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STACKED SUBMODULES OF TORSION MODULES
OVER DISCRETE VALUATION DOMAINS

PUDJI ASTUTI AND HARALD K. WlMMER

A submodule W of a torsion module M over a discrete valuation domain is called
stacked in M if there exists a basis B of M such that multiples of elements of B form a
basis of W. We characterise those submodules which are stacked in a pure submodule
of M.

1. INTRODUCTION

Let R be a discrete valuation domain and let p be a prime element of R such that
Rp is the maximal ideal of R. Let M be a torsion module over R and let W be a
submodule of M. In accordance with [7] and [6] we call a set {uK | K € K} a basis of M

if M = 0 RuK. We say that W is stacked in M if there exists a basis X = {x\ | A € A}
K.eK

of W and a basis U = {uK | K € K} of M such that A C K and x\ = ptxu\ for suitable
nonnegative integers t\. In that case we call X a stacked basis of W ([4]). If M is of
bounded order, that is, if there exists a positive integer m such that pmx = 0 for all
x € M, then it is known [7, p. 65] that VF is stacked in M if and only if

(1.1) pnWnpn+rM =pn(Wr\pTM)

holds for all n ^ 0, r ^ 0. In general however, if M is not of bounded order then condition
(1.1) alone need not imply that W is stacked in M (see Exercise 78(b) in [7, p. 65]). In
this paper we shall characterise those submodules which are stacked in a pure submodule
of M.

Throughout this paper the letters U, V, X,..., will denote subsets of M. We shall
use the letters u, v, x,..., for elements of the module M, and a, 0,n,..., will be elements
of the ring R. Using the terminology for Abelian p-groups in [6, p. 4] we say that x £ M

has exponent k, and we write e(x) = k, if k is the smallest nonnegative integer such that
phx = 0. Clearly, e(0) = 0. An element i 6 M i s said to have (finite) height s if x 6 p"M
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and x £ ps+1M. In this case we write h(x) = s. We set h(x) = oo if x € p"M for all
s ^ 0. Thus h(0) = oo. Note that the height of all nonzero elements of M is bounded if
and only if M is of bounded order.

Let (X) be the submodule spanned by X. When we write

aiXi H h amxm £ {X)

we tacitely assume Xj G X and atXi ^ 0, i = 1 , . . . , m, and x* ̂  x̂  if i ^ j .

Let R* be the group of units of R. We set a ~ /3 if a = /?£ for some e 6 /?*. It
will be convenient to write h(a) = s if a ~ ps. Let us recall the following properties
of the height function on M (see for example, [6, p. 154]). For all x,y e M we have
h(px) > h(x) + 1, and

(1.2) h(x + y)

Hence

(1.3) h(ax) ^ h(a) + h(x) for all a e R.

We say that an element x is h-regular if h(x) = oo or if h(x) is finite and

(1.4) h(ax) = h(a) + h(x) for all a with h(a) < e(x).

Property (1.4) can be traced back to Baer [2]. In [2, p. 484] an element x of an Abelian
p-group is called regular if h(x) = oo or if h(x) = k < oo and

(1.5) e(x) + h(x) = • • • = e(pfc-1x) + h^x).

As usual, a set X is called independent if 0 ^ X and if for any finite subset
{xi , . . . , xm} of X a relation o^Xi + • • • + amxm = 0 implies o^Xi — 0, i = 1 , . . . , m.

We shall employ two stronger concepts of independence. The first one is adapted from
Fuchs [5]. We call a set X p-independent (or pure independent) if it is independent and
contains no elements of infinite height, and if

(1.6) aixi + • • • + amxm e (X)

implies
h(aiXi H \-amxm) = min{h(aj) | i = l , . . . , m } .

The other definition is motivated by the inequality

H + amxm) > min{h(ai) + h(x4) | i = 1 , . . . , m},

which follows from (1.3) and (1.2). We say that X is h-independent if X is independent

and (1.6) implies

(1.7) h(aiX! + --- + amxm) = min{h(aj) + h(x<) | i = 1, . . . ,m}.
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Our concept of /i-independence combines properties used in [3] to describe extendible
Jordan bases of marked subspaces. It is obvious that a set X is p-independent if and only
if it is /i-independent and all of its elements have height zero.

For the elements x of a submodule S of M we may define hs(x) as the height of
x in S. We always have h s ( i ) ^ h(x). A submodule 5 of M is called pure in M if
hs(x) - h(x) for all x e S, or equivalently if SDp'M = p'S for all i ^ 0. The following
lemma is due to Fuchs [5].

LEMMA 1 . 1 . For a set X the following conditions are equivalent.

(i) X is p-independent.

(ii) X is independent and the submodule (X) is pure in M.

Since M is pure in itself it follows from the preceding lemma that a basis of M is
p-independent. It is also obvious that all nonzero elements of M have finite height if M

has a basis.

Our main result is the following theorem. It will be proved in Section 3 together
with a corollary.

THEOREM 1 . 2 . Let M be a torsion module over a discrete valuation domain and

let W be a submodule of M. The following statements are equivalent.

(i) There exists a pure submodule S of M such that W is stacked in S.

(ii) W has an h-independent basis.

It will be shown in Proposition 3.3 that condition (1.1) is necessary for the existence
of an /i-independent basis of W. In the case where M is of bounded order we note the
following result.

COROLLARY 1 . 3 . Let M of bounded order. For a submodule W of M the

following statements are equivalent.

(i) W is stacked in M.

(ii) W has an h-independent basis.

(iii) Condition (1.1) holds.

It is well-known [1] that the Jordan normal form can be studied in the framework of
the theory of finitely generated modules over a principal ideal domain. Hence [7, Exercise
79, p. 65], and Theorem 1.2 and its proof provide an alternative access to results in [3]
on extensions of Jordan bases for invariant subspaces of a matrix.

2. /l-INDEPENDENCE

This section contains the results on /i-independence which we shall need in the course
of the proof of Theorem 1.2. We shall make constant use of the following observations
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on the height function. Suppose pmx ^ 0 and h(pmx) = m + r. Then we have h(x) < r.

If x ^ 0 is an element with h(x) = s and e(a;) = k then x is /i-regular if and only if

h(p>x) =j + h(z), j = 1 , . . . , k - 1,

or equivalently, if and only if

or equivalently, jPx is /i-regular for all j ^ 0.

It is not difficult to see that an independent set X is /i-independent if and only
if its elements are /i-regular, and if x — axxi + • • • + amxm € (X), x ^ 0, then h(z)
= min{h(o:iXi); i = 1 , . . . , m} for all cci € R.

It is obvious that h(x) ^ h(y) implies h(x + y) = min{h(z), h(?/)}. Hence if a strict
inequality h(x + y) > min{h(x),h(y)} holds, then h(x) — h(y). Therefore, whenever we
want to show that an independent set {xi , . . . , xm} of /i-regular elements is /i-independent
we have to make sure that h(ajXj) — r, i = 1, . . . , m, implies h(aiX\ + • • • + amxm) ^ r.

We shall also make frequent use of the following fact.

LEMMA 2 . 1 . Let X = X\ U • • • U X^ be a disjoint union of h-independent sets.
Then X is h-independent if and only ifxir e (Xir), xir ^ 0, and 1 < i\ < • • • < it ^ m
imply that {x^,..., xit} is h-independent.

In the following observation we are concerned with a submodule where all elements
are /i-regular.

LEMMA 2 . 2 . Let X be h-independent and assume that

h(x) + e(x) = t for all x e X .

Then each nonzero element y E (X) is h-regular and

(2.8) h(y) + e(y)=t .

PROOF: If x € X then x is h-regular, and we have

(2.9) h(ax) + e(ax) = h(x) + e(x) = t

if h(a) < e(x). Let y — ctiXi + • • • + amxm 6 (X) be nonzero with h(y) = r and
e(y) — k. Assume h(ajXi) = min{h(ajij) | i = l , . . . , m } . Since X is /i-independent
we have h(aia:i) = r. Then (2.9) implies e(ai:ri) = t — r. From r ^ h(a,Xi) we
obtain e(ajXj) < t — r. Hence e(y) < t - r. Since X is independent it follows from
pky — 0 that pkaiXi = 0 for all i. For i = 1 we obtain k > e(aiXi) = t — r, and we
deduce A; — e(y) = t — h(y). Since y was an arbitrary element of (X) it follows that
h(ay) + e(ay) — t for all a / 0 . Therefore y is /i-regular. D

The subsequent criterion for /i-independence may be of interest in its own right.
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LEMMA 2 . 3 . If y = {y0,yi,...,ym} C M is a set of h-regular elements such

that

(210) h(»b) + e(»b) > > h(ym) + e(ym),

then y is h-independent.

PROOF: We proceed by induction on \y\. Set h(yt) — st and e(yi) - kit

i = 0 , 1 , . . . , m. Assume that y = {j / i , . . . , ym} is /i-independent. Let y0 be /i-regular
satisfying

(2.11) s0 + k0 > Sj + kj, j = 1 , . . . , m.

Let us show first that y — {yo} U y is an independent set. Suppose the contrary such
that there exists a nonzero element of the form

(2-12) cnoyQ-aiyi t-amym.

Since y is independent we have otjyj ^ 0,j ^ 1, and

(2.13) e(aO2/0) = max{e(aJ-j/>)}.

Set h(aO2/o) = r. Then h(aoj/o) + e(o;o2/o) = s0 + k0 yields e(aoyo) = s0 + fc0 - r, and
(2.10) implies

e(<*o2/o) > e(aj-yj) + h(ai%) - r ^ e^y,-) + |min{h(aJyi)} - r ] , j ^ 1.

Since ^ is /i-independent it follows from (2.12) that

r = h(aoyo) = min{h(afij/i)}.

Hence we obtain e(aoj/o) > max{e(ayj/j) | j ^ l } , in contradiction to (2.13). Now
let us turn to /i-independence of y. Let y = aoyo + ony\ • • • + amym be nonzero, and
h(c*tyt) = r, i ^ 0. Then e(ajj/i) = fcj + s* — r, i ^ 0, and by (2.10) we obtain
< fc0 + so - r, j ^ 1. Hence

pko+so-r-ly = p*o+»o-r-l ^ 0

Since y0 is ft-regular and h(aoyo) = r it is clear that

and therefore h(y) < r. U
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3. PARTITIONS OF BASES

For the proof of Theorem 1.2 it will be crucial that ft-independence of a set X can
be checked by examining suitably chosen classes of subsets.

L E M M A 3 . 1 .

(i) A set X is h-independent if the sets

X® = {x€X;e(x)+h{x) = t},

t^l, are h-independent.

(ii) Let U be a set of elements of height zero. Then U is p-independent if the
sets

(3.14) Uk = {ueU;e(u) = k},

k ^ 1, are p-independent.

(iii) Let Z be a set of elements of exponent 1. Then Z is h-independent if the
sets

Z"-l = {zeZ;h(z) = s-l},

s ^ 1, are h-independent.

PROOF: (i) It suffices to show that for a given k the set U{A'W; 1 ^ i ^ k) is
/i-independent. Let X = {xilt... ,xit} be such that xir e (X^), xir ^ 0, and 1
^ ii < • • • < it ^ m. We know from Lemma 2.2 that xir is /i-regular and h(xir)
+ e(zjr) = iT. Hence Lemma 2.3 implies that X is /i-independent and Lemma 2.1 ex-
tends /i-independence from X to X.

For (ii) and (iii) we note that U[k] = Uk and Z[s] = Zs~\ D
Using the preceding lemma we can relate a set X and its /i-independence to a cor-

responding set U of height zero elements and to a subset Z of the socle of M.

PROPOSITION 3 . 2 . Let X = {xx | A e A} be a an independent subset of M
such that h(x\) = S\, e(i^) = k\, X € A. LetU = {u\ | A G A} be a corresponding set of
height zero elements of M such that x\ = ps>"U\, A € A. Then the following statements
are equivaient.

(i) X is h-independent.

(ii) U is p-independent.

(iii) The set Z = {z\ — pkx~lx\ | A G A} is h-independent.

PROOF: Since X is independent we have x\ ^ Xy, and u\ ^ u^, if A ^ fi. For A € A
define -KXX = u\. Then -n : X —t U is a bijection. Note that x\ is /i-regular if and only if
u\ — nxx is /i-regular.
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(i) => (ii) Because of Lemma 3.1 it suffices to prove that the sets Uk in (3.14) are
p-independent. Consider an element

with

(3.15) r = h(a i ) = • • • = h (a t ) < h (a t + 1 ) ^ < h (a m ) < *.

Then

(3.16) aj = pr"/j, ij ~ 1, for j = 1 , . . . , t.

Let i j £ ^ be such that TTXJ = Uj and £, = p^'Uj, j — 1 , . . . ,t. Then Hj < k = e(rij).

Hence k — fij — 1 ^ 0 and

(3.17) p*-Vii = p^-^^Uj = p'-'-VjjXj ? 0, j = 1 *.

Because of (3.15) and (3.16) we have

••• + atut) = p*"1(7i«1 + • • •

Recall that X — {xi,...,xt} C A" is /i-independent. Hence it follows from (3.17) that
pk-i-ry _£ g j n particular we have v ^ 0. Thus Uk is independent. We also obtain

= min{h(pk~1'

Hence h(v) ^ r, which implies

h(v) = r = min{h(aj) | 1 ^ i < m}.

Thus Uk is /i-independent.

(ii) => (i) Assume that U is p-independent. Let us focus on an element x =

+ • • • + amxm e (X) with h(xj) = s* and Ui = nxt, 1 ^ i < m. From Xj = pa'Ki and

h(ajXj) = h(aiPSi) we obtain

h(i) = h ^ o y / ' U i ) = min{h(aipJi)} = min{h(ai) + h(»0}.

which shows that X is /i-independent.

(ii) *» (iii) For z\ = pkx~lx\ set TTZX = "A- Then it : Z -t U is a. bijection and we

can apply the first part of the proposition to the case where X — Z. D

We are now ready to derive our main result as an immediate consequence of Propo-

sition 3.2.
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P R O O F OF T H E O R E M 1.2:

(i) =>• (ii) Let 5 be a pure submodule of M with a basis U = {u\ | A G A} such
that W has a basis X = {p'xu\ | A € A}. We know from Lemma 1.1 that the set U is
p-independent. Hence it follows from Proposition 3.2 that X is an /i-independent basis
of W.

(ii) =>• (i) Let X = {x\ | A G A} be an A-independent basis of W and let U
— {u\ | A 6 A} be a set of /i-regular elements of height zero such that x\ = pSxu\.

Then it follows from Proposition 3.2 that U is p-independent. Hence, by Lemma 1.1 the
submodule S — {14) is pure and W is stacked in S. D

Before turning to the proof of Corollary 1.3 we want to show that Kaplanski's con-
dition (1.1) is necessary for the existence of an /i-independent basis of M.

PROPOSITION 3 . 3 . If W has an h-independent basis then W satisfies (1.1).

PROOF: It is obvious that (1.1) is equivalent to

(3.18) p"W n pn+rM C pn(W n prM), n ^ 0, r > 0.

Take an element x € pnW n pn+TM. We can assume that r is maximal. Then x = pnw

for some w G W, and h(x) = n + r. Now let X be an /i-independent basis of W. Then
w = a\Xi + •••-!- amxm G (X). Assume e(a{Xi) > n, i — 1 , . . . , t, and e(aiXi) ^ n, i > t.

Set w = ai£i + • • • + atxt. Then w £\V and x = pnw, and we obtain

n + r — h(pnw) — min{h(pnaj2;i); i — 1, . . . ,<}

= n + min{h(o!ja;i); i — 1 , . . . , t) = n + h(w).

Hence h(w) — r. We have w G prM, and we conclude that x G pn(W C\pTM). D

P R O O F OF COROLLARY 1.3: If M is of bounded order then M is a direct sum

of cyclic submodules (see for example, [7, p. 88]) and each pure submodule is a direct

summand of M. Hence the equivalence of (i) and (ii) follows immediately from Theorem

1.2. We refer to [7, p. 65]) for the fact that (i) and (iii) are equivalent provided that M

is of bounded order. D
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