CLOUD-CLOUD COLLISIONS AND FRAGMENTATION

Anthony WHITWORTH and Helen PONGRACIC Department of Physics, University of Wales College of Cardiff, PO Box 913, Cardiff CF1 3TH, Wales, UK.

ABSTRACT. Supersonic head-on collisions between quiescent clouds produce flattened sheets of shocked gas. We derive the condition which the cooling law must satisfy if this sheet is to fragment into protostellar condensations (*i.e.* gravitationally unstable lumps). If this condition is not satisfied, colliding clouds are likely to be disrupted and dispersed. We show that under the conditions obtaining in GMCs, most cloud-cloud collisions probably do not result in fragmentation.

1. Virial equilibrium

Consider first a single quiescent cloud of mass M_0 , dimension L_0 , density of hydrogen nuclei in all forms n_0 ($\equiv n_{HI} + 2n_{H_2} + \cdots$) and sound speed a_0 . Virial equilibrium requires

$$a_0 \sim (GM_0/L_0)^{1/2}$$
. (1)

If m is the mass associated with one hydrogen nucleus $(m \simeq 2.4 \times 10^{-24} \text{ gm for population I composition})$, then

$$M_0 \sim L_0^3 n_0 m; \tag{2}$$

$$a_0 \sim L_0 \left(G n_0 m \right)^{1/2}$$
 (3)

2. Thermal equilibrium

We shall assume that the cloud is optically thin to heating and cooling radiation, so that the heating rate per unit volume can be approximated by

$$\Gamma \sim \Gamma_r \left(n/n_r \right),\tag{4}$$

523

E. Falgarone et al. (eds.), Fragmentation of Molecular Clouds and Star Formation, 523–525. © 1991 IAU. Printed in the Netherlands.

and — at least over a limited range — the cooling rate per unit volume can be approximated by

$$\Lambda \sim \Gamma_r \left(n/n_r \right)^2 \left(a/a_r \right)^{\alpha}. \tag{5}$$

 n_r and a_r are simply reference values for the physical parameters n and a. The constant Γ_r is the same for both Γ and Λ because we want the reference state (n_r, a_r) to be a state of thermal equilibrium. $\Lambda \propto a^{\alpha}$ is roughly equivalent to $\Lambda \propto T^{\alpha/2}$. Typically $\alpha \sim 3$.

Equating equations (4) and (5) gives the thermal equilibrium condition:

$$(a/a_r) \sim (n/n_r)^{-1/\alpha} \,. \tag{6}$$

3. Reference values for physical parameters.

For the purposes of illustration we adopt $n_r = 100 \text{ cm}^{-3}$ and $a_r = 0.5 \text{ kms}^{-1}$. Equations (2) and (3) then give $L_r \sim 4 \text{ pc}$ and $M_r \sim 200 M_{\odot}$.

Combining equations (2), (3) and (6), we find that quiescent clouds (i.e. clouds in virial and thermal equilibrium) have,

$$(n_0/n_r) \sim (M_0/M_r)^{-2\alpha/(6+\alpha)};$$
 (7)

$$(a_0/a_r) \sim (M_0/M_r)^{2/(6+\alpha)};$$
 (8)

$$(L_0/L_r) \sim (M_0/M_r)^{(2+\alpha)/(6+\alpha)}$$
 (9)

In other words, a more massive cloud has to be hotter and more diffuse if it is to be in virial *and* thermal equilibrium.

Coincidentally (since we are here assuming only thermal pressure support), equations (7) to (9) with $\alpha \sim 3$ are compatible with Larson's relations, viz. $n \propto M^{-6/9}$, $a \propto M^{2/9}$ and $L \propto M^{5/9}$.

4. General cooling time-scale.

We shall adopt $\Gamma_r = 5 \times 10^{-27} \text{ erg cm}^{-3} \text{ s}^{-1}$. This corresponds to a primary ionization rate of $\zeta \sim 10^{-17} \text{ s}^{-1}$. The cooling time-scale is then given by

$$t^{\rm cool} \sim \rho a^2 / \Lambda \sim t_r^{\rm cool} \left(n/n_r \right)^{-1} \left(a/a_r \right)^{2-\alpha}, \tag{10}$$

$$t_r^{\rm cool} \sim n_r m a_r^2 / \Gamma_r \sim 4 \,{\rm Myr.}$$
 (11)

5. Collision and expansion time-scales.

Now consider two identical clouds involved in a head-on collision at relative speed $2v_0 = 2\mathcal{M}a_0$, where \mathcal{M} is the Mach number. Assuming a strong shock $(\mathcal{M} >> 1)$, we know that the density and sound-speed immediately following the shock are $n_i \sim 4n_0$ and $a_i \sim \mathcal{M}a_0 = v_0$. It follows that the collision time-scale and the time-scale on which the flattened sheet expands sideways in the absence of post-shock cooling are roughly equal:

$$t^{\text{coll}} \sim t^{\text{exp}} \sim L_0 / \mathcal{M} a_0 \sim t_r^{\text{exp}} \mathcal{M}^{-1} \left(M_0 / M_r \right)^{\alpha / (6+\alpha)};$$
 (12)

$$t_r^{\rm exp} \sim L_r/a_r \sim 8\,{\rm Myr}.$$
 (13)

6. Post-shock cooling time-scale.

Since we expect $\alpha < 4$, and since the post-shock cooling regime will be approximately isobaric, cooling will be slowest at high temperatures and the cooling time-scale should be evaluated for the immediate post-shock density and sound-speed, *viz*.

$$t_{i}^{\text{cool}} \sim t_{r}^{\text{cool}} (n_{i}/n_{r})^{-1} (a_{i}/a_{r})^{(2-\alpha)} \sim t_{r}^{\text{cool}} \mathcal{M}^{(2-\alpha)} (M_{0}/M_{r})^{4/(6+\alpha)}.$$
(14)

7. Fragmentation condition.

The flattened sheet can only fragment if it does not expand sideways significantly before it cools, *i.e.* if $t_i^{\text{cool}} \ll t^{\text{exp}}$ or

$$\mathcal{M}^{(\alpha-3)}(M_0/M_r)^{(\alpha-4)/(6+\alpha)} >> G^{1/2}(n_r m)^{3/2} a_r^2 \Gamma_r^{-1}$$
(15)

Putting $\alpha = 3 + \epsilon$ ($\epsilon \ll 1$), and substituting for the reference parameters, this reduces to

$$\mathcal{M}^{\epsilon} \left(M_0 / M_r \right)^{-1/9} >> 0.5.$$
 (16)

Since the Mach number \mathcal{M} is unlikely to exceed 10, this inequality can only be satisfied if the clouds are very small and dense $M_0 \ll M_r$.

8. Conclusion.

Unless the interstellar gas can cool much faster than we have assumed, the majority of cloud-cloud collisions result in disruption and dispersal of the clouds involved. Cloud coalescence is unlikely. Specifically, efficient fragmentation requires that the cooling law of equation (5) has $\alpha \geq 4$ and/or $\Gamma_r \geq 10^{-26} \text{ergcm}^{-3}\text{s}^{-1}$ (corresponding to $\zeta \geq 2. \times 10^{-17} \text{s}^{-1}$).