A RELATION BETWEEN THE PERMANENTAL AND DETERMINANTAL ADJOINTS

MARVIN MARCUS ${ }^{1}$ and RUSSELL MERRIS ${ }^{2}$

(Received 12 October 1970; revised 10 June 1971)
Communicated by G. Szekeres

Let H_{n} denote the set of complex n-square positive semidefinite hermitian matrices. We partially order H_{n} : If $A, B, A-B \in H_{n}$, write $A>B$. For $A \in H_{n}$, write $P(A)$ for the permanental adjoint of A, i.e., $P(A)$ is the n-square matrix whose i, j entry is per $A(j \mid i)$, where $A(j \mid i)$ is the submatrix of A obtained by deleting row j and column i. Now, $P(A)$ is a principal submatrix of the $(n-1)$ st induced power matrix of A^{T}. Hence, $P(A) \in H_{n}$. Also $D(A)$, the classical adjoint, is in H_{n}.

Theorem. If $A \in H_{n}$ is positive definite then

$$
\begin{equation*}
(\operatorname{per} A)^{-1} P(A)<n(\operatorname{det} A)^{-1} D(A) . \tag{1}
\end{equation*}
$$

Proof. Rewrite (1) as follows:

$$
\begin{equation*}
P(A)<n(\operatorname{per} A) A^{-1} . \tag{2}
\end{equation*}
$$

Pre- and post-multiply both sides of (2) by $A^{\frac{1}{2}}>0$ to obtain the equivalent statement

$$
\begin{equation*}
A^{\frac{1}{2}} P(A) A^{\frac{1}{2}}<\mathrm{n}(\operatorname{per} A) I_{n} . \tag{3}
\end{equation*}
$$

Statement (3) is equivalent to the statement that the maximum eigenvalue of $A^{\frac{1}{2}} P(A) A^{\frac{1}{2}}$ satisfies

$$
\lambda_{1}\left(A^{\frac{1}{2}} P(A) A^{\frac{1}{2}}\right) \leqq n \operatorname{per} A .
$$

Now, the eigenvalues of $A^{\frac{1}{2}} P(A) A^{\frac{1}{2}}$ are all nonnegative. Hence, it suffices to prove

[^0]that $\operatorname{tr}\left(A^{\frac{1}{2}} P(A) A^{\frac{1}{2}}\right) \leqq n$ per A. But, $\operatorname{tr}\left(A^{\frac{1}{2}} P(A) A^{\frac{1}{2}}\right)=\operatorname{tr}(A P(A))$. The main diagonal elements of $A P(A)$ are
$$
\sum_{k=1}^{n} a_{i k} \operatorname{per} A(i \mid k)=\operatorname{per} A
$$

Hence, $\operatorname{tr}(A P(A))=n$ per A, and the proof is complete.
Indeed, the proof shows that (3) holds for all $A \in H_{n}$, not just for A positive definite.

Corollary. Suppose $A \in H_{n}$. Let σ_{i} be the ith row sum of A. Let $\sigma(A)$ be the sum of the elements of A. Then

$$
0 \leqq \sum_{i, j=1}^{n} \sigma_{i} \bar{\sigma}_{j} \operatorname{per} A(i \mid j) \leqq n \sigma(A) \operatorname{per} A
$$

Proof. Display (3) is congruent to $A P(A) A<n(\operatorname{per} A) A$. Now, if $A \in H_{n}$ then $\sigma(A) \geqq 0$. It follows that

$$
0 \leqq \sigma(A P(A) A) \leqq n(\operatorname{per} A) \sigma(A)
$$

But

$$
\sigma(A P(A) A)=\sum_{i, j=1}^{n} \sigma_{i} \bar{\sigma}_{j} \operatorname{per} A(i \mid j)
$$

We point out that if $A \in H_{n}$ is doubly stochastic then the corollary becomes

$$
\begin{equation*}
1 / n^{2} \sum_{i, j=1}^{n} \operatorname{per} A(i \mid j) \leqq \operatorname{per} A \tag{4}
\end{equation*}
$$

Display (4) is the first of a class of inequalities conjectured by Djoković [1] to hold for all doubly stochastic A. It was proved in [2] using other methods.

References

[1] D. Z̆. Djoković, 'On a conjecture by van der Waerden', Mat. Vesnik (4) 19 (1967), 272-276.
[2] Marvin Marcus and Henryk Minc, 'Extensions of classical matrix inequalities', Linear Algebra Appl. 1 (1968), 421-444.

The University of California
Santa Barbara
and
The National Bureau of Standards
Washington
U.S.A.

[^0]: 1. The work of this author suuported was by the U. S. Air Force Office of Scientific Research under grant AFOSR 698-67.

 2 The work of this author was done while he was a National Academy of SciencesNational Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D.C. 20234.

