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STACKED SUBMODULES OF TORSION MODULES
OVER DISCRETE VALUATION DOMAINS

Pupii AstuTi AND HARALD K. WIMMER

A submodule W of a torsion module M over a discrete valuation domain is called
stacked in M if there exists a basis B of M such that multiples of elements of B form a
basis of W. We characterise those submodules which are stacked in a pure submodule
of M.

1. INTRODUCTION

Let R be a discrete valuation domain and let p be a prime element of R such that
Rp is the maximal ideal of R. Let M be a torsion module over R and let W be a
submodule of M. In accordance with [7] and [6] we call a set {u. | x € K} a basis of M

if M = @ Ru,. We say that W is stacked in M if there exists a basis X = {z | A € A}
kEK
of W and a basis U = {u, | K € K} of M such that A C K and z, = p*u, for suitable

nonnegative integers tx. In that case we call X' a stacked basis of W ([4]). If M is of
bounded order, that is, if there exists a positive integer m such that p™z = 0 for all
z € M, then it is known [7, p. 65] that W is stacked in M if and only if

(1.1) "W N p™TM = p*(W N p" M)

holds for all n 2 0, r > 0. In general however, if M is not of bounded order then condition
(1.1) alone need not imply that W is stacked in M (see Exercise 78(b) in [7, p. 65]). In
this paper we shall characterise those submodules which are stacked in a pure submodule

of M.
Throughout this paper the letters U, V, X, ..., will denote subsets of M. We shall
use the letters u, v, z, . . ., for elements of the module M, and ¢, 8, , .. ., will be elements

of the ring R. Using the terminology for Abelian p-groups in [6, p. 4] we say that z € M
has ezponent k, and we write e(x) = k, if k is the smallest nonnegative integer such that
p*z = 0. Clearly, e(0) = 0. An element z € M is said to have (finite) height s if z € p°M
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and z ¢ p**'M. In this case we write h(z) = s. We set h(z) = oo if z € p*M for all
s 2 0. Thus h(0) = co. Note that the height of all nonzero elements of M is bounded if
and only if M is of bounded order.

Let (X) be the submodule spanned by X. When we write

oz + -+ ey, € (&)

we tacitely assume z; € X and oyz; # 0,7 =1,...,m, and z; # z; if ¢ # j.

Let R* be the group of units of R. Weset o ~ B if @ = Be for somec € R*. It
will be convenient to write h(a) = s if & ~ p®. Let us recall the following properties
of the height function on M (see for example, [6, p. 154]). For all z,y € M we have
h(pz) > h(z) + 1, and

(1.2) h(z + y) > min{h(z),h(y)}.
Hence
(1.3) h(az) > h(a) + h(z) for all « € R.

We say that an element z is h-regular if h(z) = oo or if h(z) is finite and
(1.4) h(az) = h(a) + h(z) for all & with h(a) < e(z).

Property (1.4) can be traced back to Baer [2]. In [2, p. 484] an element z of an Abelian
p-group is called regular if h{z) = oo or if h(z) = k < oo and

(1.5) e(z) + h(z) = - - - = e(p*'z) + h(p* '2).

As usual, a set X is called independent if 0 ¢ X and if for any finite subset
{z1,...,Zm} of & a relation ayz; + - + amZTm = 0 implies ayz; = 0, ¢ = 1,...,m.
We shall employ two stronger concepts of independence. The first one is adapted from
Fuchs [5]. We call a set X p-independent (or pure mdependent) if it is independent and
contains no elements of infinite height, and if

(1.6) 1Ty + -+ + T, € (X)

implies
h(eaz) + -+ + amzm) = min{h(a) | i=1,...,m}.

The other definition is motivated by the inequality
h(aiz) + - + 0mTm) = min{h(as) + h(z;) |i=1,...,m},

which follows from (1.3) and (1.2). We say that X is h-independent if X’ is independent
and (1.6) implies

(1.7) h(ayz; + - - - + @mZm) = min{h(a) + h(z;) i =1,.. .,m}.
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Our concept of h-independence combines properties used in [3] to describe extendible
- Jordan bases of marked subspaces. It is obvious that a set X’ is p-independent if and only
if it is h-independent and all of its elements have height zero.
For the elements z of a submodule S of M we may define hg(z) as the height of
z in S. We always have hg(z) < h(z). A submodule S of M is called pure in M if
hs(z) = h(z) for all z € S, or equivalently if SN p'M = p'S for all i > 0. The following
lemma is due to Fuchs [5].

LEMMA 1.1. For aset X the following conditions are equivalent.
(i) X is p-independent.
(i1 X is independent and the submodule (X} is pure in M.

Since M is pure in itself it follo_ws from the preceding lemma that a basis of M is
p-independent. It is also obvious that all nonzero elements of M have finite height if M
has a basis.

Our main result is the following theorem. It will be proved in Section 3 together
with a corollary.

THEOREM 1.2. Let M be a torsion module over a discrete valuation domain and
let W be a submodule of M. The following statements are equivalent.

(i) There exists a pure submodule S of M such that W is stacked in S.
(i) W has an h-independent basis.

It will be shown in Proposition 3.3 that condition (1.1) is necessary for the existence
of an h-independent basis of W. In the case where M is of bounded order we note the
following result.

COROLLARY 1.3. Let M of bounded order. For a submodule W of M the
following statements are equivalent.

(i) W is stacked in M.
(i) W has an h-independent basis.
(ii) Condition (1.1) holds.

It is well-known [1] that the Jordan normal form can be studied in the framework of

the theory of finitely generated modules over a principal ideal domain. Hence [7, Exercise

79, p. 65], and Theorem 1.2 and its proof provide an alternative access to results in {3]
on extensions of Jordan bases for invariant subspaces of a matrix.

2. h-INDEPENDENCE

This section contains the results on h-independence which we shall need in the course
of the proof of Theorem 1.2. We shall make constant use of the following observations
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on the height function. Suppose p™z # 0 and h(p™z) = m + r. Then we have h(z) < r.
If z # 0 is an element with h(z) = s and e(z) = k then z is h-regular if and only if

h(p’z) =j +h(z),j=1,...,k—1,
or equivalently, if and only if
h(@*'z) = (k- 1) + h(z),

or equivalently, p’z is h-regular for all j > 0.

It is not difficult to see that an independent set X is h-independent if and only
if its elements are h-regular, and if £ = o2y + -+ - + apz, € (X), z # 0, then h(z)
= min{h(oz;); i=1,...,m} for all o; € R.

It is obvious that h(z) # h(y) implies h(z + y) = min{h(z), h(y)}. Hence if a strict
inequality h(z + y) > min{h(z),h(y)} holds, then h(z) = h(y). Therefore, whenever we
want to show that an independent set {z1, ..., Z,,} of h-regular elements is h-independent
we have to make sure that h(a;z;) =7, ¢ =1,...,m, implies h(ayz1 + - - + ApTm) < 7.

We shall also make frequent use of the following fact.

LEMMA 2.1. Let X = X,U---U X, be a disjoint union of h-independent sets.
Then X is h-independent if and only if z; € (X; ), z;, #0,and 1 € 51 < --- <4, € m
imply that {z;,,...,z;} is h-independent.

In the following observation we are concerned with a submodule where all elements
are h-regular.

LEMMA 2.2. Let X be h-independent and assume that

hiz)+e(z)=t forallz e X.
Then each nonzero element y € (X) is h-regular and
(2.8) h(y) +e(y) = ¢.
PROOF: If z € X then z is h-regular, and we have
(2.9) h{az) + e(az) =h(z) +e(z) = ¢

if h(a) < e(z). Let y = ayz1 + -+ + iy, € (X) be nonzero with h(y) = 7 and
e(y) = k. Assume h(ayz;) = min{h(;z;) | i = 1,...,m}. Since X is h-independent
we have h{ayz;) = r. Then (2.9) implies e(ayz;) = t — r. From r € h(a;z;) we
obtain e(oyz;) < t —r. Hence e(y) < t —r. Since X is independent it follows from
pFy-= 0 that p*ayz; = 0 for all i. For ¢ = 1 we obtain & > e(oyz;) = ¢t — 7, and we
deduce k = e(y) = t — h(y). Since y was an arbitrary element of (X) it follows that
h(ay) + e(ay) = t for all a # 0. Therefore y is h-regular.
The subsequent criterion for h-independence may be of interest in its own right.
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LEMMA 2.3. If Y = {yo,¥1,---,Um} € M is a set of h-regular elements such
that

(2.10) h(yo) +e(yo) > -+ > h(ym) + e(¥m),

then Y is h-independent.

PROOF: We proceed by induction on |Y|. Set h(y;) = s; and e(y;) = ki,
i=0,1,...,m. Assume that Y = {y1,...,Ym} is h-independent. Let y, be h-regular
satisfying

(2.11) so+ko>s;j+kj, j=1,...,m.

Let us show first that Y = {yo} U Yis an independent set. Suppose the contrary such
that there exists a nonzero element of the form

(2.12) Yo = oY1+ + QmYm.
Since Y is independent we have o;y; 70,7 2 1, and
(2.13) e(aoyo) = max{e(a;y;)}.

Set h(apys) = 7. Then h(apyo) + e(coyo) = so + ko yields e(aoyo) = so + ko — r, and
(2.10) implies

e(aoyo) > e(ayy;) + h(oyy;) — r > e(oyy;) + [I;l)i{l{h(ajyj)} - r], j>1
Since Y is h-independent it follows from (2.12) that
r = h(aoye) = min{h(a;y;)}.

Hence we obtain e(aqyo) > max{e(a;y;) | = 1}, in contradiction to (2.13). Now
let us turn to k-independence of V. Let y = opyo + 1%+ - - + amym be nonzero, and
h(asy;) =7, ¢ 2 0. Then e(osy:) = ki +s; — 7, © > 0, and by (2.10) we obtain e(a;y;)
< ko+sg—r,j =1 Hence

ko+sg—r—1 ko+so—r—1

P y=rp aoYo # 0.
Since y is h-regular and h{apy) = 7 it is clear that
h(p* o+ "lagyo) = ko + 50 — 1,

and therefore h(y) < . 0
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3. PARTITIONS OF BASES

For the proof of Theorem 1.2 it will be crucial that h-independence of a set X’ can
be checked by examining suitably chosen classes of subsets.

LEMMa 3.1.
(i) A set X is h-independent if the sets

X = {z € X; e(z) + h(z) = t},
t 2 1, are h-independent.

(ii) Let U be a set of elements of height zero. Then U is p-independent if the
sets

(3.14) U = {u € U; e(u) = k},

k > 1, are p-independent.
(iii) Let Z be a set of elements of exponent 1. Then Z is h-independent if the
sets

2 ={z€ Z;h(z) =51},
s = 1, are h-independent.

PROOF: (i) It suffices to show that for a given k the set U{Xl; 1 < i < k} is
h-independent. Let X = {z;,...,z;} be such that z;, € (XF")), z; # 0, and 1
€4 < - <4 € m. We know from Lemma 2.2 that z;, is h-regular and h(z;,)
+ e(x;,) = i,. Hence Lemma 2.3 implies that X is h-independent and Lemma 2.1 ex-
tends h-independence from X to X.

For (ii) and (iii) we note that U!¥) = 4, and 2l = z*-1, 1]

Using the preceding lemma we can relate a set X’ and its h-independence to a cor-
responding set U of height zero elements and to a subset 2 of the socle of M.

PROPOSITION 3.2. Let X = {z, |\ € A} be a an independent subset of M
such that h(zy) = s, e(zx) = ka, A € A. LetU = {u, | A € A} be a corresponding set of
height zero elements of M such that x5 = p**uy, A € A. Then the following statements
are equivalent.

(i) X is h-independent.
(it) U is p-independent.
(i) The set Z = {2y = p*~'z, | A € A} is h-independent.

PRrooFr: Since X is independent we have z) # z, and uy # u,, if A# pu. For A€ A
define 7z, = uy. Then 7 : X — U is a bijection. Note that z, is h-regular if and only if
uy = 7ZIy is h-regular.
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(i) = (ii) Because of Lemma 3.1 it suffices to prove that the sets U} in (3.14) are
- p-independent. Consider an element

v=oquy + - O, € (Uy)

with

(3.15) r=h(w) ="+ =h(a) < h(ay:) € - < h(an) < k.
Then

(3.16) aj=pv, v~1 for j=1,...,t

Let z; € X be such that 7z; = u; and z; = p#u;, j = 1,...,t. Then p; < k = e(uy).
Hence £ — pj — 12> 0 and

(3.17) pFlyu; = pFUMypptu; = PP VMg £ 0, = 1,0t

Because of (3.15) and (3.16) we have

MU+ -+ Vo)
— pk_l_l‘l

k~r—1 k—r—l(

PP lu=p Y

oup - o) =p

k—1—p

NTr+---+p VTt

Recall that X = {zy,...,2,;} C X is h-independent. Hence it follows from (3.17) that
p*~1~"v # 0. In particular we have v # 0. Thus U} is independent. We also obtain

h(p*'7"v) = min{h(P*~1"Miv,z;) |1 < j < t}
= min{h(p" 'yu;) |1 <j <t} =k -1
Hence h(v) < 7, which implies
h(v) = r = min{h(e) | 1 <i < m}.

Thus U} is h-independent. .

(ii) = (i) Assume that U is p-independent. Let us focus on an element z = a;z,
+ -+ ATy € (X) with h(z;) = s; and u; = 72;, 1 € ¢ € m. From z; = p%u; and
h(a;z;) = h{a;p*) we obtain

h(z) = h(z a.-p"'u,-) = min{h(e;p*)} = min{h(a;) + h(z;)},

which shows that X is h-independent.
(ii) ¢ (iii) For zy, = p**~'z) set 7zy = ux. Then 7 : Z — U is a bijection and we
can apply the first part of the proposition to the case where X = Z. 0
We are now ready to derive our main result as an immediate consequence of Propo-
sition 3.2.
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PrRoOOF OF THEOREM 1.2:

(i) = (ii) Let S be a pure submodule of M with a basis & = {uy | A € A} such
that W has a basis X = {p**u, | A € A}. We know from Lemma 1.1 that the set U is
p-independent. Hence it follows from Proposition 3.2 that X is an h-independent basis
of W.

(i) = (i) Let X = {zx» | A € A} be an h-independent basis of W and let U
= {ux | A € A} be a set of h-regular elements of height zero such that 1) = p* u,.
Then it follows from Proposition 3.2 that U/ is p-independent. Hence, by Lemma 1.1 the
submodule S = (U} is pure and W is stacked in S. 0

Before turning to the proof of Corollary 1.3 we want to show that Kaplanski’s con-
dition (1.1) is necessary for the existence of an h-independent basis of M.

PROPOSITION 3.3. IfW has an h-independent basis then W satisfies (1.1).

PRrOOF: It is obvious that (1.1) is equivalent to
(3.18) "W Np"MCp"WNnpM),n>0,r2>0.

Take an element z € p"W N p"*"M. We can assume that r is maximal. Then z = p*w
for some w € W, and h(z) = n + r. Now let X be an h-independent basis of W. Then
W=7+ + UuTrm € (X). Assume e(oyz;) > n,i=1,...,t, and e(a;z;) < n, i > t.
Set w = oy + - - + oyz;. Then w € W and z = p™w, and we obtain

n+r = h(p"w) = min{h(p"a;z;); i = 1,...,t}
=n+ min{h(a,—z,—);z’ =1,.. .,t} = n + h(w).

Hence h(w) = r. We have w € p"M, and we conclude that = € p"(W Np"M). 0

PrRoOF OF COROLLARY 1.3: If M is of bounded order then M is a direct sum
of cyclic submodules: (see for example, {7, p. 88]) and each pure submodule is a direct
summand of M. Hence the equivalence of (i) and (ii) follows immediately from Theorem
1.2. We refer to [7, p. 65]) for the fact that (i) and (iii) are equivalent provided that M
is of bounded order. 0
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