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Abstract

Mogensen has exhibited a very compact partial evaluator for the pure lambda calculus, using
binding-time analysis followed by specialization. We give a correctness criterion for this partial
evaluator and prove its correctness relative to this specification. We show that the conventional
properties of partial evaluators, such as the Futamura projections, are consequences of this
specification. By considering both a flow analysis and the transformation it justifies together,
this proof suggests a framework for incorporating flow analyses into verified compilers.

Capsule review
A self-applicable partial evaluator for a higher-order language was published by Gomard and
Jones in 1991, using a binding-time analysis based on type inference. Mogensen presented
a compactly coded self-applicable partial evaluator for the pure lambda calculus in 1992,
extending the earlier binding-time analysis with recursive types.

A traditional input-output specification of a partial evaluator is insufficiently specific to
allow a rigourous correctness proof, a problem which this paper addresses. Working with
Mogensen's partial evaluator, Wand defines a correctness criterion and proves the partial
evaluator correct.

The method of Gomard and Jones plays a key role in the correctness proof: binding-time
analysis assigns simple typings (plus rec) to the subexpressions of the partial evaluator's code.
The typings drive both the partial evaluator's operation and the correctness proof, where in
the latter, the correctness criterion is phrased as a logical relation. The usual proof techniques
then apply.

A pleasant corollary of the correctness proof is that the three Futamura projections hold.
This result is independent of the partial evaluator's code, and suggests that Wand's correctness
criterion is a fundamental property of all well designed partial evaluators.

1 Introduction

Compilers for modern programming languages such as Scheme, ML, or Haskell
typically perform a variety of optimizations in order to produce good code. Typically,
an optimization consists of an analysis to collect information about a portion of the
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366 M. Wand

program, followed by a transformation based on the results of the analysis. While
program analyses of various sorts have been studied intensively for many years, it
has proven remarkably difficult to specify the correctness of an analysis in a way
that actually justifies the resulting transformation.

Here we study one such analysis: binding-time analysis. Binding-time analysis
annotates a program to indicate which portions of the program can be executed at
compile-time and which cannot be executed until run-time. Because it is temporal
rather than value-based, binding-time analysis does not seem to fit comfortably into
the framework of abstract interpretation. Therefore it poses a challenge to theories
of analysis and transformation.

Binding-time analysis is intended to support program specialization or staging
(Jorring and Scherlis, 1986). Here we show the correctness of a binding-time analysis
by showing that it justifies a specializer.

Our framework is based on the off-line partial evaluator of Mogensen (1992b), a
very compact self-applicable partial evaluator for the pure A-calculus. Mogensen's
partial evaluator formulates binding-time analysis as a solution of a set of constraints
on the annotation of a program (that is, as an annotated type-inference tree for
a certain type system). The constraints are based on those in Gomard (1990).
The annotated tree is fed to a program-specializer P, which produces the residual
(run-time) term.

Our main theorem is that if the specializer is given any annotation of the input
program that satisfies the binding-time constraints, its output is a suitably specialized
version of the input program.

In order to do this, we must formalize the notion of a 'suitably specialized
version of the input program.' Our version of this notion is similar to, but simpler
than, the specification given by Gomard (1992). We then show that the typical
properties of partial evaluators, such as the Futamura projections, follow from the
specification.

This paper is organized as follows: in Section 2 we review the relevant funda-
mentals of partial evaluation and consider how an arbitrary programming language
can be modelled inside the A-calculus. In Section 3 we show how the A-calculus
itself can be modelled. In Section 4 we present Mogensen's partial evaluator. In
Section 5 we state and prove our main theorem relating binding-time analysis and
partial evaluation, and in Section 6 we show how the expected specialization behav-
ior of partial evaluators follows from the main theorem. In Section 7 we consider
self-application of the partial evaluator, and show how the Futamura projections
can be derived from the main theorem. In Section 8 we present a brief account of
the operational semantics of the language of annotated terms. Section 9 compares
our work to other approaches to binding-time analysis, and Section 10 gives some
conclusions.

2 Partial evaluation and representation

We begin by recapitulating the usual terminology of partial evaluation.
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Definition 1
A programming language L is specified by a set II of L-programs, a set A of L-data,
and for every n > 0, an (n + 2)-ary relation

Ln(n,di,...dn) =d

such that each Ln is a partial function. The relation Ln(n,d\,...dn) = d represents
the assertion that program n, given inputs d\, . . . , dn, produces output d.

We will almost always omit the subscript on L. We shall ambiguously regard this
as an (n + 2)-place relation or as a partial function from programs and inputs to
outputs. In the latter interpretation, = is the equality on elements of the set A. The
functional interpretation is used, for example, in the definition of a partial evaluator:

Definition 2
An L-program P is a partial evaluator iff for all L-programs n and L-data d\ and

d2,

Ll{Li{P,n,dl),d2) = L2(n,dl,d2)

The partial evaluators we will consider are off-line. In an off-line partial evaluator,
the program n is first transformed in some way independent of the static input d\:

Definition 3
An off-line partial evaluator is a pair (<I>, P), where O is a map II —» A and P is an
L-program such that for all L-programs n and L-data d\ and d2,

L2(L2(P,9(n),di),d2) = L3(n,di,d2)

In general, we will not be concerned with the algorithmic aspects of the trans-
formation <b, so we will not bother to consider the implementation of <J> as an
L-program.

For these definitions to make sense, n (or <t>(7i) in the off-line case) must also be
an element of the set A of L-data. To prove the correctness of partial evaluators and
similar program transformers, we must consider this representation explicitly. Our
tool for studying this representation will be the pure A-calculus.

The basic techniques for representing various quantities in the A-calculus are
well-known. For example, when considering computations on the integers, one first
defines a set of numerals, that is, a mapping associating each integer n with a closed
normal form 1-term \ri\. Then we say a function / on the integers is representable
iff there exists a A-term F such that for all n, F\n] =p \f(n)~\.

To carry out a similar analysis for an arbitrary programming language L, we give
a coding (—) from programs and data in the language into normal form A-terms,
and a 1-term S which is the semantics or interpreter for the language. We can then
define the input-output behavior of the language by

Ln(n,du...dn)=d<=>S(n)(di)...(dn) = (d)

where the equality on the right is equality in some ^-theory (for us, this will be
=p). Note that unlike the usual formulations of denotational semantics, in which
the translation from a program to its meaning is specified informally, the semantics
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S is internalized as a term in the A-calculus. This step is crucial for dealing with
self-application.

From now on we will assume that our programming languages have been specified
in this way. As an example of this style of specification, we can define the notion of
a translation of an L-program into the A-calculus:

Definition 4
A translation of an L-program n is a A-term T such that for all S-data d, T(d) =
S{n)(d).

Thus T(d) =p (d1) <=* S(n){d) = (d1) <=> L(n,d) = d'.

3 Representing /-terms in pure /-calculus

We are interested in performing binding-time analysis and partial evaluation on
A-terms themselves. We therefore need to specify the A-calculus as a programming
language dealing with A-terms as inputs and outputs. To do this, we must specify a
representation of A-terms and an interpreter manipulating those representations.

The representation needs to code each A-term as a normal form A-term. Mogensen
(1992a) uses the following coding:

\x\ = Xabc.ax
\MN~] = Xabc.b \M\ \N~\
\Xx.M\ = Xabc.c{Xx.\M'\)

This coding uses two tricks: first, it uses the coding of the sum A + B as (VC)((/4 —»•
C) —> (B -> C) —y C), so that each element of a 'sum domain' is modelled as its own
case-function. Thus a case expression

case m of
Var(x) => . . . x . . .
App(M,N) =>...M...N...
Abs(M) => ... M . . .

would be represented as

m(Xx x . . .)(Xmn m...n.. )(Xm m...)

Second, it uses so-called 'higher-order abstract syntax' (Pfenning and Elliott, 1988),
in which the binding operators in the represented language are modelled by binding
in the lambda-calculus. Any free occurrences of x in the body of Xx.M will be bound
by the x in Ax. [M].

We also need to specify an interpreter. This task will be filled by a self-interpreter
E. A self-interpreter is a A-term E such that £[M] =p M (Barendregt, 1991). E
needs to have the properties that

E(Varx) =x
E(AppMN) = (EM)(EN)
E(AbsM) =Xv.E(Mv)
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Here we are using informal notation for abstract syntax of the A-term input to E. It
is easy to display a term that satisfies these properties:

E = Y {Xe.Xm.m{Xx.x)
(Xmn.(em)(en))
(Xm.Xv.e{mv)))

where Y is the standard fixpoint operator.

Theorem 1 (E is a self-interpreter)
For any A-term M, E \M] =p M

Proof
By structural induction on M (Mogensen, 1992a). •

If we use E as our interpreter, then the programming language of A of A-terms
has an input-output relation specified by

A(M,Nu...Nn) = R

Since here the set A of A-data is the set of normal-form /i-terms, our use of s for
equality on elements of A and its usual use for equality of 1-terms up to a-congruence
coincide. Henceforth, we will use the symbol = to denote ^-convertibility, and = ,
when necessary, to denote a-congruence of 1-terms.

4 The partial evaluator

We next present the partial evaluator for A given by Mogensen (1992b). This is an
off-line partial evaluator, so it is divided into two phases: a binding-time analysis
(the transformation <&), and a specialization phase (a A-program P).

The binding-time analysis produces an annotated version of the input program
by assigning each phrase of the program a type in a system due to Gomard (1990).
The types are as follows:

t ::= d | v | t -» t | \iv.t

where in fiv.t, t must be of the form {t{ -*...—* ttt -* d), and all occurrences of v
in t must be positive. The intention is that the type d denotes the type of 'dynamic'
quantities: i.e. representations of untyped A-terms. The other types are built from
d in the usual way, and correspond to the types one might find in an ordinary
compiler. Recursive types are intended to denote their unfolding into an infinite
tree. The presence of the recursive types allows loops to be formed in the static
portion of the analyzed program, and the use of a single run-time type d allows
unrestricted self-application in the dynamic portion.

Annotated terms are given by the following grammar:

W ::=v | WW \ Xv.W | W_W \ Xv.W

The first three productions correspond to static (compile-time) calculations, and the
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last two correspond to dynamic (residual, run-time) operations, which correspond at
compile-time to emitting code. Annotated terms have elsewhere been called 2-level
A-terms.

The annotated terms are produced by decorating a type-inference tree. Thus,
instead of considering typing judgements of the form A \- M : t, we consider
judgements of the form A h M : t [W], meaning that under hypotheses A, term M
can be assigned type t with annotated term W. When this judgement is true, we
say that W is an annotation of M with type t. The type system can be written as
follows:

A \- x : A(x) [x]

A\-

A

M

A

: s —>
A\-

A[Xy-
h-(Xx

\-M :d

t [Wi] Ah- N :s [W2]
MN

+ s]

M)

Ah- MN

A[x>--d)

:t[WxW2]

h- M : t [W]
:s^t [Xx.W]

] A h- N : d [W2]

: d [W^WJ

h M : d [W]

A\-(Xx.M) :d \Xx.W]

A tree of judgements in which every node satisfies these constraints is a derivation.
For purposes of checking these constraints, types are regarded as equal iff their
unfoldings into infinite trees are equal; thus no separate rules for recursive types
are necessary. We shall not consider algorithms for performing these annotations;
instead we shall assume that we have such an algorithm <I>; see Gomard (1990) and
Henglein (1991).

Mogensen uses a representation scheme for annotated terms similar to that for
ordinary A-terms:

\_x\ = Xabcde.ax
\WW'\ =Xabcde.b\_W\\W'\
[lx.W\ = Xabcde.c{Xx\W \)
[w_W'\ =Xabcde.d\_W\\_W'\
\Xx.W\ = labcde.e{lx.\W \)

To specialize a program, one must interpret the annotated term, evaluating all
the static (compile-time) parts (just like E) and emitting code for all the dynamic
(residual) parts. This can be expressed in terms of abstract syntax by:

P(Pvarx) =x
P(SappWW) = (PW)(PW)
P{SabsW) =Xv.P(Wv)
P(DappWW) = App{PW){PW)
P{Dabs W) = Abs(Xv.P(W{Varv)))
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where Pvar, etc., represent the abstract syntax of annotated terms. This can be
realized by a A-term P operating on the [—J representation as follows:

P = Y {Xp.Xm.m{Xx.x)
(Xww'.(pw){pw'))
(Xw.Xv.p(wv))
{Xww' .Xabc.b(pw)(pw'))
()^w.Xabc.c(Xv.p(w{Xabc.av)))))

We first show some simple properties of P. As usual, we will use the symbol =
to denote ^-convertibility, and =, when necessary, to distinguish a-congruence of
A-terms.

Lemma 1
[W\y/x]\ = [W]\y/x]

Proof
Easy induction on W. •

Lemma 2
P([W\[N/x]) = (P[W\)[N/x]

Proof
By induction on the size of W. We will do two cases; the others are similar. For the
base case, we have P{[x\ [N/x]) = P(Xabcde.aN) = N and (P[x\)[N/x] = x[N/x] =
N. For static abstractions over a variable y distinct from x, we have

P([Xy.M\[N/x])
= P((Xabcde.c(Xy.[M\))[N/x]) definition of |Aj>.Mj
= P (Xabcde.c(Xy'. [M\ [y'/y] [N/x])) substitution ( / fresh)
= Xv.P ((A/. [M\ [y'/y] [N/x])v) definition of P
= Xy'.P((Xy'. [M\ [y'/y] [N/x])y') a-conversion
= /i/.P(LMj [y'/y] [N/x]) ^-conversion
= Xy'.P([M[y'/y]\ [N/x]) Lemma 1
= Xy'.(P[M[y'/y]\)[N/x] induction hypothesis at M[y'/y]

(M[y'/y] is smaller than Xy.M)
= Xy'.(P([M\ [y'/y]))[N/x] Lemma 1
= Xy'.(P [M\) [y'/y] [N/x] induction hypothesis
= (Xy.P [M\) [N/x] substitution
= P{[Xy.M\)[N/x] definition of P

D

Corollary 1 (Substitution Lemma)
If p is a substitution, then (P[W\)p = P([W\p).

Proof
By repeated application of the preceding lemma for each x e dom(p). •
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We will often write P L ^ J P
 t 0 mean, interchangeably, either of the terms above.

Note that it would be incorrect to bring the p inside the [—J: in general />(LW/Jp) ^
P([WpJ). We will consider this further in Section 8. The resemblance of PL^J/3

to a conventional environment semantics is, of course, not coincidental, since by
choosing equality to be interconvertibility, we are in effect working in the open
term model, in which evaluation in an environment is the same as substitution. Our
results hold a fortiori in any A-model.

5 Correctness of the partial evaluator

Our goal is to show that the pair (<P, P) is a correct off-line partial evaluator. The
correctness proof must somehow involve the binding-time analysis as well: otherwise
one could change the binding-time analysis arbitrarily without invalidating P, which
is clearly impossible. Furthermore, the usual notion of partial evaluation only
involves the programs that can be assigned relatively simple types like d or d —> d,
while the algorithm clearly involves arbitrary types. Furthermore, the algorithm P
crucially involves non-closed terms. Hence we must find an induction hypothesis
that covers arbitrary types and terms with free variables.

We do this by using the technique of logical relations. For every closed type t, we
will define a binary relation Rt. We begin by setting up some standard machinery. If
R and S are binary relations on /l-terms, define the relation R —» S in the standard
way by

<=> {VN,N')(R(N,N') ==> S(MN,M'N'))
Next, let n range over partial maps from type variables to binary relations, and

let () denote the empty map. We can define RUn by:

I, AT) | EM =ii M'}

R(liv.t),i) = f]{S I Rt,i;[S/i;] - S}

We shall always assume that n is defined on all the free variables of t; it is a routine
matter to check that this assumption is an invariant of all our calculations. Had
our language included other base types o, Ro would be the equality relation on the
other base types.

Lemma 3 (Fixed-Point Lemma)
1. I f R(fiV.t)ji = S, then S = Rt,ri[s/o]-

2. If t' is a closed type, then Rt,n[t>M = Rt[f/v],n
3. R(jiv.t),tt =

Proof
(1) Since all the occurrences of v in t must be positive, the intersection in the last
line must be a fixed point. (2) Routine calculation. (3) Follows from (1) and (2). •

In the remainder we will consider only closed types, for which we define Rt = R,().
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Lemma 4 (Admissibility)

If M = M' and N = N', then R,(M,N) « • Rt(M',N').

Proof
By induction on the length \t\ of t, defined by \d\ = 0, \s -> t| = \t\ + 1, and
\nv.t\ = |t| + 1. If the type is d, then

£ M ' = AT

If the type is s —> t, then \t\ < \s —> t\, so we have

[RS(P,Q) => Rt(MP,NQ)]
[RS(P,Q) = > Rt(M'P,N'Q)]

The last case is that the type is fiv.t. Now, since t is of the form t\ ->...-* tn-* d,
t\jiv.t/v] = ti\p.v.t/v] -» ...tn[p.v.t/v] -» d. So |t[/<t;.t/t;]| = |f| < |//D.t|. So

, N) <==> i?,^,,.,/^ (M, N) Lemma 3
.I/D] (M1, N') Lemma 4

N') Lemma 3

D

The following definition makes the main theorem easier to state.

Definition 5

For substitutions p and p' we say (p,p') J= 4̂ iff for all x € dom(A),

RA{x)(p(x),p'(x))

We say A (= M : t [W] iff

(p,p')\=A =>Rt(P [W\p,Mp')

Theorem 2 (Main Theorem)
If A\-M:t [W], then A \= M : t [W].

The theorem says roughly that if M can be assigned type t with annotated term
W, then P(LWj) and M are related by relation Rt. More precisely, it says that
if p and p' are substitutions related by symbol table (type hypotheses) A, then
the corresponding substitution instances of /'(LWJ) and M are also related. This
proposition is the generalization of the simple first-order case (£(P|_WJ) = M) t o

handle higher-order terms.

Proof
The proof is by induction on the structure of the proof of A V- M : t [W]. Thus the
proof has five cases, one for each rule of inference for h For each case, we show
that the rule preserves \=.
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Case 1 (Variable). Assume x e dom(A). Then A V- x : A(x) [x]. We need to show
A [= x : A(x) [x]. So assume (p, p') \= A. We need to prove that

RA(X)(P[x\p,xp')

holds. We calculate:

RA{x) (P [X\ p, xp') <=> RA{X) (xp, xp') definition of P

which holds because (p, p') (= A
Case 2 (Static Application). Assume A \= M : s -> t [W] and A \= N : s [W].

We must show A |= MN : t [WW], So assume (p,p') \= A. We want to show

Rt{P\}VW'\p,{MN)p')

By the induction hypotheses, we have Rs^,(P[W\p,Mp') and Rs(P[W'\p,Np'). So
we have

Rt{(P[W\p)(PlW'!ip),(Mp')(Np')) definition of Rs-*t

Rt(((P L^J)(-P [W\))P, (MN)p') substitution
Rt(P \_WW'\ p, (MN)p') definition of P

Case 3 (Static Abstraction). Assume A[x i-» s] \= M : t [W]. We need to show
that A (= (Ax.M) : s —> f [Ax.jy]. So assume (p,p') h= -4- We need to show

Rs-,,{P[Xx.W\p,(Ax.M)p')

By the definition of Rs->t, it suffices to assume Rs{W\,Mi) and then show that

Rt((PUx.W\p)Wu((Xx.M)p')Ml)

Now,

(PlAx.W\p)Wi =

(we write p[7V/x] for the substitution mapping x to N and any other variable y to
p(y); thus ((/lx.M)p)N =/, M(p[N/x]).) Furthermore, {{Xx.M)p')Ml = Mp'[Mi/x],
so by Lemma 4 it will suffice to show

But (p[Wi/x],p'[M\/x]) |= /l[x i—> s], so the desired conclusion follows from
A[xt-*s]\=M :t [W].

Case 4 (Dynamic Application). Assume A\= M : d [W] and A \= N : d [W].
We must show A f= MN : d[W_W']. So assume {p,p') \= A. We want to show

Rj(P[W_W'\p,(MN)p')
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We calculate:

E(P[W_W'\p)
= E(P(Xabcde.d([W \p)([W \p))) definition of [-\
= E(Xabc.b{P [W\p)(P \_W\p)) definition of P
= (E(P \W\p)){E(P \_W\p)) definition of E
= (Mp'){Np') induction hypotheses
= {MN)p' substitution

Case 5 (Dynamic Abstraction). Assume A[x >—>• d] ^= M : d [W]. We need to
show that A (= Xx.M : d [Xx.W]. So assume (p,pr) [= A. We need to show that

Now, Rj[Xabc.ax,x) holds, so let p\ = p[Xabc.ax/x] and p\ = p'[x/x] ; then
(pi,p\) (= A[x i—> d]. Therefore, by the induction hypothesis, we know that

Rd(P\_W\pl,Mp')

that is,

E(P[W\pl)=Mp\ (1)

Now, to establish R4(P[Xx.W\p, (Xx.M)p'\ we calculate:

E{P[lx.W\p)
= E (P ([Xx. W J r)) Corollary 1
= E(P(Xabcde.e(Xx.[W\))p) definition of \Xx.W\
= E(P (Xabcd e.e{(Xx.\W\)p))) definition of substitution
= E(Xabc.c(Xx.P(((Xx.[W])p)(Xabc.ax)))) definition of P
= E(Xabc.c(Xx.P(\_W\p[(Xabc.ax)/x]))) ^-reduction
= £ (Xabc.c(Xx.P (L WJ p,))) definition of p,
= Xx.E(P([W\pi)) definition of E
= Xx.Mp'[x/x] Equation 1
= {Xx.M)p'

This completes the cases for the proof. D

Most of the time we will be concerned with closed terms:

Corollary 2
If M is a closed term, and 0 h M : t [W], then Rt(P\W\,M).

This specification for a partial evaluator looks rather different from the usual one,
so it is useful to check to see that the usual properties of partial evaluators hold.
Most often we will be interested in the following case:

Corollary 3 (Specialization Theorem)

Let M, N, N' be closed terms, and let W be an annotation of M with type t —> d.
If Rt(N,N'), then E(P[W\N) = MN'
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Proof

Rt^d(P[W\,M) Corollary 2
Rt(N,N') Assumption
RjiPlWlN^N') Definition of Rt^d

E(P[W\N) = MN' Definition of Rj

a

6 Relation to traditional partial evaluation

According to definition 3, (<J>, P) is an off-line partial evaluator iff for all L-programs
n and L-data d\ and d2,

U{LX{P\®{n),d,),d2) = L2(n,dud2)

In the case of the A-calculus, programs are closed terms and data are terms. Programs
are represented using the coding [-], and the datum <P(n) is an annotated term,
represented using the coding [—J • This leaves open the question of how the other
data are represented.

The easiest way to do this is to represent the datum d\ as \d{\ at specialization
time (that is, when it is static data), and as itself at run time (when it is dynamic
data). Then at specialization time we have

but at run time

P,<l>(jr),di),d2) = L2{n,dudi)
Ll(Q,d2) = L2(n,dud2)
Qd2 = nd\d2

So it will clearly suffice to show that E{P[<P(n)\ \d\~\) = ndi. This is accomplished
easily:

Corollary 4 (Partial Evaluation Theorem (mixed representation))
Let M be a closed term with an annotation W of type d —> d. Then for any closed
term N,

E(P[W\\N]) = MN

Hence P \W\ \N] is a closed term equivalent under E to MN: that is, it is a program
for M specialized to N.

Proof
E\N~\ = N, so we have Rj(\N],N). Therefore, by the Specialization Theorem we
have

E(P[W\\N]) = MN

D
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Here W plays the role of <&{n). This result also shows the correctness of the partial
evaluator using a double encoding, in which d\ is represented as \d\~\ at run time
and as IT^ill a t specialization time (Launchbury, 1991).

It would be better to have a version of partial evaluation that used the same
representation for both static and dynamic data. This can be obtained by looking
at the types which the binding-time analysis assigns to the representations.

For any type /?, let Tp denote the type

(fit).((p -» 0) -» (t -» r - 0) - ((/J -> t) -> 0) -• 0)

This type, introduced in (Mogensen, 1992b), is the type of the representation of
A-terms interpreted as case functions with target /?.

Lemma 5
If M is a closed A-term, and ft is any type, then RTf(\M], \M]).

Proof
The proof is by induction on M. As usual we need to consider open terms as
well. The induction hypothesis is: Let p, p' be substitutions such that for all
x e dom(p) = dom(p'), fy(p(x),p'(x)). Then RTf{Wp, \M]p').

Now, by the structure of Tp, to show RTf(\M~\p, \M]p') we must show that
whenever Rp^N.N1), RT^T^{P,P'), and / fy^wK&G') , we have

Rp((\M]p)NPQ,(\M]p')N'P'Q')

We show this for each case in turn:
Case 1 (Variable). We calculate:

Re((\M]p)NPQ,(\M]p')N'P'Q')
<*=> Rp(((Xabc.ax)p)NPQ, ((Xabc.ax)p')N'P'Q') definition of M
*=> Rp(N(p(x)),N'(p'(x))) admissibility

But Rp^b(N,N') and Rp(p(x),p'(x)), so ^(N(p(x)),N'(p'(x))) is true.
Case 2 (Application). We calculate similarly:

Rli{{\MxM2\p)NPQ,{\MiM2\p')N'P'Q!)
<=> Rfi{{{Xabc.b\M\\\M2])p)NPQ,({Xabc.b\Mi\\M2])p')N'P'Q')

definition of [M1M2]
<=> Rf,((labc.b(\Mi]p)(\M2]p))NPQ,(Xabc.b(\Ml]p')(\M2]p'))N'P'Q')

substitution
^>Rl!(P(\M1lp)(\M2}p),P(\Milp')(\M1}p'))

admissibility

But by the induction hypothesis RTf{\M{\p, \Mi]p'), RTf{\M{\p, \M2~\p'), and by
the assumption RTf^Tf-*p{P,P'), so the last line is true.

Case 3 (Abstraction). Last, we consider the case of Xx.M. We claim that
R^T^{{Xx.\M\)p,{Xx.\M\)p'). To establish the claim, assume that Rp(S,S'). We
must then show thatRTf(({Xx.\M])p)S,((Xx.\M])p')S'):

RTf((Xx.\M])pS,(Xx.\M])p'S')
« RTf(\M](p[S/x]), \M](p'[S'/x]))
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but (p[S/x],p'[S'/x\) satisfies the conditions of the induction hypothesis, so the last
line is true.

Now we can calculate RTf{\^x.M]p, [Ax.M]p') as before:

Rp((\Xx.M]p)NPQ,(\Xx.M]p')N'P'Q')
^=* Rf({(labc.c(kc.\Af\))p)NPQ,{{Xabc.c{Xx.\M}))p')N'P'Q!)

definition of [Ax.M]
, (Aabc.c((Xx.\M])p'))N'P'Q')

substitution

admissibility

but R{P^Tf)^ji{Q,Q') and Rp^Tll((kx.\M'\)p,(kx.\M\)p'), so the last line is true. D

Using this type, we can show the correctness of the partial evaluator using the
[—] coding at both specialization time and run time. Using this representation we
have that at specialization time

as before, but at run time

(w),di),d2) = L3(n,dud2)

<=^£(PL<D(7r)

so it suffices to show that £(P[<D(7r)J \dt~\) = n\di1:

Corollary 5 (Partial Evaluation Theorem (uniform representation))
Let M be a closed term with an annotation W of type Td -* d. Then for any closed
term N,

E(P[W\\N~\) = M\N]

Hence PLW^JT- l̂ is a closed term equivalent under E to M\N]: that is, it is a
program for M specialized to N.

Proof
By the main theorem, RTd_d{P\W\,M). By Lemma 5, RTj(\^> F^l) Therefore,
Rd(PlW\\N],M\N]), that is E(P[W\\N]) = MN. D

This completes the connection with the 'classical' definition of partial evaluation
in Section 2.

7 Correctness of the self-applications

We next check to see that the properties of the Futamura projections follow from
our specification.

https://doi.org/10.1017/S0956796800000782 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000782


Specifying the correctness of binding-time analysis 379

7.1 First projection

The first Futamura projection states that partially evaluating an interpreter with
respect to a program gives a translation of the program into the language of the
partial evaluator.

To get this projection, Mogensen exhibits the following annotation Ea of E with
type Td->d:

Ea = Y Xe.Xm.m (Xx.x)
(Xmn.(e m)_(e n))
(Xm.Xv.e (m v))

where
Y = Xh.(Xx.h (x x)) {Xx.h (x x))

Hence for any closed term M, we have

RTd-.d(P[Ea\,E) Main Theorem
RTd(\M],\M~}) Lemma 5
E {P [EaJ [Ml) = E \M~\ = M Specialization Theorem

So for any N, we have E{P \Ea\ \M])N = MN. Hence there is a closed term R such
that P[Ea\\M] = \R~] and for all N, L(R,N) = L(M,N), as desired.

We can generalize this result to an arbitrary programming language L as defined
in Section 2. Assume L is specified by a coding (—) and an interpreter S. If the
coding (—) uses either ordinary or higher-order abstract syntax, then the same
reasoning as Lemma 5 will hold, so that we get RtL((M), (M)) for some type t^ that
represents the grammar of the language.

If S is compositional, then we can always annotate S with type t^ —> d. This
effectively views S as translating from the programs of the source language into
l-terms (rather than into their meanings). We can do this by marking all of S as
dynamic, except for those parts that recursively call S. For example, a fragment of
the semantics might be

S(e{ +e2) = Xp.(+(S(el)p))(S(e2)p)

where we have explicitly curried the +. We would annotate this as:

S{e{ + e2) = Xp.(+_((S{ei))_p)U(S(e2))_p)

In the homelier language of backquotes and commas, the right-hand side would be
something like

' ( l a m b d a ( r ) ( ( + ( , ( S e l ) r ) ) ( , ( S e2) r ) ) )

Now we can state the first projection:

Corollary 6 (First Projection)

Let S" be any annotation of S with type tL - • d. U P[S"\(n) = [T] then T is a
translation of n.
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Proof
Calculating as before, we get

RtL-.d (P [SaJ, S) Main Theorem
RtL((n), (n)) for any n in the language
E(P [Sa\ <7t» = S (7t) Specialization Theorem

So let P[Sa\(n) = \T~\. Then

T(d) = E\T](d) = E(P[Sa\(n))(d) = S(n)(d)

as desired. •

This projection is the basis for the compilers developed in (Wand, 1982; Clinger,
1984; Wand and Oliva, 1992), etc. In each case, we begin with a suitable semantics
(typically a stack semantics) for the source language. The stack semantics (say S) is
turned into a compiler by performing a binding-time analysis to separate compile-
time and run-time operations, thus getting a compiler Sa written in the language of
annotated terms. The language of annotated or 2-level terms is a natural language
in which to write a compiler, and P acts as the interpreter for 2-level terms, much as
E acts as the interpreter for pure A-terms. We will explore these connections further
in Section 8.

7.2 Second projection

The second projection states that partially evaluating the partial evaluator with
respect to an interpreter gives a compiler.

Definition 6
If L is a programming language, then a compiler for L is a 1-term C such that for
any L-program n, C(n) = \T], where T is a translation of n.

Recall that T is a translation of n iff for all L-data d, T{d) = S(n)(d), where S
is the interpreter for L. Therefore, to show C is a compiler, it suffices to show that
E(C(n)) = S{n).

We can proceed as before for the syntax [—J of annotations, getting a type

Up =
- (t - t - jj)
- ((/? - t) - j

for codings of annotated terms (Mogensen, 1992b), and a lemma

Lemma 6
If W is a closed annotated A-term, and /? is any type, then #[/„
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Proof
As for Lemma 5. •

Mogensen gives the following annotation Pa of P with type t/j ->• d:

Pa=Y Xp.Xm.m (Xx.x)
(Xww'.(p w)_(p w'))
(Xw.Xv.p(mv))
(Xww'.Xabc.b_(p w)_(p w'))
(Xw.Xabc.c_(Av.p (m (Xabc.a_v))))

where
Y = Xh.{Xx.h (x x)) {Xx.h (x x))

Corollary 7 (Second Projection)
Let L be a language with interpreter S and annotation Sa of type tL -> d, and let
Pa be any annotation of P with type Ud -> d. If P\Pa\\Sa\ = [C], then C is a
compiler for L.

Proo/
We have:

RUd^d{P[Pa\,P) Main Theorem

Rud(lS
a\>i.Sa\) Lemma 2

E(P\_Pa\ \Sa\) = P\Sa\ Specialization Theorem

Let P \_Pa\ [Sa\ = \C\. We can now check to see that C is a compiler:

E{C(n))
= E(E\C](n))
= E(E(P\_Pa\[Sa\)(n)) definition of \C)
= E(P [S"\ (n)) preceding calculation
= S{n) first projection

D

7.3 Third Projection

Futamura's third projection states that partially evaluating the partial evaluator with
respect to itself produces a compiler generator.

Definition 7
A compiler generator is a term G such that for any language L with interpreter S
and annotation S" of type ti -* d, G\Sa\ = \C\, where C is a compiler for L.

Corollary 8 (Third Projection)
Let P[Pa\[Pa\ = \G]. Then G is a compiler-generator.

Proof
Let P\_Pa\[P"\ = \G\. We first calculate, as before:

Rud-d(P{Pa\,P) Main Theorem
RuAlpa\APa\) Lemma 2
E(P[Pa\ [Pa\) = P[Pa\ Specialization Theorem
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To check that G is a compiler-generator, let us define C by G lSa\ = \C]. We need
to show that C is a compiler. Now

\C] = G[Sa\ =

= ^ L °̂J LSaJ by the preceding calculation

But the second projection showed that if we have \C] = P[Pa\lSa\, then C is a
compiler. So G is a compiler generator. •

Note that these projections were derived solely from the definition of Rt and the
fact that P satisfied the Main Theorem. They did not depend on the text of P. So
they would continue to work for any other partial evaluator that satisfied the Main
Theorem. This supports the thesis that the Main Theorem is a proper specification
of a partial evaluator.

8 Operational semantics of the 2-level lambda calculus

Elsewhere in this issue, Palsberg (1993) presents a correctness result based on an
operational semantics for annotated terms W. In our presentation, the term P
serves as an interpreter for annotated terms, yielding a denotational (though not
compositional) semantics. In order to compare his results with ours, we present a
brief account of an operational semantics for annotated terms.

Recall that the grammar of annotated (or 2-level) terms is given by

W ::=v | WW | kv.W \ W_W | kv.W

We can define substitution on these terms in the obvious way, treating both X and
k as binders. Let \W\ denote the A-term obtained from a 2-level term W by erasing
all the binding-time information.

We can define static reduction on 2-level terms as follows:

Definition 8
—>s is the smallest relation on 2-level terms such that:

1. (kx.W)W' -*s W[W'/x]
2. If W ->s W then WV -*s W'V, VW ->s VW kv.W ->s kv.W', W_V -»s

W'_V, V_W -*s V_W, and kv.W -*s kv.W.

—>* is the reflexive, transitive closure of —>s.

So static reduction is ordinary /^-reduction (on static redexes), closed under
congruence of all term-builders. However, dynamic applications and abstractions
are never reduced.

We first give a subject reduction theorem for 2-level terms under static reduction:

Theorem 3 (Subject Reduction Theorem)
If A \- \W\ : t [W] and W -**s W, then Ah\W'\:t [W1].
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Proof
Consider a typed A-calculus with the same types as considered above, with two
constants

Dapp : d —> d —> d
Dabs :(<*-»</)-»<*

It is clear that this calculus has the subject reduction property, even in the presence
of recursive types, since the usual proof of the subject reduction theorem uses only
induction on the size of terms, and not induction on the structure of types. Let us
write hi for the typing judgement in this calculus.

We give a translation (—) from 2-level terms to terms of this calculus as follows:

v = v
WW =W W
Xv.W = Xv.W
W_W = Dapp W W
XvW = Dabs{Xv.W)

Inspection of the typing rules in the two systems shows that A V- \W\ : t [W] <=>
A hi W : t. Furthermore W -*s W implies W - • W7. So if A h \W\ : t [W] and
W —>j W, we have A\-\W:t. Hence A \-\ W : t by the subject reduction theorem,
and therefore A h \W'\ : t [W]. The result then follows by induction on the number
of reduction steps in the —»* reduction. •

Now we can show that no static reduction of a well-typed term can go wrong.

Definition 9
A confused redex is a subterm of the form (hc.W)V or (Xx.W)_V.

Corollary 9 (Safety)
If A h M :t [W] and W -»* W, then W contains no confused redex.

Proof
It is easy to see that no confused redex can have a type, and hence no well-typed
term can contain a confused redex. •

We can also easily show that static reduction is sound with respect to P, that is,
it preserves the meaning of 2-level terms. We begin with two lemmas:

Lemma 7
For any 2-level term W,P[Xx.W\ = Xx.P\W\ and P\kx.W\ = Lx.P[W\.

Proof
Similar to the corresponding proof for E in Mogensen (1992a). We do the case of
static abstraction:

P{Xx.W\
= P{Xabcde.c{Xx.[W\)) definition of L-J
= Xv.P((Xx.[W\)v) definition of P
= Xx.P {(Xx.\W \)x) a-conversion
= Xx.P\W\ ^-reduction

a
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Lemma 8

For any 2-level terms W and W, P\W[W'/x]\ = (P\_W\)[P\_W'\/x]

Proof

By induction on the size of W. We do two representative cases. For the base case,
when W = x, we have

(p[x\)[pyw\/x]
= x[P LW'\ /x] definition of P
= P[W'\ substitution
= P[x[W'/x]\ substitution

For static abstractions over a variable y distinct from x, we calculate as follows,
assuming without loss of generality that a, b, c, d, e, and v are fresh:

= P([^.y'.V[y'/y][W'/x]\) substitution
= P{Xabcde.c{ty.\y\y'/y][W'/x]\)) definition of H
= Xv.P({ly'.lV[y'/y][W'/x]\)v) definition of P
= ly'.P{{Xy'.\y[y'/y][W'/x]\)y') a-conversion
= Xy'.P [V[y'/y] [W'/x]\ 0-reduction
= ly'.{(P\_V[y'/y]\)[P[W'\/x]) induction hypothesis at V[y'/y]

(V[y'/y] is smaller than ly.V)

= ly'.({PYy\)[P\y'\/yWW\/A) induction hypothesis at V
= ^y'.((P[V\)[y'/y][P[W'\/x\) definition of P
= (^y.P[V\)[P[W'\/x] substitution
= (Plly.V\)[P[W'\/x] Lemma 7

D

Theorem 4 (Soundness of static reduction)

If W ->s W, then P|_WJ =P\W'\.

Proof

By induction on the definition of —>5. For the base case, /J-reduction, we have
(Xx.W)W' ->s W[W'/x]. Then

P[(Xx.W)W'\
= (P[Xx.W])(P[W']) definition of P
= {Xx.P\W\){P\W'\) Lemma 7
= (P\W\)[P \_W'\ /x] ^-reduction
= P([w[W'/x]\) Lemma 8

For the induction step, we need to show that if P\W\ =p\W'\, then PLWFJ =
P\W'V\, P[Xx.W\ = P[Xx.W'\, etc. The application cases are trivial from the
compositionality of P; the abstraction cases follow immediately from Lemma 7.

•
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9 Comparison with related work

Mogensen (1992b) is the primary source for our development. He exhibits the
various terms above. He also includes the binding-time annotations that allow the
partial evaluator to be self-applied. He proves the correctness of the self-interpreter
(Mogensen, 1992a), but does not give either a specification or proof of the partial
evaluator.

Gomard (1992) discusses a larger self-applicable partial evaluator in a two-level X-
calculus with constants. He gives a correctness criterion similar in intent to ours. Our
specification is simpler because it avoids the model-theoretic details and assumptions
used in Gomard (1992).

Both Mogensen and Gomard, as do we, use a two-level type system like that of
Nielson and Nielson (1988), except that the run-time code is untyped. Launchbury
(1991) discusses the encoding issues for a strongly-typed self-applicable partial
evaluator with a full multi-level type system. However, he remarks in Section 6 of
(Launchbury, 1991) that the same encoding issues arise in the untyped case. This
paper is in part an attempt to sort out these issues.

Launchbury (1989) gives a characterization of binding-time analysis in terms of
congruence relations: a quantity may be deferred to run-time if its value does not
alter the result of the compile-time computation. This idea was neatly extended to
higher-order computations and partially-static structures by Hunt and Sands (1991)
using partial equivalence relations. Unfortunately, this characterization does not
seem to be strong enough to justify emitting code on the basis of the binding-time
analysis, which is our primary goal.

Consel (1990) presents an algorithm for binding-time analysis for a higher-order
untyped language with partially static structures, based on an abstract interpretation.
However, no correctness criterion is stated. It would be interesting to see how our
approach might handle partially static structures. More recently, Consel and Khoo
(1992) have shown the correctness of on-line and off-line partial evaluators for a
first-order language using an instrumented semantics; in this framework binding-
time analysis appears as an abstract interpretation of the on-line partial evaluation.
They then derive the off-line specializer (corresponding to our P) from the on-
line partial evaluator by coarsening the tests to depend only on the data available
from the binding-time analysis. Their approach also shows the correctness of the
binding-time analysis and specialization together, but the technical details seem quite
different from ours; their approach is heavily dependent on model-theoretic details
that we have been able to avoid. It would be interesting to see if our results could
be adapted to give a simpler account in the first-order case.

Palsberg (1993) gives an operational semantics of 2-level A-terms equivalent to the
account in Section 8. His main result is analogous to our Corollary 9, which states
that no static reduction of a well-typed 2-level term can go wrong. He identifies
a subclass of the static reductions, which he calls the top-down reductions, and a
different notion of acceptability, which he calls well-annotatedness. He then shows
that no top-down reduction of a well-annotated term can go wrong. In comparison
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with our Corollary 9, his result allows more 2-level terms to be considered, but
restricts the class of permissible reductions.

10 Conclusions

This paper is part of an investigation into the nature of program analysis and
optimization. The goal of program analysis is to annotate a program with certain
propositions about the behavior of that program. One can then apply optimizations
to the program that are justified by those propositions. Typically, an analysis
is specified by a set of local consistency conditions (the 'flow equations'). Our
approach is to show that any solution of the consistency conditions justifies the
resulting transformation.

We have carried through this program for binding-time analysis. Following
Gomard (1990) and Mogensen (1992b), we formulated binding-time analysis as
the solution of a set of local constraints (the typing rules). We then showed that
any such solution was a valid input to a simple program specializer, that is, if the
specializer is given any annotation of the input program that satisfies the local
constraints, its output is a suitably specialized version of the input program.

In order to do this, we formalized the notion of a 'suitably specialized version of
the input program.' Our version of this notion is similar to, but simpler than, the
specification given by Gomard (1992). We then showed that the typical properties of
partial evaluators, such as the Futamura projections, follow from the specification.

By considering both an analysis and the transformation it justifies together, this
proof suggests a framework for incorporating flow analyses into verified compilers.
By separating this soundness result from the algorithm for solving the flow equations,
we obtain much simpler proofs, avoiding the many model-theoretic details that
complicate typical proofs involving abstract interpretation.

This work suggests that the proposition associated with a program analysis can
simply be that 'the optimization works.' This avoids a morass of model-theoretic
details, at the expense of needing to know what it means for the proposed optimiza-
tion to work for each possible result of the flow analysis. Thus the flow analysis and
its enabled optimization should be proved correct together.
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