Bull. Austral. Math. Soc. Vol. 68 (2003) [439-447]

STACKED SUBMODULES OF TORSION MODULES OVER DISCRETE VALUATION DOMAINS

PUDJI ASTUTI AND HARALD K. WIMMER

A submodule W of a torsion module M over a discrete valuation domain is called stacked in M if there exists a basis B of M such that multiples of elements of B form a basis of W. We characterise those submodules which are stacked in a pure submodule of M.

1. INTRODUCTION

Let R be a discrete valuation domain and let p be a prime element of R such that Rp is the maximal ideal of R. Let M be a torsion module over R and let W be a submodule of M. In accordance with [7] and [6] we call a set $\{u_{\kappa} \mid \kappa \in K\}$ a basis of M if $M = \bigoplus_{\kappa \in K} Ru_{\kappa}$. We say that W is stacked in M if there exists a basis $\mathcal{X} = \{x_{\lambda} \mid \lambda \in \Lambda\}$ of W and a basis $\mathcal{U} = \{u_{\kappa} \mid \kappa \in K\}$ of M such that $\Lambda \subseteq K$ and $x_{\lambda} = p^{t_{\lambda}}u_{\lambda}$ for suitable nonnegative integers t_{λ} . In that case we call \mathcal{X} a stacked basis of W ([4]). If M is of bounded order, that is, if there exists a positive integer m such that $p^m x = 0$ for all $x \in M$, then it is known [7, p. 65] that W is stacked in M if and only if

(1.1)
$$p^n W \cap p^{n+r} M = p^n (W \cap p^r M)$$

holds for all $n \ge 0$, $r \ge 0$. In general however, if M is not of bounded order than condition (1.1) alone need not imply that W is stacked in M (see Exercise 78(b) in [7, p. 65]). In this paper we shall characterise those submodules which are stacked in a pure submodule of M.

Throughout this paper the letters $\mathcal{U}, \mathcal{V}, \mathcal{X}, \ldots$, will denote subsets of M. We shall use the letters u, v, x, \ldots , for elements of the module M, and $\alpha, \beta, \mu, \ldots$, will be elements of the ring R. Using the terminology for Abelian p-groups in [6, p. 4] we say that $x \in M$ has exponent k, and we write e(x) = k, if k is the smallest nonnegative integer such that $p^k x = 0$. Clearly, e(0) = 0. An element $x \in M$ is said to have (finite) height s if $x \in p^s M$

Received 28th April, 2003

The research of the first author was supported by Deutscher Akademischer Austauschdienst under Award No. A/98/25636. The authors would like to thank O. Mutzbauer and W. Schmale for valuable references.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

and $x \notin p^{s+1}M$. In this case we write h(x) = s. We set $h(x) = \infty$ if $x \in p^sM$ for all $s \ge 0$. Thus $h(0) = \infty$. Note that the height of all nonzero elements of M is bounded if and only if M is of bounded order.

Let $\langle \mathcal{X} \rangle$ be the submodule spanned by \mathcal{X} . When we write

$$\alpha_1 x_1 + \cdots + \alpha_m x_m \in \langle \mathcal{X} \rangle$$

we tacitely assume $x_i \in \mathcal{X}$ and $\alpha_i x_i \neq 0$, i = 1, ..., m, and $x_i \neq x_j$ if $i \neq j$.

Let R^* be the group of units of R. We set $\alpha \sim \beta$ if $\alpha = \beta \varepsilon$ for some $\varepsilon \in R^*$. It will be convenient to write $h(\alpha) = s$ if $\alpha \sim p^s$. Let us recall the following properties of the height function on M (see for example, [6, p. 154]). For all $x, y \in M$ we have $h(px) \ge h(x) + 1$, and

(1.2)
$$h(x+y) \ge \min\{h(x), h(y)\}.$$

Hence

(1.3)
$$h(\alpha x) \ge h(\alpha) + h(x)$$
 for all $\alpha \in R$.

We say that an element x is h-regular if $h(x) = \infty$ or if h(x) is finite and

(1.4)
$$h(\alpha x) = h(\alpha) + h(x)$$
 for all α with $h(\alpha) < e(x)$.

Property (1.4) can be traced back to Baer [2]. In [2, p. 484] an element x of an Abelian p-group is called *regular* if $h(x) = \infty$ or if $h(x) = k < \infty$ and

(1.5)
$$e(x) + h(x) = \cdots = e(p^{k-1}x) + h(p^{k-1}x).$$

As usual, a set \mathcal{X} is called *independent* if $0 \notin \mathcal{X}$ and if for any finite subset $\{x_1, \ldots, x_m\}$ of \mathcal{X} a relation $\alpha_1 x_1 + \cdots + \alpha_m x_m = 0$ implies $\alpha_i x_i = 0$, $i = 1, \ldots, m$. We shall employ two stronger concepts of independence. The first one is adapted from Fuchs [5]. We call a set \mathcal{X} *p*-independent (or *pure independent*) if it is independent and contains no elements of infinite height, and if

(1.6)
$$\alpha_1 x_1 + \dots + \alpha_m x_m \in \langle \mathcal{X} \rangle$$

implies

$$h(\alpha_1 x_1 + \cdots + \alpha_m x_m) = \min\{h(\alpha_i) \mid i = 1, \ldots, m\}.$$

The other definition is motivated by the inequality

$$h(\alpha_1 x_1 + \cdots + \alpha_m x_m) \ge \min \{h(\alpha_i) + h(x_i) \mid i = 1, \dots, m\},\$$

which follows from (1.3) and (1.2). We say that \mathcal{X} is *h*-independent if \mathcal{X} is independent and (1.6) implies

(1.7)
$$h(\alpha_1 x_1 + \cdots + \alpha_m x_m) = \min\{h(\alpha_i) + h(x_i) \mid i = 1, \ldots, m\}.$$

Stacked submodules

Our concept of *h*-independence combines properties used in [3] to describe extendible Jordan bases of marked subspaces. It is obvious that a set \mathcal{X} is *p*-independent if and only if it is *h*-independent and all of its elements have height zero.

For the elements x of a submodule S of M we may define $h_S(x)$ as the height of x in S. We always have $h_S(x) \leq h(x)$. A submodule S of M is called *pure* in M if $h_S(x) = h(x)$ for all $x \in S$, or equivalently if $S \cap p^i M = p^i S$ for all $i \geq 0$. The following lemma is due to Fuchs [5].

LEMMA 1.1. For a set X the following conditions are equivalent.

- (i) \mathcal{X} is p-independent.
- (ii) \mathcal{X} is independent and the submodule $\langle \mathcal{X} \rangle$ is pure in M.

Since M is pure in itself it follows from the preceding lemma that a basis of M is p-independent. It is also obvious that all nonzero elements of M have finite height if M has a basis.

Our main result is the following theorem. It will be proved in Section 3 together with a corollary.

THEOREM 1.2. Let M be a torsion module over a discrete valuation domain and let W be a submodule of M. The following statements are equivalent.

- (i) There exists a pure submodule S of M such that W is stacked in S.
- (ii) W has an h-independent basis.

It will be shown in Proposition 3.3 that condition (1.1) is necessary for the existence of an *h*-independent basis of W. In the case where M is of bounded order we note the following result.

COROLLARY 1.3. Let M of bounded order. For a submodule W of M the following statements are equivalent.

- (i) W is stacked in M.
- (ii) W has an h-independent basis.
- (iii) Condition (1.1) holds.

It is well-known [1] that the Jordan normal form can be studied in the framework of the theory of finitely generated modules over a principal ideal domain. Hence [7, Exercise 79, p. 65], and Theorem 1.2 and its proof provide an alternative access to results in [3] on extensions of Jordan bases for invariant subspaces of a matrix.

2. h-independence

This section contains the results on h-independence which we shall need in the course of the proof of Theorem 1.2. We shall make constant use of the following observations

[4]

on the height function. Suppose $p^m x \neq 0$ and $h(p^m x) = m + r$. Then we have $h(x) \leq r$. If $x \neq 0$ is an element with h(x) = s and e(x) = k then x is h-regular if and only if

$$h(p^{j}x) = j + h(x), j = 1, ..., k - 1,$$

or equivalently, if and only if

$$h(p^{k-1}x) = (k-1) + h(x),$$

or equivalently, $p^j x$ is *h*-regular for all $j \ge 0$.

It is not difficult to see that an independent set \mathcal{X} is *h*-independent if and only if its elements are *h*-regular, and if $x = \alpha_1 x_1 + \cdots + \alpha_m x_m \in \langle \mathcal{X} \rangle$, $x \neq 0$, then $h(x) = \min\{h(\alpha_i x_i); i = 1, \ldots, m\}$ for all $\alpha_i \in R$.

It is obvious that $h(x) \neq h(y)$ implies $h(x + y) = \min\{h(x), h(y)\}$. Hence if a strict inequality $h(x + y) > \min\{h(x), h(y)\}$ holds, then h(x) = h(y). Therefore, whenever we want to show that an independent set $\{x_1, \ldots, x_m\}$ of *h*-regular elements is *h*-independent we have to make sure that $h(\alpha_i x_i) = r$, $i = 1, \ldots, m$, implies $h(\alpha_1 x_1 + \cdots + \alpha_m x_m) \leq r$.

We shall also make frequent use of the following fact.

LEMMA 2.1. Let $\mathcal{X} = \mathcal{X}_1 \cup \cdots \cup \mathcal{X}_k$ be a disjoint union of h-independent sets. Then \mathcal{X} is h-independent if and only if $x_{i_\tau} \in \langle \mathcal{X}_{i_\tau} \rangle$, $x_{i_\tau} \neq 0$, and $1 \leq i_1 < \cdots < i_t \leq m$ imply that $\{x_{i_1}, \ldots, x_{i_t}\}$ is h-independent.

In the following observation we are concerned with a submodule where all elements are h-regular.

LEMMA 2.2. Let \mathcal{X} be h-independent and assume that

h(x) + e(x) = t for all $x \in \mathcal{X}$.

Then each nonzero element $y \in \langle \mathcal{X} \rangle$ is h-regular and

(2.8)
$$h(y) + e(y) = t$$
.

PROOF: If $x \in \mathcal{X}$ then x is h-regular, and we have

(2.9)
$$h(\alpha x) + e(\alpha x) = h(x) + e(x) = t$$

if $h(\alpha) < e(x)$. Let $y = \alpha_1 x_1 + \cdots + \alpha_m x_m \in \langle \mathcal{X} \rangle$ be nonzero with h(y) = r and e(y) = k. Assume $h(\alpha_1 x_1) = \min\{h(\alpha_i x_i) \mid i = 1, \ldots, m\}$. Since \mathcal{X} is *h*-independent we have $h(\alpha_1 x_1) = r$. Then (2.9) implies $e(\alpha_1 x_1) = t - r$. From $r \leq h(\alpha_i x_i)$ we obtain $e(\alpha_i x_i) \leq t - r$. Hence $e(y) \leq t - r$. Since \mathcal{X} is independent it follows from $p^k y = 0$ that $p^k \alpha_i x_i = 0$ for all *i*. For i = 1 we obtain $k \geq e(\alpha_1 x_1) = t - r$, and we deduce k = e(y) = t - h(y). Since y was an arbitrary element of $\langle \mathcal{X} \rangle$ it follows that $h(\alpha y) + e(\alpha y) = t$ for all $\alpha \neq 0$. Therefore y is h-regular.

The subsequent criterion for *h*-independence may be of interest in its own right.

https://doi.org/10.1017/S0004972700037849 Published online by Cambridge University Press

443

LEMMA 2.3. If $\mathcal{Y} = \{y_0, y_1, \dots, y_m\} \subseteq M$ is a set of h-regular elements such that

(2.10)
$$h(y_0) + e(y_0) > \cdots > h(y_m) + e(y_m),$$

then \mathcal{Y} is h-independent.

PROOF: We proceed by induction on $|\mathcal{Y}|$. Set $h(y_i) = s_i$ and $e(y_i) = k_i$, $i = 0, 1, \ldots, m$. Assume that $\widetilde{\mathcal{Y}} = \{y_1, \ldots, y_m\}$ is *h*-independent. Let y_0 be *h*-regular satisfying

$$(2.11) s_0 + k_0 > s_j + k_j, \ j = 1, \dots, m.$$

Let us show first that $\mathcal{Y} = \{y_0\} \cup \widetilde{\mathcal{Y}}$ is an independent set. Suppose the contrary such that there exists a nonzero element of the form

(2.12)
$$\alpha_0 y_0 = \alpha_1 y_1 \cdots + \alpha_m y_m.$$

Since $\widetilde{\mathcal{Y}}$ is independent we have $\alpha_j y_j \neq 0, j \ge 1$, and

(2.13)
$$\mathbf{e}(\alpha_0 y_0) = \max_{j \ge 1} \{ \mathbf{e}(\alpha_j y_j) \}.$$

Set $h(\alpha_0 y_0) = r$. Then $h(\alpha_0 y_0) + e(\alpha_0 y_0) = s_0 + k_0$ yields $e(\alpha_0 y_0) = s_0 + k_0 - r$, and (2.10) implies

$$\mathbf{e}(\alpha_0 y_0) > \mathbf{e}(\alpha_j y_j) + \mathbf{h}(\alpha_j y_j) - r \ge \mathbf{e}(\alpha_j y_j) + \left[\min_{j\ge 1} \{\mathbf{h}(\alpha_j y_j)\} - r\right], \ j \ge 1.$$

Since $\widetilde{\mathcal{Y}}$ is *h*-independent it follows from (2.12) that

$$r = \mathbf{h}(\alpha_0 y_0) = \min_{j \ge 1} \{ \mathbf{h}(\alpha_j y_j) \}.$$

Hence we obtain $e(\alpha_0 y_0) > \max\{e(\alpha_j y_j) \mid j \ge 1\}$, in contradiction to (2.13). Now let us turn to *h*-independence of \mathcal{Y} . Let $y = \alpha_0 y_0 + \alpha_1 y_1 \cdots + \alpha_m y_m$ be nonzero, and $h(\alpha_i y_i) = r, i \ge 0$. Then $e(\alpha_i y_i) = k_i + s_i - r, i \ge 0$, and by (2.10) we obtain $e(\alpha_j y_j) < k_0 + s_0 - r, j \ge 1$. Hence

$$p^{k_0+s_0-r-1}y = p^{k_0+s_0-r-1}\alpha_0y_0 \neq 0.$$

Since y_0 is *h*-regular and $h(\alpha_0 y_0) = r$ it is clear that

$$h(p^{k_0+s_0-r-1}\alpha_0 y_0) = k_0 + s_0 - 1,$$

and therefore $h(y) \leq r$.

0

P. Astut and H.K. Wimmer

[6]

Π

3. PARTITIONS OF BASES

For the proof of Theorem 1.2 it will be crucial that h-independence of a set \mathcal{X} can be checked by examining suitably chosen classes of subsets.

LEMMA 3.1.

(i) A set \mathcal{X} is h-independent if the sets

$$\mathcal{X}^{[t]} = \big\{ x \in \mathcal{X}; \, \mathbf{e}(x) + \mathbf{h}(x) = t \big\},$$

 $t \ge 1$, are *h*-independent.

(ii) Let \mathcal{U} be a set of elements of height zero. Then \mathcal{U} is p-independent if the sets

$$(3.14) \qquad \qquad \mathcal{U}_k = \{ u \in \mathcal{U}; e(u) = k \},$$

- $k \ge 1$, are *p*-independent.
- Let Z be a set of elements of exponent 1. Then Z is h-independent if the sets

$$\mathcal{Z}^{s-1} = \{ z \in \mathcal{Z}; h(z) = s - 1 \},\$$

 $s \ge 1$, are *h*-independent.

PROOF: (i) It suffices to show that for a given k the set $\cup \{\mathcal{X}^{[i]}; 1 \leq i \leq k\}$ is h-independent. Let $\tilde{\mathcal{X}} = \{x_{i_1}, \ldots, x_{i_t}\}$ be such that $x_{i_\tau} \in \langle \mathcal{X}^{[i_\tau]} \rangle$, $x_{i_\tau} \neq 0$, and $1 \leq i_1 < \cdots < i_t \leq m$. We know from Lemma 2.2 that x_{i_τ} is h-regular and $h(x_{i_\tau}) + e(x_{i_\tau}) = i_\tau$. Hence Lemma 2.3 implies that $\tilde{\mathcal{X}}$ is h-independent and Lemma 2.1 extends h-independence from $\tilde{\mathcal{X}}$ to \mathcal{X} .

For (ii) and (iii) we note that $\mathcal{U}^{[k]} = \mathcal{U}_k$ and $\mathcal{Z}^{[s]} = \mathcal{Z}^{s-1}$.

Using the preceding lemma we can relate a set \mathcal{X} and its *h*-independence to a corresponding set \mathcal{U} of height zero elements and to a subset \mathcal{Z} of the socle of M.

PROPOSITION 3.2. Let $\mathcal{X} = \{x_{\lambda} \mid \lambda \in \Lambda\}$ be a an independent subset of M such that $h(x_{\lambda}) = s_{\lambda}$, $e(x_{\lambda}) = k_{\lambda}$, $\lambda \in \Lambda$. Let $\mathcal{U} = \{u_{\lambda} \mid \lambda \in \Lambda\}$ be a corresponding set of height zero elements of M such that $x_{\lambda} = p^{s_{\lambda}}u_{\lambda}$, $\lambda \in \Lambda$. Then the following statements are equivalent.

- (i) \mathcal{X} is h-independent.
- (ii) \mathcal{U} is p-independent.
- (iii) The set $\mathcal{Z} = \{z_{\lambda} = p^{k_{\lambda}-1}x_{\lambda} \mid \lambda \in \Lambda\}$ is h-independent.

PROOF: Since \mathcal{X} is independent we have $x_{\lambda} \neq x_{\mu}$ and $u_{\lambda} \neq u_{\mu}$, if $\lambda \neq \mu$. For $\lambda \in \Lambda$ define $\pi x_{\lambda} = u_{\lambda}$. Then $\pi : \mathcal{X} \to \mathcal{U}$ is a bijection. Note that x_{λ} is *h*-regular if and only if $u_{\lambda} = \pi x_{\lambda}$ is *h*-regular.

[7]

(i) \Rightarrow (ii) Because of Lemma 3.1 it suffices to prove that the sets \mathcal{U}_k in (3.14) are *p*-independent. Consider an element

$$v = \alpha_1 u_1 + \cdots + \alpha_m u_m \in \langle \mathcal{U}_k \rangle$$

with

(3.15)
$$r = h(\alpha_1) = \cdots = h(\alpha_t) < h(\alpha_{t+1}) \leq \cdots \leq h(\alpha_m) < k$$

Then

(3.16)
$$\alpha_j = p^r \gamma_j, \ \gamma_j \sim 1, \quad \text{for} \quad j = 1, \dots, t.$$

Let $x_j \in \mathcal{X}$ be such that $\pi x_j = u_j$ and $x_j = p^{\mu_j} u_j$, $j = 1, \ldots, t$. Then $\mu_j < k = e(u_j)$. Hence $k - \mu_j - 1 \ge 0$ and

$$(3.17) \quad p^{k-1}\gamma_j u_j = p^{k-1-\mu_j}\gamma_j p^{\mu_j} u_j = p^{k-1-\mu_j}\gamma_j x_j \neq 0, \ j = 1, \dots, t.$$

Because of (3.15) and (3.16) we have

$$p^{k-r-1}v = p^{k-r-1}(\alpha_1u_1 + \dots + \alpha_tu_t) = p^{k-1}(\gamma_1u_1 + \dots + \gamma_tu_t)$$

= $p^{k-1-\mu_1}\gamma_1x_1 + \dots + p^{k-1-\mu_t}\gamma_tx_t.$

Recall that $\widetilde{\mathcal{X}} = \{x_1, \ldots, x_t\} \subseteq \mathcal{X}$ is *h*-independent. Hence it follows from (3.17) that $p^{k-1-r}v \neq 0$. In particular we have $v \neq 0$. Thus \mathcal{U}_k is independent. We also obtain

$$h(p^{k-1-r}v) = \min\{h(p^{k-1-\mu_j}\gamma_j x_j) \mid 1 \leq j \leq t\}$$
$$= \min\{h(p^{k-1}\gamma_j u_j) \mid 1 \leq j \leq t\} = k-1.$$

Hence $h(v) \leq r$, which implies

$$\mathbf{h}(v) = r = \min\{\mathbf{h}(\alpha_i) \mid 1 \leq i \leq m\}.$$

Thus \mathcal{U}_k is *h*-independent.

(ii) \Rightarrow (i) Assume that \mathcal{U} is *p*-independent. Let us focus on an element $x = \alpha_1 x_1 + \cdots + \alpha_m x_m \in \langle \mathcal{X} \rangle$ with $h(x_i) = s_i$ and $u_i = \pi x_i$, $1 \leq i \leq m$. From $x_i = p^{s_i} u_i$ and $h(\alpha_i x_i) = h(\alpha_i p^{s_i})$ we obtain

$$h(x) = h\left(\sum \alpha_i p^{s_i} u_i\right) = \min\{h(\alpha_i p^{s_i})\} = \min\{h(\alpha_i) + h(x_i)\},\$$

which shows that \mathcal{X} is *h*-independent.

(ii) \Leftrightarrow (iii) For $z_{\lambda} = p^{k_{\lambda}-1}x_{\lambda}$ set $\tilde{\pi}z_{\lambda} = u_{\lambda}$. Then $\tilde{\pi} : \mathbb{Z} \to \mathcal{U}$ is a bijection and we can apply the first part of the proposition to the case where $\mathcal{X} = \mathbb{Z}$.

We are now ready to derive our main result as an immediate consequence of Proposition 3.2. **PROOF OF THEOREM 1.2:**

(i) \Rightarrow (ii) Let S be a pure submodule of M with a basis $\mathcal{U} = \{u_{\lambda} \mid \lambda \in \Lambda\}$ such that W has a basis $\mathcal{X} = \{p^{s_{\lambda}}u_{\lambda} \mid \lambda \in \Lambda\}$. We know from Lemma 1.1 that the set \mathcal{U} is p-independent. Hence it follows from Proposition 3.2 that \mathcal{X} is an h-independent basis of W.

(ii) \Rightarrow (i) Let $\mathcal{X} = \{x_{\lambda} \mid \lambda \in \Lambda\}$ be an *h*-independent basis of W and let $\mathcal{U} = \{u_{\lambda} \mid \lambda \in \Lambda\}$ be a set of *h*-regular elements of height zero such that $x_{\lambda} = p^{s_{\lambda}}u_{\lambda}$. Then it follows from Proposition 3.2 that \mathcal{U} is *p*-independent. Hence, by Lemma 1.1 the submodule $S = \langle \mathcal{U} \rangle$ is pure and W is stacked in S.

Before turning to the proof of Corollary 1.3 we want to show that Kaplanski's condition (1.1) is necessary for the existence of an *h*-independent basis of *M*.

PROPOSITION 3.3. If W has an h-independent basis then W satisfies (1.1).

PROOF: It is obvious that (1.1) is equivalent to

$$(3.18) p^n W \cap p^{n+r} M \subseteq p^n (W \cap p^r M), n \ge 0, r \ge 0.$$

Take an element $x \in p^n W \cap p^{n+r} M$. We can assume that r is maximal. Then $x = p^n w$ for some $w \in W$, and h(x) = n + r. Now let \mathcal{X} be an *h*-independent basis of W. Then $w = \alpha_1 x_1 + \cdots + \alpha_m x_m \in \langle \mathcal{X} \rangle$. Assume $e(\alpha_i x_i) > n$, $i = 1, \ldots, t$, and $e(\alpha_i x_i) \leq n$, i > t. Set $\tilde{w} = \alpha_1 x_1 + \cdots + \alpha_t x_t$. Then $\tilde{w} \in W$ and $x = p^n \tilde{w}$, and we obtain

$$n + r = h(p^n w) = \min\{h(p^n \alpha_i x_i); i = 1, \dots, t\}$$
$$= n + \min\{h(\alpha_i x_i); i = 1, \dots, t\} = n + h(\widetilde{w}).$$

Hence $h(\tilde{w}) = r$. We have $\tilde{w} \in p^r M$, and we conclude that $x \in p^n (W \cap p^r M)$.

PROOF OF COROLLARY 1.3: If M is of bounded order then M is a direct sum of cyclic submodules (see for example, [7, p. 88]) and each pure submodule is a direct summand of M. Hence the equivalence of (i) and (ii) follows immediately from Theorem 1.2. We refer to [7, p. 65]) for the fact that (i) and (iii) are equivalent provided that M is of bounded order.

References

- [1] W.A. Adkins and St.H. Weintraub, Algebra: An approach via module theory, Graduate Texts in Mathematics 136 (Springer-Verlag, New York, 1992).
- [2] R. Baer, 'Types of elements and the characteristic subgroups of abelian groups', Proc. London Math. Soc. 39 (1935), 481-514.
- [3] R. Bru, L. Rodman and H. Schneider, 'Extensions of Jordan bases for invariant subspaces of a matrix', *Linear Algebra Appl.* 150 (1991), 209-225.
- [4] J.M. Cohen and H. Gluck, 'Stacked bases for modules over principal ideal domains', J. Algebra 14 (1970), 493-505.

Π

Stacked submodules

- [5] L. Fuchs, 'Notes on Abelian groups, II', Acta Math. Hungar. 11 (1960), 117-125.
- [6] L. Fuchs, Infinite Abelian groups, Vol. I, Pure and Applied Mathematics 36 (Academic Press, New York, 1973).
- [7] I. Kaplanski, Infinite Abelian groups (University of Michigan Press, Ann Arbor, MI, 1954).

Departemen Matematika Institut Teknologi Bandung Bandung 40132 Indonesia e-mail: pudji@dns.math.itb.ac.id Mathematisches Institut Universität Würzburg D-97074 Würzburg Germany e-mail: wimmer@mathematik.uni-wuerzburg.de

[9]