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1. Let 21 denote the set of functions of a complex variable z, regular at 
z = 0, and let / denote the set of non-negative integers. F o r / Ç 21 put 

OO OO 

/(*) = Z Uz\ *,(*) = Z sgn|/n|2", Ij = {n\nei,fn = 0}. 
n=0 n=0 

For a given subset 2Io of 21 there arises the problem of characterizing the 
admissible gap sets / / of functions / in 2Io. When 2Io is the set 9î of rational 
functions a complete solution in given by the following theorem: 

(A) Letf 6 9? and let If be infinite. Then there exist integers L, L\, L2j . . . , LSJ 

such that 0 < Li < L 2 . . . < Ls < L, and If — \n\n G / , n = L^ (mod L), 
j — 1, . . . , s} U I\ where V is a Unite exceptional set. 

As in (2), this is simply deduced from the theorem 

(B) Let f Ç 9? and let If be infinite. Then there exist integers L, Lu n0l such 
that 0 < Li < L, n0 > 0, and {n\n0. < n, n = L\ (mod L) ) C If-

Theorem (A) was proved in 1934 by Mahler for the case when/has algebraic 
coefficients. This was extended to the general case by Lech in 1953; later, in 
1957 Mahler gave another proof of the general case. For references see (1) and 
(2). 

We shall prove first 

LEMMA 1. Theorem (A) is equivalent to the proposition: if f Ç 9? then 4>f G 9Î. 

In view of this one may ask the following question: let 

/ = É hzn e m 
72 = 0 

and let the coefficients fn be all real, put 
OO 

X/(s) = X) sgn/n2n; 
71=0 

under what conditions is xr £ 9?? Our main result proves the existence of a 
large class of such functions / and indicates some of its properties. 

2. There are several descriptions of 9? which we shall use. Their well-known 
equivalence is stated formally as 
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POWER SERIES REPRESENTING RATIONAL FUNCTIONS 21 

LEMMA 2. The following are equivalent: 
(a) 9? is the set of quotients P(z)/Q(z) of polynomials with complex coefficients 

and with Q(0) ^ 0, 
(b) 9Î is the set of sums of the form 

N M 

P(*) + E S Ai>(«k-z)-' 

where P is a polynomial, Ajk and ak are complex constants, and ak ^ 0, 
(c) 9? is the set of power series 

oo 

]C fut", 

regular at z = 0, whose coefficients satisfy a linear recurrence relation: 

N 

X) Cjfn+j = 0, ft > »o, 

(d) 9? is /Ae se£ of power series 

ë /̂ B. 
n=0 

regular at z = 0, whose coefficients are values of an exponential polynomial: 
N 

fn = X) Pk(n)ak
n, n > »0, 

wAere Pfc is a polynomial and ak ^ 0. 

Here and in the sequel llT(n), n > no" will mean that the property 7" holds 
for all non-negative integers greater than or equal to nQ. The bound no will 
vary from case to case. 

Let 

f = É fnzn e m, g = É g»*" € JR, 

and put 

(1) / O g = ë /•&*"• 

By Hadamard's Multiplication Theorem (3), 

(2) (/o g)(s) = 1/2Tri (f(w) g(z/w) dw/w 

where C is a sufficiently small simple contour about the origin. By Lemma 2, 
(d), or directly by (2), / o g G 91 if/, g G 91. It follows that under the ordinary 
addition and the multiplication of (1) 9î becomes a commutative algebra 
over the complex numbers, with the identity e{z) = 1/(1 — z). 
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3. We prove now Lemma 1. Let 

/ = Ë W € ft; 
without loss of generality let 7/ be infinite. By Theorem (A) 

*,(*) = e{z) - e(zL)P(z) + Q(z) 

where P and Q are polynomials and 

Therefore <t>r G 9Î. Suppose now that </>/ £ 9î. By Lemma 2, (c) 
N 

J2 ^ s g n | / n + i | = 0, n > wo. 
;/=0 

However, there are exactly 2N different sequences 

sgn|/„|, sgn|/n+i|, . . . , sgn|/n+iNr_i|. 

I t follows that the sequence {sgn|/n|}, n = 0, 1, . . . , is periodic, n > n0. 
Since 

If = I<i>f, 

this implies at once Theorem (B), and therefore also Theorem (A). 

4. Let / € 9Î, by Lemma 2, (b) / is a sum of a polynomial and a finite 
number of partial fractions corresponding to the distinct poles z = ak, k = 1, 
2, . . . , N. A pole at ak will be called pseudo-rational if ak/\ak\ is a root of 
unity, otherwise it will be called pseudo-irrational. We have now a unique 
decomposition 

(3) f = P+fi+f* 

where P is a polynomial, all the poles of / i are pseudo-rational, and those of 
ji are all pseudo-irrational. A function / Ç 9? is called itself pseudo-rational 
if in its decomposition (3) f2 = 0. 

Let 

/ = £ A** 6 H, g = É S*** G JR, 
n=0 w=0 

and let /n and gw be real for all n. Put 
oo oo 

(4) / U g = Z max(/n, gn)2
n , / H g = Z min(/„, g„K-

n=0 n=0 

We can state now our principal result. 

THEOREM 1. Let 

f = £ fnzn e SR 
w=0 
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and let fn be real for all n. If f is pseudo-rational then %f G 9t. The set ty of all 
pseudo-rational functions with real coefficients is a sub-algebra of 9Î, over the 
real numbers, under the ordinary addition and the multiplication of (1), and it 
is also a lattice under the operations of (4). 

5. We need first a preliminary 

LEMMA 3. Let 
1 N 

E(n) = £ Pk(n)ak
n 

be an exponential polynomial, real for n — 0, 1, . . . . Let the ak be roots of 
unity. Then {sgn E(n)}, n = 0, 1, . . . , is a periodic sequence, n > »0, and 
min {\E(n)\ \E{n) ^ 0} > c > 0. 

We have 
N M 

(5) £(«) = Z Z <*M»V 

where M = max* deg P*; M is called the degree of E. One can write (5) as 

M 

(6) E(n) = £ ^ > V 

where 

Tj(n) = X ^ * ^ n . 

By the hypothesis ak = exp 2wi pk/qk, 0 < pk < qk, (pk, qk) = 1. Let <2 = l.c.m. 
{qk}, then 7^(») = F3(n + (?) for all w and j . We can also show that Fj(n) 
is real for all n and j ; this follows by observing that with each pair ak, Pk = 
£ a*;^ in E there is associated the conjugate pair ak, Pk = ^ âkj nj. 

The lemma will be proved by induction on the degree M of E. Suppose first 
that M = 0, then 

N 

E(n) = F0(n) = £ ak,a^n 

so that {E(w)}, n = 0, 1, . . . , is a periodic sequence of real numbers with 
period Q. Therefore the lemma holds here. Suppose now that the lemma has 
been established for exponential polynomials of degree < M, and let deg 
E = M + 1. Then 

(7) E(n) = FM+1(n) nM^ + E^n) 

where FM+i(n) is real for all n and not identically zero, and deg E\ < M. 
Let Q be the common period of F0, F\, . . . , FM+i and consider the set 

(0), FM+1(l), ..., (0}. 
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If no member of S vanishes then 

(8) mm\FM+1(n)\ = min \FM+1(n)\ = c > 0, 
n 0 < r a < Q - l 

and the first term on the right in (7) dominates the whole right-hand side 
since |-Ei(w)| = 0(nM). Now the periodicity of FM+i(n) and the condition 
(8) imply that the lemma holds in this case. 

Suppose now that some members of S vanish. For n Ç I let n G A if 
n = ni (mod Q) and FM+i(tii) = 0, 0 < n± < Q\ otherwise let n £ B. When 
n is restricted to B the lemma holds as before; when n £ A, E(n) = E\(n) 
and the lemma holds by the induction assumption since deg E\ < M. This 
concludes the proof. 

6, We prove now Theorem 1. L e t / = Yl™ fn%n be a pseudo-rational function 
and let/w be real for all n. By Lemma 2, (b) we have 

R N M R 

(9) f(z) = P(Z) + £ £ E ^r«(«r» - S ) ' ' = P(«) + £ g,(*) 
r = l A ; = l ^ = 1 r=l 

where \aTk\ = ar and 0 < a± < a2 < . . . < aR. That is, we order the partial 
fractions according to the increasing absolute value of the poles. R will be 
called the order of / . Since the presence of P in (9) influences only a finite 
number of coefficients we assume without loss of generality that P = 0. 

We show first that x/ G 9Î. The proof will proceed by induction on the 
order R of/. Let R = 1, t h e n / = g\(z) and so 

(10) fn = a7E1(n) 

where E\(n) satisfies the conditions of Lemma 3. I t follows that {sgn Ei(n)}, 
n = 0, 1, . . . , is a periodic sequence, n > no, which implies immediately 
that xr £ 9Î- Suppose now %/ £ 9Î for any function/of order < i£, satisfying 
the conditions. L e t / be a function of order R + 1, then 

/(*) = gi(s) + AW 

where the order of h is < R and the absolute value a,\ of the poles of g\ is 
less than that of any pole of h. Let 

OO CO 

gl(*) = Z) gn\Zn,h(z) = S ^S n , 

then /w = gni + ^ . Suppose that gni ^ 0 for all n. By Lemma 3 it follows 
easily that hn = 0(gn\) for large n and therefore sgn fn = sgn gni, r > w0. 
However, by the induction assumption {sgn gni}, ti = 0, 1, . . . , is a periodic 
sequence, n > n0. Hence {sgn fn], n = 0, 1, . . . , is a periodic sequence, 
n > Wo, and %/ € 9?. 

Suppose now that gn\ = 0 for infinitely many n, and let n £ A if ^wi = 0, 
n £ B otherwise. Much in the same way as in the proof of Lemma 3 we show 
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that {sgn fn) is a periodic sequence when n is restricted to A, and also when 
n is restricted to By which again implies that %/ 6 9?-

Furthermore, it is easy to show that %/ must have the following form 

Xf(z) = P(z) + e(z) - e{z°)Q{z) 

where 

Q(Z) = z ejZ
j 

and €j — 0, 1 or — 1 . It follows that not only %/ G 3Î but actually %/ G $ . 
We proceed now with the rest of the proof. It is clear that ^ is closed under 

addition and multiplication by real numbers. We show next that / o g Ç $ 
if/> & £ $• Although this follows immediately from Lemma 2, (d) the follow
ing proof supplies a closed explicit representation for / o g. As in Lemma 2, (b) 
let 

M N 

f{z) = p{z) + Z Z 4*(«* - 2)"'. 

M l iVi 

g{z) = P1{z) + Z Z **(& - *)"'> 

then 
M N Mi Ni 

(11) fog= Q(z) + Z Z Z Z -4»B**i(«* - *r' o (0* - s)" '1 

* = 1 j=l ki=l ji=i 

where Q is a polynomial. Now 

(i2) {a*-.r'o(fe-.)-"=z (n+j
n~*)(w+i"*) w ^ * . 

Let constants ypqs s = 1,2, . . . , £ + g — 1, be determined so that 

identically in w. Then by (12) 

(i3) (ak - z)-jo(pkl - z)-ji = 2) Yiii.«rK~'w*i - * r . 
s = l 

By putting together (11) and (13) we obtain an explicit representation of 
fog and see at once t h a t / o g € $, since 

|a*fti| |«*| |fell" 

By (4) 

/ U g = 1/2 É [/» + & + ( / » - gn)sgn(/É - gw)]/ 

= l / 2 [ / + g + ( / - g ) X / _ , ] , 
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and f(rsig=f + g—f\Jg. Since / - g G $ implies x/-* € ? , it follows 
that if / , g Ç $ then / U g Ç ^ and / H g Ç $. This completes the proof. 

The author acknowledges gratefully suggestions and criticism of Professor 
K. Mahler of Manchester University. 
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