 5, = 7073,
Proof. Let @ be a divisor of degree zero on C,. Then we have

7700, O 000, 50‘(7’750(6) = Toy, 609000(7?;:, v,(a—))
(7o, 3Ry, 5,(T))
n

= nd75,95,(T).

|

This proves the lemma.

PrOPOSITION 7.  0,.5,(J5,) and B., generate Jo, and po,5,(J5,) N\ Bo, is a

finite group whose elements are of order n. Moreover Bo,, = By, 5,-

Proof. Let x be a generic point of J,, over 2. Then (3)9(e.))x is a generic
v=1

point of p,5,(J5,) over k. First we shall prove that (nd,, — ﬁ]v(s»))x is a
generic point of B, over k. Denoting by xi, ..., %a indepé;:ient generic
points of Jo, over k, we defined B, as the locus of é(&;m*ﬂ(sv))x» over k.
Since J, has only a finite number of given order, any»&)int of J,, is divisible.

Hence we can put x.=ny, (»=1,2,..., n). We observe that
E‘i (855, —~ 7€) %, = ;—_‘{(5100 - ‘0(6\4))(%7)(503’» + (néyy, — 12:77(51))3’»)
ve = = =1

= (787p, — év(sl))(é (875, — 7(e)) 1.

This shows that (%d,,, — gv(ez))x is a generic point of B, over . On the
other hand
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(\Zz}ﬂ(a\.))x + (nd;0, = ﬁ%’?(au))x = nx

is a generic point of J,,. This proves the first assertion. Let y be a point of
000,5,(J5.) N Bp,. Then we can put y= (nd,, — éﬂ(h))z. S'mce;n]:ln(ev) 2
€ 00,,5,( J5,), m2z belongs to 0o, 5,(J5,). This shows that #y =0. This proves the
second assertion. By virtue of the second assertion there exists a homomorphism
u of Ay, onto Js, such that my,.5, = 435, and £ *(0) is a finite group. This shows
that By, = By, 5, .

3.3.

Lemma 3. aps(e) (v=1,2,..., n) are k-rational.

Proof. Let k' be a finitely normal extension of %2 such that there exists a
k'-rational point P on C;. Then we have a canonical mapping ¢, of Cs into J,
defined over k' such that @; X @, — ¢,(Q; — Q.) is a mapping of Ci XCs into
Jo defined over k. Let ¢ be any automorphism of 2'/k and I be the graph of
s on Ci X Jo. Then I’ is the graph of the canonical mapping ¢3 and ¢5 — ¢o

is a constant mapping of C§ onto a point ¢ of J,. On the other hand Q-
ag,"1

(»=1,2, ..., n) are mappings defined over %, hence we have P °=P

(r=1,2,..., n). Therefore we observe that

@, 5(6,)° = (a0, 5(0o (P ) — (&) 90 (P))°
= ao, 5(¢3 (P ) — 9(ey) ¢3(P°))
= ao,5(@o(P*™ ™) = 9(e,) ¢o(P%) + (¢ — 7(&y) ¢))

= Q'D,Bbo(ev) =a0,5(5‘4) (" e 1) 2» « ey n)'

This proves the lemma.

We denote by Jo,(m), A(m), A(m) and J5(m) the subgroups consisting of
all the points of order dividing » on J,, A, 4 and Jo respectively. We denote
by Jo( , k), A( , k), AC , k) and Js( , k) the (abstract) subgroups consisting of
all the k-rational points of J,, A, 4 and Js respectively.

LeMMA 4. ap,5,(Joo(%)) = Ao, 5,(n).

Proof. Let @ be the subgroup of points a in gy, 5,(J5,) such that na & By, 5,
Then we have ap,5,(8) = Ay, 5,(n). On the other hand Jo(n)={a—bla
€ 000, 5,(J5,), b E Bo,5,, na =mnb} and any points of J, is divisible; hence

we have 8 C Jo,(n) and av,5,(Jo, (7)) = Ao,5(n). Namely we have ao,5,(8)
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= oy, 5, Joo{m)). This proves the lemma.
LemMmAa 5. If k is a finite field, then
a'o,'ﬁ(J( , k)) =.2Io,ﬁ( ’ k).

Proof. Let a be a point of Ay 5( , #) and a be an algebraic point of J,
over k such that @, 5a=a. Let s be a generator of the galois group of k(a)/k.
Then @ —a=0>b is a point of By,5. Therefore, if we prove that there exists a
point by in By s( , k(a)) satisfying b=5b] —b;, we get a point @a,=a—b, in
Jo( , k) such that ap,5a;=a. Let g be the number of elements in % and p be
the endomorphism of B, induced by the automorphism x - x? of the universal

domain. Then we may assume that &’ =pb. Since & =a’—a, we have
(Bpp5+P+ ...+ Nb=0,

where d=[k(a) : k1. On the other hand (3ry;— p) '(0) is the group of all k-
rational points of Bp,5, hence 0z, ;—p is an onto endomorphism. Therefore

we have a point &, in By, such that (65,5 — p)b=05. Hence we have
(Bp5— D) bi= (Bng g+ D+ « o o + 07 (8np5— P by =0.
This shows that b, € By,5( , k(a)).

Tureorem 2. If all the indices of ramification of L/K are coprime to p,

then we have
Joo(n) /o0, 5,(Joo(n)) = G(L/K).
Proof. By virtue of proposition 7, we have

@00, 50(&v) = Poyboy(€v) (»=1,2,...,n).
Let o=k + i\l J;jl mj be a local ring of L satisfying 0o Do and 7;',(0)
= G(L/K), where =0MN K. By virtue of Proposition 5, such a local ring always
exists. We denote by tv,5, the natural homomorphism of J, onto Jo,. Then there
exists a homomorphism 7 of 4,5 onto Ap, 5, such that rap,s = o, 5,70,0, and
7a0,5(ev) = @0, 5,(ev) (s € G(L/K)). Since the kernel of 7,5, is an affine group,
the kernel of y is also an affine group. Therefore, for any integer » coprime to
p, there exists no element in 77*(0) whose order is ». This shows that the
kernel of the homomorphism @y 5(ey) -> ap,,5,(c.) (e € G(L/K)) is contained in

the p-sylow group of {@,5(c,)}. Let L* be the subfield of L such that [L : L*]
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is coprime to p and [L*: K] is a p's power. Then L*/K is unramified.
Therefore, by virtue of Proposition 5, 7+ x(0) = {a.+, x(e) e € G(L*/K)} is iso-
morphic to G(L*/K). On the other hand there exists a homomorphism 1r* of
Ap,5, onto A« x such that 7*ay,5,(ev) = ars x([e,]), where [e,] is the class of
e, in G(L*/K). This shows that the p-sylow group of F.;c‘,};o(()) is isomorphic
to that of G(L/K). Therefore 7, ;5 (0) is isomorphic to G(L/K).

Let x be the homomorphism of J5, onto Aj,s, such that 7o, 5,z = nd7g,.
Then we have u7o,5, = 80350.00 7o, 5,(0) = 2(J5,(n)) and ,7(0) = 7y, 5,( Ao, 5,(n)).
This shows that 7. 5(0) = J5,(n)/27(0) = J5,(n)/%0,5,( Ag, 5,(n)). Hence, by

virtue of Lemma 4, we have
J5,(n)/ 70, 5,(Jo(n)) = G(L/K).

THEOREM 3. [f k is a finite field, then there exists a local ring o of L such
that
Js(, BY/7o,5(Jo( , B)) = G(L/K),

where 5=0N K.

Proof. Let o be the local ring in Theorem 1. Then we have 75 0(0)
= G(L/K). Let g be the number of elements in k. We denote by pj, and pz,, 5
respectively the endomorphisms of J; and Ay 5 induced by the automorphism
x - x7 of the universal domain. Then we have p; 7%, 5 =7y, 503, 5. Therefore
(855 — P7p) 7,5 = To,5( 04,5 — Pip,5)- Let # be the homomorphism of J; onto Ay, 5
such that 7,5 = (8zp,5 — PMap,). Then, since o, 54705 = 7o,5(07,,5 — Pip.5
= (875 — P75) @v,5, we have 87, — b7; = 7p,52. Hence we have 7;'5(0) = u(J( , k))
and 27'(0) = 70.5(Ao,5( , B)). Therefore ﬁ;’lﬁ(O) must be isomorphic to
Js(, B)/%05(Ao,5( » k). From Lemma 5, we get G(L/K)=Js( , k)/mo,5(Jo( , B)).

3.4. In the following, if o' and o' are respectively local ring in the function
field L and K such that Nyxo' C 9, we shall mean by Jy, By, and Ay,
respectively the objects associating with the system (L, K, o, &) corresponding
to Jo, Bo.s and A, 5 associating with the system (L, K, o, 7)

LemMMA 8. Let A be a commutative group variely defined over k and 2 be a
homomorphism of A onto Js whose kernel A~'(0) is a finite group consisting of
k-rational points of A. Let y be a point of A such that Ay is a generic point of
5‘03(6‘:{). Then, if ¢3 is defined over k' and K Dk, k(y) is normal over k(ky)

https://doi.org/10.1017/5002776300002208X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002208X

GENERALIZED JACOBIAN VARIETIES 247

and the galois group G(E (9)/k'(2y)) is isomorphic to 27°(0).

Proof. Let ' be a conjugate of y over 2(1y). Then we have 1y =1y. Let
g be the group of all the points ¢ of 4 such that y+¢ is a conjugate of y over
k(1y). Then 8C 27'(0). Let % be the natural homomorphism of A onto A4/8
and ¢ be the homomorphism of 4/8 onto J; such that A=¢&»  Then, since
k'(qy)/K'(4y) is purely inseparable, by virtue of Lemma 1 in §2, £ must be

purely inseparable. This shows that
27H0)=¢ and G(E'(y)/kKGy)) = 21710).

Lemma 9. Let C be the locus of v in Lemma 8 over B and § be a local
ring in k'(y) such that Nyoymwownd E0. Then there exists a homomorphism n

of Js onto A such that ip=n3,5.

Proof. Let C* be a copy of C and / be the biregular mapping of C* onto
C. Let r be a positive integer greater than 2(dim J3) and @i, @, . .., @, be
independent generic points of C; over & Then f(Q,+ ...+ Q) is a generic
point of A over k. Let I be an integer such that (i) » =/ and (ii) there exists
a k-rational positive divisor of degree I S;+S:+ ... +S on C". Put HY ={Q
X@X ... xQl@eC, ¢s((@+...4Q) =S+ ...+S8))=0) and Hp
={f((Q+ ... +Q)=(Si+ ... +SNIQx@x ...xQe&Hy;. Then Hy
is a subvariety of 4. From N yyruwd C 5, we have A(Hz) =0. On the other

hand Hj7 is irreducible, hence we have Hy = 0.
Lemma 10. Let L/K be purely inseparable. If o=k+ Qm” and d0=F
+ (:\l W%, then mo,5 is purely inseparable.

Proof. From the inseparability of L/K, we have NgyxoC? and degm;
=degm; (/=1,2, ..., 7. This shows that 7,5 exists and the dimension of
Jo equal to that of J5. Let @i, @:, ..., @ be independent generic points of
C: over k2, where g is the dimension of J,. Then ¢,(@i+ ...+ &,) and
70,5¢(@:1+ . ..Qg) are generic points of J, and Jp, respectively. Since
R(Qi)/ k(75,5(Q:)), we observe that 2(¢o(@i+ ... +Q))=k(Q1, ..., Qs is
are purely inseparable over E(mo5¢5(@Qi+ ...+ Qg)) = klmo,5¢0(Q1), . ..,
m0,5¢0(Qg))s, where Z( )s means the subfield of k( ) consisting of all the
elements fixed by any permutation of sufficis. This prove that o, is purely

inseparable,
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Lemma 11. Let L be the maximal separable subfield of k'(y) in Lemma 8
over K (Ay) writting 0=k + O fJ\ m, we put 5=Fk+ O Q(m;j N L)%, Then there
exist a purely inseparable homomorphisms ¢ and & of As,5 respectively onto A
and Zo,a such that 7,5 = and %5,5= 7o, 56. Moreover there exists a purely

inseparable homomorphism [ of A onto Ao, s such that A = 7o 5.

Proof. Since a*}f;,( 0) D (ap,575,0) *(0), there exists a homomorphism ¢ of
Az,5 onto A, 5 such that 75,5 = 7o,56. By virtue of Lemma 10, ¢ must be purely
inseparable. Let , be the homomorphism of J5 onto A such that =35=A4u
Then 4 (0) contains Bs,5. This shows that there exists a homomorphism ¢
of As,5 onto A such that 755 =4¢. On the other hand the order of ﬁ;"-d(O) is
at most that of G(%'(»)/F'(iy)) and G(Z(y)/k'(4y)) is isomorphic to 27%(0),
hence ¢ is purely inseparable. Next we shall prove the existence of a purely
inseparable homomorphism 8 of 4 onto A, 5. Let x be a generic point of As,s
over k. Then Z'(¢x) is the maximal separable subfield of %'(x) over k'(75,5x).
On the other hand the degree of separability of %'(¢x)/k'(75,5x) equals to the
order of A7!(0), hence k'(¢x) D k'(£x). This shows that there exists a purely
inseparable homomorphism B of 4 onto Ay, 5 such that A =o,58.

LemMMa 12. In Lemma 8, if X is separable, ¥'(y)/k'(2y) is separable.

Proof. Using the notation of Lemma 11, we observe that 8 must be an
isomorphism. Let z be the point of A, such that By=2z  Then, since
k'(z)/k'(2y) is separable, k'(»)/k'(1y) must be separable.

Prorosition 8. If k is a finite field, then the canonical mapping ¢.(¥s) can
be defined over k.

Proof. Let k' be a finite extension of k2 over which ¢, is defined. We
denote by ¢ the generator of the galois group of %'/k such that @’ = a for any
point of Jo( , %'), where p is the endomorphism of J, corresponding to the auto-
morphism ¥ - %7 of the universal domain. Then ¢3" — ¢, is a constant mapping

of Ci onto a k'-rational point c,» and {c.} satisfies the relation
Cov = Cov-1+ Co =Pearv1+Co= (Grp+ P+ . . .+ co.

On the other hand (4,,—P) is an onto separable endomorphism of J,, there

exists a point b in J, such that (3;,—p)b=co.. If k'/k is of degree a, we haw}e

https://doi.org/10.1017/5002776300002208X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002208X

GENERALIZED JACOBIAN VARIETIES 249

(67, —~dD)b = (3, R S I [ FAEE Y
=B+ 0+ ...+ Ve,

This shows that b & J,( , k). We put ¢) =¢,+ 0. Then

G+ =Co+ ot b =@ —b+cs+ 0" =@h+co—(b~0")
=¢h+4co— (85, — D) = ¢h.

This shows that ¢y is defined over k.

Prorosition 9. If L/K is ramified, then the mapping e, - ar,x(e.) is not
isomorphic, where a., x(e,) means the point on the ordinary jacobian variety

corresponding to ap,5(e,).

Proof. From the proof of Lemma 7 in §2 it is sufficient to prove the
proposition for any extension of prime degree. Let P be the place of L. Then,
denoting by the same P the point of ¢, corresponding to P, we have P’ = P.
This shows that

bL(S) = ‘(PL(PQ) —7](3) SDI(P) = (BJL —v(e))sﬁL(P)
Hence

aL,K(E) = Q'L,KbL(S) = (.

Prorosition 10. If L/K has an index of ramification which is divisible by

b, then the mapping e, > ao, 5,(ev) is not isomorphic.

Proof. From the proof of Lemma 7 in §2, it is sufficient to prove the
proposition for any extension of degree p. We assume that a,7,(¢) % 0. Since
J5, has no affine subgroup, Ay, 5, has no affine subgroup. Therefore the maximal
linear subgroup of A, 7 has no point of order p. This shows that ao,5,(¢) = 0.

This contradicts to Proposition 9.

THEOREM 4. Let €5 be any canonical mapping defined over k and g be a
subgroup of J5( , k). If k is a finite field, then for the pair (Ts, g) there exists
a separable extension of K such that

(1) L/E is regular,

(I1) all the place ramifying in L/K belong to ©
and

(IID 7o, 7J( , k) =g for any local ring o in L satisfying Nyxo Co. Moreover
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Jor any separable abelian extension L/K satisfying (1) and (II) there exist a
local ring o in K which has the same places as ©, a canonical mapping €5 which
is defined over k and a subgroup g of J5'( , k) such that L is the extension corre-
sponding to (¢w, g).

Proof. Let A be the quotient group variety of J5 by g and x be the natural
homomorphism of J5 onto 4 and A be the homomorphism of 4 onto J, such that
#h=8;,—p. Then A and 1 are defined over %k and any point of A7'(0) is &-
rational. Let y be the point of A such that 2(iy) =K and iy = ¢5(P) with a
point P of C;. Then, by virtue of Lemma 8 and 12 k(y)/k(1y) is separable
and G(k(»)/K) = 27'(0). Let o be any local ring in k(y) satisfying Newyx0o C3.
Then, by virtue of Lemma 11, there exists an isomorphism ¢ of A, 5 onto 4
such that 7,5 =A¢, where we notice that 7 is defined over 2. Therefore we

have

ﬂo.BZo,B( > k) =1Cf—10.5( ’ k)
=24( , k)
= u"10) =4.

This k(y) is the extension of K in the theorem.

Conversely we assume that L is an separable abelian extension of X satis-
fying (I) and (II). Let o be the local ring in L such that (i) o K has the
same places as 0 and (ii) 7;'5(0) = G(L/K) and ¢, be the canonical mapping
defined over k. By virtue of proposition 5 and 8, such o and ¢, always exist.
We choose the canonical mapping ¢5 of 5; into Jp such that 7o, 590 = @5#0,5.
This ¢5 is defined over k. Putting g=,5J0( , k), we get a system (@s, g)
which corresponds to L/K.

3.5. In this section, we shall treat the case that ¢y is not defined over k.

We need the following A. Weil’s theorem on the field of definion of a
variety :

Theorem (A. Weil) Let £'/% be a separable algebraic extension and 8 = {a,,

., ar} be the set of all isomorphism of %' into 2. Let V be a projective
vareity defined over 2 and V°(s € 6) be the s-conjugate of V. Let fo,0,(0i05
€ 6) be a biregular correspondence between V% and V. Then, if {f,;,,}

satisfies the conditions;

https://doi.org/10.1017/5002776300002208X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002208X

GENERALIZED JACOBIAN VARIETIES 251

(1) foson=Soi,0, © foj,n for all ai, ¢j, on €06,

(i1)  feiw,0j0 = (fa,0;)" for any automorphism o of &'/,

we have a variety V, defined over 2 and a biregular correspondece defined over
k' between V, and V such that

fai,aj :fBi ° (fuj)-l.

Moreover V, and f is uniquely determined up to a biregular transformation
over k.

Lemma 13. Let k'/k be a finitely normal extension of k over which ¢, is
defined. Then there exists a Jo( , k)-valued cocycle (cs;)oicai’ ity 0f G(E'[R) such
that

Yo — Yp=Coy (a: € G(R'/R).
Proof. We observe that

LIt

boso; = 9357 — @p = (90" — )7 + (¢ — ¢p)
= Cg{ + cr)j.
This shows that (cs)eeqi’ky is @ cocycle.

We call this cocycle (c¢s)seaik’/ky in the abave lemma the cocycle associatting
with (CF, ¢p).

LemMma 14. Let A be a commtative group variety defined over k and X be
an irreducible subvariety in A which is defined over a finitely normal extension
k of k. Let (ds)occiu' k) be a cocycle of G(EB'[/R) valued in A( , B'). If the conju-
gate X° is written X+ d, (6 € G(F'/k)), then there exist a variety X, defined over

k and a biregular correspondence f between X, and X such that
(%) o (f) Hx+d5) =2+ doy, where x€ X.

Proof. Let P be a generic point of X over %2 and fs;,., be the locus of
(P+d>, P+ds). Then, since (ds)osc’y is a cocycle, fo,,0, satisfies (i) and
(ii) in the Weils theorem. Therefore by virtue of the theorem, we get X, and
f in Lemma 14.

We call X, and f in Lemma 14 respectively the variety and the biregular

correcepondence associatting with (X, (do)osciik))-

LemMma 15. Let (cq)o=air k) be the cocycle associatting with (Ct, ¢o). If ao,s

https://doi.org/10.1017/5002776300002208X Published online by Cambridge University Press


https://doi.org/10.1017/S002776300002208X

252 HISASI MORIKAWA

is a biregular, mapping of ¢o(Ci) omto apn5¢o(Cs) then C; and ao5¥r are
respectively the curve and biregular correspondence associatting with (ao,590(C5),

(ao.BL’a)oea(k’.'k)).

Proof. Put f=ao5¢. Then we have f% =ap5¢3 and (f* o (f%)7)
(% + &o,5¢0;) = % + @0,5C0;, Where x € ap,5¢0(C5). This shows that C5 and f
are respectively the curve and biregular correspondence associatting with

(a0,590(C3), (ao,5¢0) 00’k

TueoreM 5. Lei E'/k be a finitely normal extension of k over which @5, is
defined and (C,)ocak'ky be the cocycle associatting with (5;,*—; , @5,). Let k" be the
minimal normal extension of k over which all the points in {alna=co;
o€ G(F'[R)} are rational. Let 8 be a subgroup of Jo,n) such that a-+g
(ae J5,(n)) are k-rational cycle as cycles of dimension zero on Js, and (2.)week' Ik
be a relative cocycle of G(k"/R) valued in J5,. , ¥') modulo g, such that nz,
= Clo), where [w] is the class of o in G(k'/k). Then for the system of (¥s,, g,
(20)) there exists a separable abelian extension L of K satisfying the following

conditions :

(1) L/k is regular,

(II) the indicis of ramification of L/K are all coprime to p,

(II1) all the placis of K/k ramifying in L/ K belong to o,

(IV) if o s a locall ring of L such that Nyxo Ct, then mo,5,Jo(n) =8.
(V) if pu is the homomorphism of Js, onto Ao s, such that 7o, By 4 = NOTp,

then (uz.) is the cocycle associatting with (C3, ao,5,%0).

Movreover for any separable abelian extension satisfying (1), (II), (III) there
exist a subgroup g of Js,(n) and a relative cocycle (2.).sek/k) Such that L is

the extension corresponding to (€s,, g, (2.)).

Proof. Let 1 be the natural homomorphism of J, onto 4= J5,/8 and 1 be
the homomorphism of 4 onto J35, such that xd =#nd,. Then A and 2 are defined
over k and each point of A7(0) is k-rational. Let » be the point of A such that
Ay is a point of ¢5,(Cs,) and k(P) = K, where ¢5(P) =1y. Then, by virtue of
Lemma 8, we have G(¥'(y)/F(dy)) = 27*(0).

Let C be the locus of ¥ over . Then, if ¢ is an element of G(%'/k), we
have &°=C + pz, with o € G(E'/E), where o is a representative of o in
G(k"/E). Denoting C" instead of C’, we have C"=C + z.(0 € G(E"/Ek)).
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Since (uz.)weckky is a cocycle, there existe curve C* defined over % and a

biregular correspondence f of C* and C which are associatting with (C,

( pz..,),.,ea@"/k)). Let P be the point of C* such that f(P)=y. We denote by ¢

the automorphism of k(P) defined as follows P* =/ '(f(P)+1) (t& 2740)).
Then the conjugate ¢’ of e is defined as follows;

P = (f)((f*)(P) +1) (0 € GE"/R)).
Now we observe that

(fO)PH) = (f“(P)+1)
= (f(P"") + pzy,) = (f(P) + pz, +1)
=f(P") = (f(P)+1).

This shows that P*" = P Namely ¢ (& 17'(0)) are defined over k.

Next we shall prove that the maximal separable subfield L of k2(P) over
K is the extension satisfying (I), (II), (III} and (IV). Since 4 is an unramified
covering mapping and {e} are defined over %, L/K is a separable abelian ex-
tension satisfying (I) and (III). Let o be a local ring of L such that Nyxo C .
Then, by virtue of Lemma 12, there exists a purely inseparable homomorphism

B of A onto Ao 5, such that A =7, 58. This shows that
g=24(n) = ﬁo,BBABO(?’I) == ?‘{o,ﬁozzlo,ﬁ“(n) = f:"u,ﬁu]vo(’)l).

Hence L/K satisfies (IV). By virtue of proposition 10, we observe that L/K
satisfies also (III).

Conversely for any separable abelian extension L/K satisfying (1), (II),
(IID), (IV) we shall constract a relative cocycle (z,)eec”/x. Let ¢, be the
canonical mapping of C5, into Jo, such that mo,,5,¢0, = ¢5,70, 5, and »"/k be the
normal extension of %2 over which ¢, is defined. Let (¢-):=e//xy be the cocycle

associatting with (C5,, ¢o,). Then (ao,5,6:)-cak" k) is a cocycle and
Tp, 5,50t =-,‘EBD(P) - 2;Eﬁo(l:)) = Eo-.

with ¢. € G(F'/E). Since there exists a homomorphism / satisfying /7o, 3,
= nd37,,75,, there exists a relative cocycle (z.,).ear/ry valued J5,( , k") modulo

¢ such that ,rz,. = ap,,5,¢=.
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