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Abstract

Let pn(x) be a real algebraic polynomial of degree n, and consider the Lp norms on / = [— 1, 1]. A
classical result of A. A. Markoff states that if \\pn\\x < 1, then Wp'Jloo 5 n2. A generalization of
Markoff's problem, first suggested by P. Turin, is to find upper bounds for ||pn

(y)||p if |/>n(*)| £ ^(x),
x € I. Here i{r(x) is a given function, a curved majorant. In this paper we study extremal properties
of ||p ,̂||2 and Hp̂ 'lb if PnW has the parabolic majorant |pn(x)| < 1 — x2, x € /. We also consider the
problem, motivated by a well-known result of S. Bernstein, of maximising ||(1 — x2)p'^2 if ll/>n lloo S 1-

1991 Mathematics subject classification (Amer. Math. Soc): primary 26D05; secondary 26D10, 26D15.

1. Introduction

The majonzation of the derivatives of polynomials is an old problem. In 1889,
A. A. Markoff [9] gave the following estimate for the derivative of a polynomial on a
finite interval. If pn(x) is a real algebraic polynomial of degree n that satisfies

(1.1) max \Pn(x)\ = 1,

then

(1.2) max \p'n(x)\<n2.
- l< - t< l

Equality holds in (1.2) only at the end points and only for pn{x) = ±Tn(x), where
Tn(x) denotes the «th Chebyshev polynomial (Tn(x) = cosn6, cosO = x). Later
Erdos [4], Lorentz [8], Erdos and Varma [5] and Szabados and Varma [15] showed
that by restricting the form of the polynomials, substantially better bounds for the
derivatives can be obtained.
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In the case of the Markoff inequality, the condition (1.1) ensures that the graph
of the polynomial pn{x) is contained in the square - 1 < x < 1 , -1 < j < 1. In
1970, Turan raised the problem of obtaining results of the Markoff type if the graph
of y = pn(x) is contained in the disc x2 + y2 < 1 (circular majorant) or within the
region \y \ < 1 — x2 (parabolic majorant). Indeed, he suggested generalizing the
normalization by requiring that |pn(x)| < V(*)> —1 < x < l,for a given curved
majorant ir(x) > 0.

Important contributions to the problem of P. Turin have been made by Rahman [12],
Pierre and Rahman [10, 11] and Rahman and Schmeisser [13]. In the case of circular
majorants, Rahman [12] proved the following result.

THEOREM A. If pn{x) is a real algebraic polynomial of degree n such that

(1.3) \Pn(x)\<(l-X2)l/2, - 1 < J C < 1 ,

then

(1.4) max \p'n(x)\<2(n-l).
-l<x<\

Recently Varma [17] has obtained an analogue of Theorem A in the L2 norm. His
results may be stated as follows.

THEOREM B. Let pn+i(x) be any real algebraic polynomial ofdegree n+l satisfying

(1.5) I / W i ( * ) | < ( l - * 2 ) 1 / 2 , - 1 < * < 1 .

Then for n > 2, we have

(1.6) J (p'n+l(x))2(l-x2)l/2dx < j (q'0(x))2(l-x2y<2dx,

and

where qo(x) = (1 — x2)Un^i{x), Un(x) = sin(n + 1)6/ sin0 andx = cosO.

The first aim of this paper is to continue the investigation of Turan's problem in the
L2 norm for real algebraic polynomials of degree n that have the parabolic majorant

\Pn(x)\<l-X2, - 1 < * < 1 .

We shall prove the following two theorems.
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THEOREM 1. Suppose n > 1, and let pn+2(x) be any real algebraic polynomial of
degree n + 2 such that

(1.8) \pn+i(x)\<l-x2, - 1 < * < 1 .

Then we have

:+2(x))2 dx < J w(x))2dx,

where fo(x) = ±(1 — x2)Tn(x), Tn(x) = cosn9 and x = cos8. Further, equality
in (1.9) occurs if and only ifpn+2(x) = fo(x).

THEOREM 2. Suppose n > 1, and let pn+2{x) be any real algebraic polynomial of
degree n + 2 having all its zeros in [—1,1]. Suppose also that

(1.10) \pn+2(x)\<l-x2, - 1 < * < 1 .

Then we have

(1.11) [ (p'n+2(x))2 dx < f (&(x))2dx,

with equality if and only if pn+2(x) = fo(x).

We make the following remarks concerning Theorems 1 and 2.

REMARK 1. For the parabolic majorant, the corresponding problems in the uniform
norm have been solved by Pierre and Rahman [11] and Rahman and Schmeisser [13].

REMARK 2. Problems of this type also occur in approximation theory, most notably
in the work of Dzyadyk [3].

For the second aim of this paper, we recall a well known inequality of S. Bern-
stein [1]. According to this result, if pn(x) is a real algebraic polynomial of degree n
or less that satisfies
(1.12) \pn(x)\ < 1, - 1 < J C < 1 ,

then
(1.13) (1 - x2)"12|P<"(J0| < PPl2n{n - 1 ) . . . ( « - p + 1).

In the case p = 1 equality can occur only if pn(x) = ±Tn(x), where Tn(x) is the nth
Chebyshev polynomial of the first kind. Motivated by this result, one of us [18] has
proved that if pn{x) is a real polynomial of degree n or less satisfying (1.12), then

(1.14) j (1 - x2)(p'n(x))2dx < J (l-x2)(T^(x))2dx.

In this paper, we shall prove the following theorem which is suggested by (1.14) and
the case p = 2 of (1.13).
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THEOREM 3. Suppose n > 2, and let qn(x) be any real algebraic polynomial of
degree n or less such that

(1.15) I * . ( * ) I < 1 . - 1 < J C < 1 .

Then

(1.16) j (l-x2)2(q:(x))2dx < J (l-x2)2(T;'(x))2dx,

with equality if and only ifqn(x) = ±.Tn(x).

2. Inequalities for trigonometric polynomials

For the proofs of Theorems 1 and 2 we shall need the following inequalities
concerning real even trigonometric polynomials. We state them as follows.

LEMMA 2.1. For n > I, let tn(0) be any real even trigonometric polynomial of
degree n, such that \tn{9)\ < 1, 0 < 9 < n. Then we have

(2.1) [ (t" (9))2 sin 9 d9 <n4 I cos2n9sin9d9 = n4 (1 i—-)
Jo Jo V 4n2 - 1 )

and

(2.2) / (f"'(0))2sin0</0 < n6 [ sm2n0sin9d$ = n6 (1 + —^ V
Jo Jo \ 4n2 - 1 )

with equality if and only iftn(6) = ± cosn9.

LEMMA 2.2. For n > I, let tn{6) be any real even trigonometric polynomial of
degree n, all of whose zeros are real. Further, suppose \tn{9)\ < 1, 0 < 9 < n. Then
we have

(t'n (9)f sin3 9d9 < n2 / sin2 nO sin3 9 dO,
Jo

with equality if and only iftn(9) = ±cos/i#.

PROOF OF LEMMA 2.1. The proofs of (2.1) and (2.2) are similar to that of the
integral inequality

(2.4) J (t'n(9))2 sin9d9 < n2 (l +

which was established in an earlier work [18]. Thus we will prove (2.1) only.
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Let

(2.5) / „ = I ^(9))2sm9d9,
Jo

and note that, by two integrations by parts, we have

/ C{0)t'n(0) sin9d9 = - [ t'^9) [C(0) sine + t'n{6)costf] d9
Jo Jo

Therefore,

un= f [{t';(e)?-t'nmt:'{e)\s\nede-\ f (t'n(6))2sinede
Jo z Jo=G ~ i ) [ ̂ "

\ f"+\ f"
(2.6) ~2

Now, if zn(9) is a real trigonometric polynomial of degree n such that \rn(9)\ < 1
for all 6, then by the Szego inequality [16] we have

(2.7) « ( 0 ) ) 2 + n2(Tn(0)f <n2, 0<9< In.

Equality holds in (2.7) at a given 6 if and only if xn{9) = cos(«# + a) for some
constant a (in which case equality holds for all 9). Also, by Bernstein's inequality [1],
we have
(2.8) \<{0)/n\ < 1, |<'(0)//22| < 1, 0 < 9 < 2n.

If (2.7) is applied to the functions {z'n{9))/n and (r^(9))/n2, we obtain

(2.9) « ' (0) ) 2 + n2{.x'n{8))2 <n\ 0<9< 2n,

and
(2.10) (rn"(0))2 + (C(0) /«) 2 < n4, 0 < 0 < In.

Equality holds in (2.9) if and only if (,r'n(9))/n is of the form cos(n# + or), and holds
in (2.10) if and only if (T^(9))/n2 also has this form.

For the proof of (2.1), we note that if tn (9) is a real even trigonometric polynomial
of degree n such that |/n(0)| < 1 for 0 < 9 < n, then (2.9) and (2.10) hold true for
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rn = tn (and equality holds in each of (2.9) and (2.10) if and only if tn(9) = ±cosnO).
Thus (2.6) gives

which is equivalent to (2.1). Further, by the above comments, equality holds in (2.1)
if and only if tn (9) = ± cos n9.

PROOF OF LEMMA 2.2. Define

(2.12) Jn= I (t'n(9))2 sin3 9dO.
Jo

Then, as in the proof of Lemma 2.1, we obtain

Jn = \ f [(t'n(9))2 - tn(9)t';(8)] sin3 9 dG + \ f (tn(9))2 sin9 d9
z Jo ^ Jo

- \ f\tn(9))2sin39d9
4 Jo

=\ [ G " i ) [ [{t"m2+"2(r-(e))2]sm3 °de

+\ [ [{Cminf + {t'n{9)f\ sin3 9 d9 + A

- 2^1 / [C(^) + "\ (0)]2 sin3 6 d9~\

~-2 f [n2(.tn(8))2 + (t'n(9))2] sin3 d9 + -Jn + \ f {tn(9)f sin 9 dG.
n Jo n *• Jo

This can be rewritten as

'• 0 - 1 ) = [k I1 - h) ~ I ] [[(m)2+n2(tAd))2] sin3 °de

+\ j [(C(0)/«)2 + (t'n(0))2] sin3 9 dG

—^ f [KW) + n\{9)]2 sin3 9 d9

(2.13) +\ [ (tn(9))2sin9d9.
2 Jo

Next, on applying (2.7) and (2.9) to rn(9) = tn(9), we obtain (for n > 3),

>' k ~ Si) - (i " s;)«1jf*"
(2.14)
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with equality if and only if tn(6) = ±cosnO. Now, because tn{d) is a real even
trigonometric polynomial with \tn{0)\ < \, 0 < Q < ix, and such that all its-zeros are
real, we have

(2.15) / (tn(0))2sined6 < f cos2ndsin8d8.
Jo Jo

The above statement is a consequence of G. K. Kristiansen [7, Corollary 1, p. 305].
Hence

9 \ (n2 9 \ 4 3
) +

From this we obtain (2.3) for n > 3.
Tocomplete the proof of Lemma 2.2, it remains to establish (2.3) for n = 1,2. Now

if we define gn(x) = ^(cos"1 x), — 1 < x < 1, then gn(x) is an algebraic polynomial
of degree n with all its zeros in [—1, 1], and |gn(.x)| < 1 for —1 < x < 1. Further,

Jn= f (t'n(8))2sin30d8 = f (g'n(x))2(l
Jo J-\

-x2)2dx.

Forn = 1,writegi(x) = ax+b,so Jx = 16a2/!5- Since \gx{x)\ < l f o r - 1 < x < 1,
it is known (see, for example, Rivlin [14, p. 108]) that \a\ < 1, with equality if and
only if gx(x) = ±Tx(x). Hence Jx < 16/15, and equality holds if and only if
g\(x) = ±Tl(x). Thus the lemma is true for n = 1.

For/z = 2,writeg2C*0 = ax2+bx+c, and note that J2 = I6(4a2 + 7b2)/105. The
quadratic g2 has both zeros in [—1, 1], and so if a > 0, we have 0<a + b + c< 1,
0<a-b + c< 1, and - 1 < c - b2/4a < 0. Thus c > - 1 + b2/4a, and so
0 < a + b < 2 - b2/4a, 0 < a - b < 2 - b2/4a. These last two inequalities give
a+\b\ < 2-b2/4a(soa < 2), and hence 4a2+4a|6|+fe2 < 8a. Therefore, 2a + \b\ <
2V2~Va, and so b2 < 4a{Jl. - Ja)2. Thus J2 < l2S(4a2 - lV2a3'2 + la)/105.
Now, 4a2 — 7->/2a3/2 + la is increasing on [0, 2], and since 0 < a < 2, then
J2 < 256/105. Further, equality holds if and only if a = 2, so b = 0, c = —1, and
hence g2(x) = T2(x). The case a < 0 leads similarly to J2 < 256/105, with equality
if and only if g2(x) = — T2(x). Hence Lemma 2.2 is proved.

3. Proof of Theorem 1

If Pn+i{x) is a real algebraic polynomial of degree n + 2 satisfying the condi-
tion (1.8), we can write
(3.1) Pn+2(x) = (l-x2)qn(x),

where qn{x) is a real algebraic polynomial of degree n such that

(3.2) \qn{x)\<\, - 1 < X < 1 .
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From (3.1) we have

P';+2M = (1 - * 2 )<7» - 4xq'n{x) - 2qn(x),

and so

j_(p:+2(x))2 dx = j (I - x2)\q:(x))2 dx + 16^x2(q'n(x))2dx

(3.3) +16 / xqn(x)q'n(x)dx-4J (1 - x2)qn(x)q'^x) dx.

Now, on using integration by parts, we obtain the three identities

16 jxqn(x)q'n(x)dx = 8(qn
2(l) + qn

2(-l)) - sf(qn(x))2dx,

(3.4) - 8 ( x{\ -x2)q'n{x)q'^x)dx=4J{\-3x2)(q'n{x))2dx,

-4J(l - x2)qn(x)q':(x) dx = AJ{\ - X2)(q'n(x))2 dx + AJ(qn(x))2 dx

~4(qn
2(l)+qn

2(-l)).

These identities (3.4) enable (3.3) to be simplified to

dx =

(3.5)
Next, we set

(3.6) tn(e)=qn(cos6)=qn(x).

Clearly, tn (9) is a purely cosine polynomial of degree n. Further, from (3.2) it follows
that
(3.7) | tn(9)\ < 1, 0 < 6 < n.

From (3.6) we have
(3.8) C(0) = (1 - x2)q'^x) - xq'n{x).

Therefore, we can write

(t';{0))2sinede = f ( i - x 2 ) 2 « w ) 2 ^ + / x
2(q'n(x))2dx

J-i J-i

-2 j x(l-x2)q'n(x)q';(x)dx

(3.9) = J (l-x2)2(q:(x))2dx + J_ (l-2x2)(q'n(x))2dx.
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On using (3.5) and (3.9) we have

(p':+2(x))2dx = f (t^e))2sm9d
Jo

\2

/ (p':+2(x))2dx = f (t^e))2sm
J-\ Jo

". ' dO - 2 / (t'(O)f sin Ode.
sine Jo

Now, a simple calculation shows that

- [ (t'n(0))2 sin6dO = --i I [n2t'n(e) + C(e)f sin9 d0
Jo n Jo

(3.11) +\ f (t:'(8))2 sine dO + -_ ft:'{0)t'n{0) sine d6.
n Jo nl Jo

However,

(3.12) [ C(0)t'n(0)sin0de = - [ (t',;(9))2sxa6d0-\ f {t'n(0))2 sinOde.
Jo Jo *• Jo

Therefore, we have

f-1 + 4 ) r(t'n(0))2 sinO dO = —- I" [n%{0) + t'^e)]2 sine de
\ n / Jo " J o

+-4 [ (C(0))2 sine do
n Jo

(3.13) -— \ {t'^0))2 sinOdO.
n Jo

On using (3.10) and (3.13) if follows that (for n > 2),

I (P'UiW)2dx = (l- -^j) I ( C W

+9 / " ^ ^ dO

J ie

4(fn
2(0) + tn

2{n))

Jo sine nHn2-\)Jo "

(3-14) -n^J-l [ ll

Thus, by applying the results of Lemma 2.1 (where equality holds if and only if
tn (6) = ± cos nO) and a well known result of B. D. Bojanov [2],

<3,5 ) 2n-\)
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to (3.14), we obtain (for n > 3)

L{p-
= f_(foM)2dx.

Here equality holds if and only if pn+2(x) = fo(x) = ±(1 — x2)Tn(x). Thus the
theorem is established for n > 3.

For n = 1, write p3(x) = (ax + b)(\ — x2), where a ^ 0 and \ax + b\ < 1,
- 1 <x < 1. Then

From(a-fc)2 < l,(a + fc)2 < 1, it follows that a2 + b2 < 1, and hence 8(3a2 + b2) <
24(a2 + b2) < 24. Further, equality holds if and only if \a\ = 1, b = 0, so

For n = 2, write p4(x) = (ax2 + bx + c)(l - x2), where g(x) — ax2 + bx + c is
such that a ^ 0 and |g(x)| < 1, - 1 < x < 1. Then

/ = I {Plix))2 dx = \ (16a2 + 15ft2 + 5(a + c)2).

The conditions |g(l)| < 1, |^(-1) | < l,give (a + ft + c)2 < 1, (a - ft + c)2 < 1,
andhence(a+c)2+ft2 < 1. Thus/ < 8(16a2 + 10ft2+5)/5. From \g(l)-g(0)\ < 2,
\g(-\) - g (0 ) | < 2, it follows that \a + b\ < 2, | a - f t | < 2, and hence |tf| + |ft| < 2
(so \a\ < 2). Thus 16a2 + 10ft2 = 10(|a| + |ft|)2 + 6a2 - 20|a||ft| < 64, and so
/ < 552/5. Furthermore, equality holds if and only if \a\ —2,b = 0, and \a + c\ = 1,
conditions which imply that g(x) = ±T2(x). Hence the theorem is proved.

4. Proof of Theorem 2

Let pn+2(x) be any real algebraic polynomial of degree n + 2 that satisfies the
condition (1.10) and which has all its zeros in the interval [—1, 1]. Then we can write

(4.1) pn+2(x) = (1 -x2)qn(x) = sin19tn(6),

where tn(9) is a purely cosine trigonometric polynomial of degree n that has real
coefficients and only real zeros. Further,

(4.2) \tn(6)\ < 1, O < 0 < T T .
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[11] Markoff type inequalities for curved majorants 11

From (4.1) we obtain

p'n+2(x) = (1 - X2)q'n(x) - 2xqn(x)

and

/ (p'n+2(x))2dx = f (\-x2f(q'n(x))2dx+A [ x2(qn(x))2dx
J-\ J-\ J-i

/ . l

-4 / x(l-x2)qn(x)q'n(x)dx
J-i

I

'n(9))2 sin3 9 d9 + 2 [ (tn{9))2 sin3 9 d9
J

= / (t'n(9))2 sin3 9 d9+ 2 I (tn(
Jo Jo

= I (t'n(9))2 sin3 9d9 + - I [n2(tn(9))2 + (t'n(9))2} sin3 9 d9
Jo n Jo

— I I (t'n(9))2 sin3 9d9n Jo

= 11-— ) / (t'n(9))2sin39d9

+ 4 / W(tn(9))2 + (t'n(9)f] sin3 9d9.n Jo

Thus, on applying Lemma 2.2 (where equality holds if and only if tn (9) = ± cos n9)
and the Szego inequality (2.7), we conclude that (for n > 2),

/•l / 2 \ rn 2 f
/ (P'n+iW)1 dx <[\- — \n2 \ sin2 n9 sin3 9 d9 + —n2 / sin3 9 d9

J-\ V n2) Jo n2 Jo

= / (/O'(cos0))2sin6>d6»,
Jo

with equality if and only if pn+2(x) = fo(x). Hence Theorem 2 is proved for n > 2.
For the case n = 1 of Theorem 2, we write

where ax + b has its zero in [—1, 1], and \ax + b\ < 1, — 1 < x < 1. If a > 0, these
conditions give - 1 <b-a < 0 <b + a < 1. ThusO < a + |fe| < l ,and|ft | -a < 0.
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Now

J = I (p'3(x))
2dx = —(3a2 + 5b2).

J-\ 15

From the above results we then have

3a2 + 5b2 = 3 (a + \b\)2 + 2\b\(\b\ - 3a) < 3.

Therefore/ < 8/5, with equality if and only if a = 1,6 = 0,sop3(x) = (1— x2)Tx(x).
If a < 0, a similar argument gives / < 8/5, with equality if and only if p^{x) =
—(1 — x2)T\(x). Thus Theorem 2 is established.

5. Proof of Theorem 3

Let qn(x) be any real algebraic polynomial of degree n or less which satisfies

(5.1) \qn(x)\<l, - 1 < * < 1 ,

and set tn{9) = ^n(cos^). Then tn(9) is an even trigonometric polynomial of degree
n or less such that
(5.2) \tn(9)\ < 1, 0<9<n.

Now, by (3.9) we can write

f\l-x2)2(q';(x))2dx= f\t';(9))2 sin0 dO + f
J-\ Jo Jo s

(5.3) - 2 / (^
Jo

Also, for n > 2, it follows from (3.13) that

-2 f (t'n(9))2sin9d9 = - \ f [n\(0) + C(9)]2sin9dd
Jo n (n ~ U Jo

J
(5.4) — - i — f (t';(9))2 sin 9 dO.

nA - 1 Jo

On substituting (5.4) in (5.3) we obtain
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[13] Markoff type inequalities for curved majorants 13

Then, on using (2.1), (2.2) and (3.15), we can conclude that (for n > 3),

2«4

with equality if and only if qn (x) = ±Tn (x). Thus the theorem is true if n > 3.
To conclude the proof of Theorem 3, we note that the case n = 2 follows immedi-

ately from the fact that if qi(x) = ax2 + bx + c, and |<72(x)| < 1 for - 1 < x < 1,
then \a\ < 2, with equality if and only if q2(x) = ±T2{x) (see Rivlin [14, p. 108]).
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