POWER SERIES REPRESENTING CERTAIN
RATIONAL FUNCTIONS

Z. A. MELZAK

1. Let U denote the set of functions of a complex variable z, regular at
2z = 0, and let I denote the set of non-negative integers. For f € U put

16) = 3 5y ie) = X, senlfule’ Ir = (€15, = 0).

n=0
For a given subset 2, of 9 there arises the problem of characterizing the

admissible gap sets I, of functions f in Ao. When U, is the set R of rational
functions a complete solution in given by the following theorem:

(A) Letf € R and let I, be infinite. Then there exist integers L, Ly, Lo, . . . , Ly,
such that 0 < Ly < Ly... < Ly < L,and I, = {nln € I, n =L, (mod L),
j=1,...,s} U I, where I' is a finite exceptional set.

As in (2), this is simply deduced from the theorem

(B) Let f € R and let 1, be infinite. Then there exist integers L, Ly, no, such
that 0 < L, < L, ny > 0, and {n|n,. < n, n = L; (mod L)} C I,.

Theorem (A) was proved in 1934 by Mahler for the case when f has algebraic
coefficients. This was extended to the general case by Lech in 1953; later, in
1957 Mahler gave another proof of the general case. For references see (1) and

(2).
We shall prove first

LeMMA 1. Theorem (A) is equivalent to the proposition: if f € R then ¢, € R.

In view of this one may ask the following question: let
f= ZO fn2" € R

and let the coefficients f, be all real, put

[

xs(2) = D sgnfu";

n=0

under what conditions is x, € R? Our main result proves the existence of a
large class of such functions f and indicates some of its properties.

2. There are several descriptions of S which we shall use. Their well-known
equivalence is stated formally as
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LemMma 2. The following are equivalent:

(a) N is the set of quotients P(z)/Q(2) of polynomials with complex coefficients
and with Q(0) #£ 0,

(b) R is the set of sums of the form

P(z) + 21 jZ=1 A g (ay — Z)—j

where P is a polynomial, A j, and oy are complex constants, and oy, # 0,
(c) R is the set of power series

0
Z fnzny
n=0

regular at z = 0, whose coefficients satisfy a linear recurrence relation:

N
Zo Cifars =0, n > no,
j=

(d) R is the set of power series

> fads
n=0
regular at 2 = 0, whose coefficients are values of an exponential polynomial:
N
fn = kzl Pk(n)a;ny n > o,

where Py is a polynomial and oy # 0.

Here and in the sequel “7°(n), n > n,"’ will mean that the property I" holds
for all non-negative integers greater than or equal to #,. The bound 7, will
vary from case to case.

Let
f= nz;fnz" ER g = go 2" € R,
and put
<1> fog= 3 fe"

By Hadamard's Multiplication Theorem (3),

@) (Fo)(s) = 1/2xi [ f(@) g(s/w) duo/w

where C is a sufficiently small simple contour about the origin. By Lemma 2,
(d), or directly by (2),fog € Riff, g € R.Itfollows that under the ordinary
addition and the multiplication of (1) R becomes a commutative algebra
over the complex numbers, with the identity e(s) = 1/(1 — 2).
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3. We prove now Lemma 1. Let
f= Zo 2" € R
without loss of generality let I, be infinite. By Theorem (A)

¢s(2) = e(z) — e(z")P(2) + Q(2)

where P and @ are polynomials and
S

P() = Y 2%,

=1

Therefore ¢, € R. Suppose now that ¢, € R. By Lemma 2, (c)
N
jZ_O ¢;5gn|fors] = 0, n 2> no.

However, there are exactly 2V different sequences
Sgnlfnly Sgnlfn+1|v ) Sgn!frH—N—ll'

It follows that the sequence {sgn|f,|}, » =0,1,...,is periodic, n > #n,.
Since
I/ = I¢/,

this implies at once Theorem (B), and therefore also Theorem (A).

4, Let f € R, by Lemma 2, (b) f is a sum of a polynomial and a finite
number of partial fractions corresponding to the distinct poles z = a;, £ = 1,
2,...,N. A pole at oy will be called pseudo-rational if ay/|ay| is a root of
unity, otherwise it will be called pseudo-irrational. We have now a unique
decomposition

(3) f=P+fi+/f

where P is a polynomial, all the poles of fi are pseudo-rational, and those of
f2 are all pseudo-irrational. A function f € R is called itself pseudo-rational
if in its decomposition (3) f» = 0.

Let

f= 2 fu" €R, g=2_0gnz”€§]‘t,

n=0
and let f, and g, be real for all n. Put
4) fUg= Z=:0 max(fu, )2 f N g = ;0 min (f,, g.)2".

We can state now our principal result.

THEOREM 1. Let

F= X g e
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and let f, be real for all n. If f is pseudo-rational then x; € R. The set P of all
pseudo-rational functions with real coefficients is a sub-algebra of R, over the
real numbers, under the ordinary addition and the multiplication of (1), and it
is also a lattice under the operations of (4).

5. We need first a preliminary

LeEMMA 3. Let
£ N
E@m) = 3 Pumai”
be an exponential polynomial, real for n = 0,1,.... Let the o be roots of
unity. Then {sgn E(n)}, n =20,1,...,1s a periodic sequence, n > n,, and
min {|E(n)| |[E(n) # 0} > ¢ > 0.
We have
N M
® E0) = 3 3 o nes”
where M = max; deg Py; M is called the degree of E. One can write (5) as
M
(®) En) = 3 Fimn’
where
N
Fy(n) = kZl ak/a;"-

By the hypothesis a;, = exp 27t p/qx, 0 < P < @&, (1, @) = 1. Let Q = l.c.m.
{qr}, then F;(n) = F,(n + Q) for all » and j. We can also show that F,(n)
is real for all # and j; this follows by observing that with each pair oy, Py =
S axm’ in E there is associated the conjugate pair @, Py = Y. dx; n’.

The lemma will be proved by induction on the degree M of E. Suppose first
that M = 0, then

N
E(n) = Fon) = 2 axex"
so that {E(n)}, n =0,1,...,is a periodic sequence of real numbers with

period Q. Therefore the lemma holds here. Suppose now that the lemma has
been established for exponential polynomials of degree < M, and let deg
E = M + 1. Then

) E(n) = Fiypi(n) n™+! + E,(n)

where Fj.1(n) is real for all # and not identically zero, and deg E; < M.
Let Q be the common period of Fy, Fy, ..., Fyt1 and consider the set

S = {Fa41(0), Farpa(1), ..., Fara(Q)}.
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If no member of .S vanishes then
(8) min|FM+1(n)| = min |FM+1(n)l =c> O,
n <n<Q—1

and the first term on the right in (7) dominates the whole right-hand side
since |Ei(n)] = 0(n™). Now the periodicity of F1(n) and the condition
(8) imply that the lemma holds in this case.

Suppose now that some members of S vanish. For n € I let n € A4 if
n = n; (mod Q) and Fyy1(n1) = 0,0 < n1 < Q; otherwise let n € B. When
n is restricted to B the lemma holds as before; when n € A, E(n) = E,(n)
and the lemma holds by the induction assumption since deg E; < M. This
concludes the proof.

6. We prove now Theorem 1. Let f = >_7 f,2" be a pseudo-rational function
and let f, be real for all n. By Lemma 2, (b) we have

0) /@) =P+ X 2 X Amlen =27 =PE)+ 2 &)

where |a;] = @, and 0 < a; < a2 < ... < az. That is, we order the partial
fractions according to the increasing absolute value of the poles. R will be
called the order of f. Since the presence of P in (9) influences only a finite
number of coefficients we assume without loss of generality that P = 0.

We show first that x, € R. The proof will proceed by induction on the
order R of f. Let R = 1, then f = g;(2) and so

(10) Jo = ai" Eq(n)
where E(n) satisfies the conditions of Lemma 3. It follows that {sgn E.(n)},
n=20,1,...,is a periodic sequence, # > #,, which implies immediately

that x, € N. Suppose now x, € N for any function f of order < R, satisfying
the conditions. Let f be a function of order R + 1, then

f(2) = g1(2) + h(2)

where the order of % is < R and the absolute value a; of the poles of g; is
less than that of any pole of 4. Let

gi(z) = 2_:0 gnig", h(z) = Z_:O haZ",

then f, = gu1 + k.. Suppose that g,; £ 0 for all ». By Lemma 3 it follows
easily that %, = 0(g,1) for large # and therefore sgn f, = sgn g,1, 7 > no.
However, by the induction assumption {sgn g.1}, #» = 0, 1,..., is a periodic
sequence, # > no. Hence {sgn f,}, » =0,1,..., is a periodic sequence,
n > ny, and x, € N.

Suppose now that g,; = 0 for infinitely many #, and let » € 4 if g, = 0,
n € B otherwise. Much in the same way as in the proof of Lemma 3 we show
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that {sgn f,} is a periodic sequence when # is restricted to 4, and also when
n is restricted to B, which again implies that x, € R.
Furthermore, it is easy to show that x, must have the following form

xs(2) = P(2) + e(2) — e(2")Q(2)

where

Qz) = Z GJZ

and ¢, = 0,1 or —1. It follows that not only x, € R but actually x, € P.

We proceed now with the rest of the proof. It is clear that P is closed under
addition and multiplication by real numbers. We show next that fogé€ P
if f, g € P. Although this follows immediately from Lemma 2, (d) the follow-
ing proof supplies a closed explicit representation for f o g. As in Lemma 2, (b)

let
f(2) = P(Z) + k2=1 j2=1 Ay (on — Z)_j,
660) = Pie) + 3 3 Bl — )7
then

(11) fog=20 (z>+2 E i ZAkB,,k.<ak—z>—fo<ﬁh—z>‘”

j=1 ki1=1 ji1=1
where Q is a polynomial. Now
- - = j—1 o — 1 ny n n+ 51
(12) (=270 (Bu—2)" = 2 (”*; )(”“,; )z/ A

Let constants v, § = 1,2,...,9 + ¢ — 1, be determined so that

n+p—1><n+g—1>_””‘1 (n+s—1>
( n n —;l’qus n

identically in #. Then by (12)
J1ti—1

(13) (ak - z)_j ] (Bkl - Z)_h = Z=1 'Ylhsalf_jﬁksx—h(akﬁkl - z)—s .

By putting together (11) and (13) we obtain an explicit representation of
f o g and see at once that fo g € P, since

By ap P

[akﬂkx [ ]“k[ I.Bk1|

By (4)
fUg=1/2 Z:: o+ & + Go — gsgn(fe — gl
12[f + g + (f = &) xssl,
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and fNg=f+g—fUg Since f — g € P implies x,, € B, it follows
that if f, g € P then f\ U g € Pand fMN g € PB. This completes the proof.
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K. Mahler of Manchester University.

REFERENCES

1, C. Lech, Ark. Mat., 2 (1953), 417-21.
2, K. Mahler, Cambr. Phil. Soc., 52 (1956), 39-48.
3, E. C. Titchmarsh, The theory of functions (Oxford 1939).

McGill University

https://doi.org/10.4153/CJM-1960-002-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1960-002-8

