Association Schemes for O rdered Orthogonal Arrays and ($\mathrm{T}, \mathrm{M}, \mathrm{S}$)-N ets

W. J. M artin and D. R. Stinson

Abstract

In an earlier paper [10], we studied a generalized Rao bound for ordered orthogonal arrays and (T, M, S)-nets. In this paper, we extend this to a coding-theoretic approach to ordered orthogonal arrays. Using a certain association scheme, we prove a M acWilliams-type theorem for linear ordered orthogonal arrays and linear ordered codes as well as a linear programming bound for the general case. We include some tables which compare this bound against two previously known bounds for ordered orthogonal arrays. Finally we show that, for even strength, the LP bound is always at least as strong as the generalized Rao bound.

1 Association Schemes

In 1967, Sobol' introduced an important family of low discrepancy point sets in the unit cube $[0,1)^{5}$. These are useful for quasi-M onte Carlo methods such as numerical inte gration. In 1987, Niederreiter [13] significantly generalized this concept by introducing (T,M,S)-nets, which have received considerable attention in recent literature (see[3] for a survey). In [7], Lawrence gave a combinatorial characterization of (T, M, S)-nets in terms of objects he called generalized orthogonal arrays. Independently, and at about the same time, Schmid defined ordered orthogonal arrays in his 1995 thesis [15] and proved that (T, M, S)-nets can be characterized as (equivalent to) a subclass of these objects. Not surprisingly, generalized orthogonal arrays and ordered orthogonal arrays are closely related. In this paper, we are interested in ordered orthogonal arrays and a dual concept, ordered codes. The latter turn out to be equivalent to what Rosenbloom and Tsfasman recently introduced as codes for them-metric in [14].

An ordered orthogonal array is an array A having se columns, partitioned into sgroups of size ℓ and satisfying certain balance conditions (to be specified later) based on this partition. The rows of an ordered orthogonal array form a set C of sl-tuples over an alphabet of size v whose coordinates are partitioned into s groups of size ℓ. In this initial section, we define an association scheme which, for fixed v , ℓ and s , contains each such set C as a subset of its vertices. Having done this, we will be able to apply Delsarte's theory of codes and designs in association schemes to derive new results about ordered orthogonal arrays and ordered codes.

1.1 Definitions and Basic Theory

Let X be a non-empty finite set. Let $G_{1}, G_{2}, \ldots, G_{d}$ be a set of undirected graphs whose edge sets partition the edge set of the complete graph on X. Define G_{0} to be the identity relation. For $\mathrm{a}, \mathrm{b} \in \mathrm{X}$, we say a is k -related to b and write $\mathrm{a} \stackrel{k}{\sim} \mathrm{~b}$ to indicate that (a, b)

[^0]is an edge of G_{k}. If $\mathcal{A}=\left\{\mathrm{G}_{0}, \ldots, \mathrm{G}_{\mathrm{d}}\right\}$, we say the ordered pair (X, \mathcal{A}) is a (symmetric) association scheme provided the following condition holds:

- for each i, j and k satisfying $0 \leq \mathrm{i}, \mathrm{j}, \mathrm{k} \leq \mathrm{d}$, there exists a constant $\mathrm{p}_{\mathrm{ij}}^{\mathrm{k}}$ such that, whenever $a \stackrel{k}{\sim} b$, the number of $c \in X$ satisfying $c \stackrel{i}{\sim} a$ and $c \stackrel{j}{\sim} b$ is exactly $p_{i j}^{k}$.

The parameters $p_{i j}^{k}$ are called the intersection numbers of the association scheme. Elements of X are referred to as vertices of the scheme.

Let $(\mathrm{X}, \mathcal{A})$ be an association scheme. For $0 \leq \mathrm{i} \leq \mathrm{d}$, let A_{i} denotethe adjacency matrix of graph G_{i}. Then we have a set of $\mathrm{d}+1$ symmetric 01 -matrices satisfying the conditions

- $A_{0}=1$;
- $\sum_{i=0}^{d} A_{i}=J$, the all-ones matrix;
- for $0 \leq i, j \leq d, A_{i} A_{j}$ belongs to the linear span of $\left\{A_{0}, \ldots, A_{d}\right\}$.

This gives an equivalent definition of an association scheme. In this paper, we use graph and matrix language interchangeably. Let A denote the vector space spanned by $\mathcal{A}=$ $\left\{A_{0}, \ldots, A_{d}\right\}$. The last condition above states that A is closed under matrix multiplication. This is called the Bose M esner algebra of the association scheme.

The algebra A has a basis, $\mathrm{E}_{0}, \mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{d}}$ say, of primitive idempotents. These satisfy $\mathrm{E}_{\mathrm{i}} \mathrm{E}_{\mathrm{j}}=\delta_{\mathrm{i}, \mathrm{j}} \mathrm{E}_{\mathrm{i}}$. As $J \in \mathrm{~A}$, one of these is a multiple of J . By convention, we take $\mathrm{E}_{0}=\frac{1}{n} \mathrm{~J}$ where n is the dimension of the matrices A_{i}. (In graph language, $\mathrm{n}=\mid \mathrm{X\mid}$.) If we let o denote entrywise multiplication of matrices, it is easy to see that $\mathrm{A}_{\mathrm{i}} \circ \mathrm{A}_{\mathrm{j}}=\delta_{\mathrm{i}, \mathrm{j}} \mathrm{A}_{\mathrm{i}}$. It follows that there exist constants $\mathrm{q}_{\mathrm{ij}}^{\mathrm{k}}$ such that

$$
E_{i} \circ E_{j}=\frac{1}{n} \sum_{k=0}^{d} q_{i j}^{k} E_{k}, \quad(0 \leq i, j \leq d) .
$$

These are the Krein parameters of the association scheme.
Thetransition matrices between the bases $\left\{\mathrm{A}_{0}, \ldots, \mathrm{~A}_{d}\right\}$ and $\left\{\mathrm{E}_{0}, \ldots, \mathrm{E}_{d}\right\}$ are important for us. The first eigenmatrix, P, of the association scheme is defined by the equations

$$
A_{i}=\sum_{j=0}^{d} P_{j i} E_{j}, \quad(0 \leq i \leq d) .
$$

The second eigenmatrix, Q, is defined by the equations

$$
E_{j}=\frac{1}{n} \sum_{i=0}^{d} Q_{i j} A_{i}, \quad(0 \leq j \leq d)
$$

and satisfies $\mathrm{PQ}=\mathrm{nl}$.
All relevant background material on association schemes can befound in the references. See [2, Chapter 2], [4] and [5, Chapter 12].

1.2 The Kernel Scheme

Let V be an alphabet of size v . For our purposes, it is convenient to choose $\mathrm{V}=\mathrm{Z}_{\mathrm{v}}$, but the analysis can be done using any abelian group and most of the results will hold for any alphabet.

Let \hat{Z}_{v} denote the group of characters of Z_{v}. We will often use the isomorphism

$$
a \mapsto\left(\hat{a}: Z_{v} \rightarrow C \text { via } \hat{a}(b)=\omega^{a b}\right)
$$

where ω is a primitive v-th root of unity in C. The above isomorphism extends to an isomorphism from Z_{v}^{ℓ} to its group of characters associating to $a=a_{1} a_{2} \cdots a_{\ell} \in Z_{v}^{\ell}$ the character

$$
\chi_{\mathrm{a}}: Z_{\mathrm{v}}^{\ell} \rightarrow \mathrm{C} \text { via } \chi_{\mathrm{a}}\left(b_{1} b_{2} \cdots b_{\ell}\right)=\omega^{\mathrm{a}_{1} b_{1}+\cdots+\mathrm{a}_{\mathrm{a}} b_{\ell}} .
$$

Let $X=Z_{\mathrm{V}}^{\ell}$. For $1 \leq \mathrm{k} \leq \ell$, define a graph G_{k} having X as vertex set. For $\mathrm{a}=\mathrm{a}_{1} \cdots \mathrm{a}_{\ell}$ and $b=b_{1} \cdots b_{\ell}$ in X, we will say a is adjacent to b in G_{k} if $a_{k} \neq b_{k}$ but $a_{j}=b_{j}$ for all $j>k$. The edge sets of the graphs G_{1}, \ldots, G_{ℓ} partition the edge set of the complete graph on X. As usual, we let G_{0} denote the identity relation.

Lemma 1.1 Let i, j, and k be integers between 0 and ℓ, inclusive. For any given pair of k-related vertices $a, b \in X$, the number of vertices c which arei-related to a and j-related to b is a constant $p_{i j}^{k}$. For $k>0$,

$$
\mathrm{p}_{\mathrm{ij}}^{\mathrm{k}}= \begin{cases}1, & \text { if } \mathrm{i}=0 \text { and } \mathrm{j}=\mathrm{k}, \text { or } \mathrm{j}=0 \text { and } \mathrm{i}=\mathrm{k} ; \tag{1}\\ (v-1) v^{\mathrm{i}-1}, & \text { if } 0 \neq \mathrm{i}<\mathrm{j}=\mathrm{k} \text { or } \mathrm{k}<\mathrm{i}=\mathrm{j} ; \\ (v-1) v^{j-1}, & \text { if } 0 \neq \mathrm{j}<\mathrm{i}=k ; \\ (v-2) v^{k-1}, & \text { if } \mathrm{i}=\mathrm{j}=k ; \\ 0, & \text { otherwise. }\end{cases}
$$

We also have $\mathrm{p}_{\mathrm{ij}}^{0}=\delta_{\mathrm{i}, \mathrm{j}}(\mathrm{v}-1) \mathrm{v}^{\mathrm{i}-1}$ for $\mathrm{i}>0$ and $\mathrm{p}_{00}^{0}=1$.
As the numbers $p_{i j}^{k}$ are independent of the choice of vertices a and b, the next theorem follows immediately from the definitions.

Theorem 1.2 (cf. [16]) The set $\mathcal{A}=\left\{\mathrm{G}_{0}, \ldots, \mathrm{G}_{\ell}\right\}$ forms an association scheme on X .
In fact, this scheme belongs to a class (so-called " N_{m}-type association schemes") introduced by Yamamoto, Fujii and Hamada in 1965 [16]. We call this the kernel scheme and denote it by $\overleftarrow{\mathrm{k}(\ell, v)}$. We will also be interested in the isomorphic scheme $\overrightarrow{k(\ell, v)}$ whose graph G_{k} contains all pairs (a, b) where $a_{\ell+1-k} \neq b_{\ell+1-k}$ but $a_{j}=b_{j}$ for all $j<\ell+1-k$; i.e., we reverse the order of the coordinates. In fact, we will view an ordered orthogonal array as a collection of tuples of vertices of $\overrightarrow{k(\ell, v)}$. Although this association scheme is not P-polynomial, many of its intersection numbers vanish as indicated in the following corollary to Lemma 1.1.

Corollary 1.3 For $\mathrm{k}>\max (\mathrm{i}, \mathrm{j}), \mathrm{p}_{\mathrm{ij}}^{\mathrm{k}}=0$.

Each graph in \mathcal{A} is a Cayley graph for the group $\left(Z_{v}\right)^{\ell}$: if a is i-related to b and $c \in X$, then $a+c$ is i-related to $b+c$. Hence the characters of this group yield a complete set of eigenvectors for each graph G_{i} in \mathcal{A} (see Lemma 12.9.2 in [5]).

We now compute the eigenvalues of the graphs G_{i} belonging to a particular character χ_{a}. Let $a=a_{1} a_{2} \cdots a_{\ell} \in Z_{v}^{\ell}$. Let A_{i} denote the adjacency matrix of G_{i} in $\overrightarrow{k(\ell, v)}$. The system of equations

$$
\mathrm{A}_{\mathrm{i}} \chi_{\mathrm{a}}=\theta_{\mathrm{i}} \chi_{\mathrm{a}}, \quad(0 \leq \mathrm{i} \leq \ell)
$$

implies the following:

$$
\sum_{i \leq k} \sum_{c \sim b}^{i} \chi_{a}(c)=\left(\theta_{0}+\cdots+\theta_{k}\right) \chi_{a}(b), \quad(0 \leq k \leq \ell, b \in X) .
$$

The left-hand side evaluates to

$$
\omega^{a_{1} b_{1}+\cdots+a_{\ell-k} b_{\ell-k}} \prod_{j=\ell+1-k}^{\ell}\left(\sum_{c_{j}=0}^{v-1} \omega^{a_{j} c_{j}}\right) .
$$

So wefind

$$
\left(\theta_{0}+\cdots+\theta_{\mathrm{k}}\right) \chi_{\mathrm{a}}(\mathrm{~b})= \begin{cases}\mathrm{v}^{k} \chi_{\mathrm{a}}(\mathrm{~b}), & \text { if } \mathrm{a}_{\mathrm{j}}=0 \text { for all } \mathrm{j}>\ell-\mathrm{k} \tag{2}\\ 0, & \text { otherwise. }\end{cases}
$$

Define top $(a)=\max \left\{j: a_{j} \neq 0\right\}$ and $\operatorname{top}(0)=0$. The character corresponding to the all-zero tuple is thetrivial character. The corresponding eigenvalues are the valencies of the graphs G_{i}, namely $\mathrm{k}_{0}=1$ and $\mathrm{k}_{\mathrm{i}}=\mathrm{v}^{\mathrm{i}}-\mathrm{v}^{\mathrm{i}-1}$ for $\mathrm{i}>0$. For $\mathrm{a} \neq 0$ having top $(\mathrm{a})=\ell-\mathrm{k}$, the eigenvalues are easily derived from Equation (2): they are

$$
\theta_{0}=1, \theta_{1}=v-1, \ldots, \theta_{\mathrm{k}}=\mathrm{v}^{\mathrm{k}}-\mathrm{v}^{\mathrm{k}-1}, \theta_{\mathrm{k}+1}=-\mathrm{v}^{\mathrm{k}}, \theta_{\mathrm{k}+2}=\cdots=\theta_{\ell}=0
$$

Example For $\ell=3$ and $v=2$, we have

$$
X=\{000,001,010,011,100,101,110,111\} .
$$

The adjacency matrices of $\overrightarrow{k(3,2)}$ - with the elements of X in the above order- are

$$
A_{0}=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), A_{1}=\left(\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}\right),
$$

$$
A_{2}=\left(\begin{array}{llllllll}
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0
\end{array}\right), A_{3}=\left(\begin{array}{llllllll}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

The characters are the columns of the Hadamard matrix

$$
C=\left(\begin{array}{rrrrrrrr}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & 1 & -1
\end{array}\right) .
$$

The matrix M below has (a, i) entry equal to the eigenvalue of A_{i} belonging to the character χ_{a} :

$$
M=\left(\begin{array}{rrrr}
1 & 1 & 2 & 4 \\
1 & -1 & 0 & 0 \\
1 & 1 & -2 & 0 \\
1 & -1 & 0 & 0 \\
1 & 1 & 2 & -4 \\
1 & -1 & 0 & 0 \\
1 & 1 & -2 & 0 \\
1 & -1 & 0 & 0
\end{array}\right)
$$

We summarize the general situation in the following

Lemma 1.4

1. For $a, b \in X$, write

$$
\mathrm{A}_{\mathrm{i}} \chi_{\mathrm{a}}=\theta_{\mathrm{i}} \chi_{\mathrm{a}} \quad \text { and } \quad \mathrm{A}_{\mathrm{i}} \chi_{\mathrm{b}}=\tau_{\mathrm{i}} \chi_{\mathrm{b}}
$$

for $0 \leq \mathrm{i} \leq \ell$. Then $\theta_{\mathrm{i}}=\tau_{\mathrm{i}}$ for all i if and only if top(a) $=\operatorname{top}(\mathrm{b})$.
2. The primitive idempotents [$2, \mathrm{p} .45$] of the association scheme $\overrightarrow{\mathrm{k}(\ell, \mathrm{v})}$ are

$$
\mathrm{E}_{\mathrm{j}}=\frac{1}{\mathrm{v}^{\ell}} \sum_{\text {top }(\mathrm{a})=\mathrm{j}} \chi_{\mathrm{a}} \chi_{\mathrm{a}}^{\top}, \quad(0 \leq \mathrm{j} \leq \ell) .
$$

3. Thefirst eigenmatrix P of $\overrightarrow{k(\ell, v)}$ is given by

$$
P_{j i}= \begin{cases}1, & \text { if } i=0 ; \\ v^{i}-v^{i-1}, & \text { if } 0<i \leq \ell-j ; \\ -v^{i-1}, & \text { if } i+j=\ell+1 ; \\ 0, & \text { if } i+j>\ell+1\end{cases}
$$

For example, for $\overrightarrow{k(3,5)}$, we have

$$
P=\left(\begin{array}{cccc}
1 & 4 & 20 & 100 \\
1 & 4 & 20 & -25 \\
1 & 4 & -5 & 0 \\
1 & -1 & 0 & 0
\end{array}\right)
$$

Thei-th column of P lists the eigenvalues of graph G_{i}. As each $G_{i}(i \neq 0)$ can be expressed as a disjoint union of pairwise isomorphic complete multipartite graphs, the eigenvalues of G_{i} are its valency, zero, and the negative of the size of a maximal coclique in one of its components (see [2, Thm. 1.3.1(v)]).

The number of tuples a satisfying top $(a)=j$ is $v^{j}-v^{j-1}$ (except when $j=0$). Using Lemma 1.4(2), rank E_{j} is thus given by

$$
m_{j}=v^{j}-v^{j-1}
$$

and $m_{0}=1$. These are the multiplicities of the association scheme. We see that the j-th multiplicity is equal to the j-th valency. In fact, we have

Lemma 1.5 The association scheme $\overrightarrow{k(\ell, v)}$ is formally self-dual.
Proof Let K denote the $(\ell+1) \times(\ell+1)$ diagonal matrix with i-th diagonal entry equal to k_{i} and let M denote the diagonal matrix with j-th diagonal entry equal to m_{j}. A wellknown formula for the second eigenmatrix $\mathrm{Q}=|\mathrm{X}| \mathrm{P}^{-1}$ of the association scheme (see, e.g., Lemma 2.2.1(iv) in [2] or p. 226 in [5]) is

$$
M P=Q^{\top} K
$$

Using the above, it is easy to prove that

$$
\mathrm{m}_{\mathrm{j}} \mathrm{P}_{\mathrm{ji}}=\mathrm{P}_{\mathrm{ij}} \mathrm{k}_{\mathrm{i}}
$$

showing $Q=P$. That is, the scheme (X, \mathcal{A}) is formally self-dual [$2, \mathrm{p} .49$.

In fact, the pair $\overrightarrow{\mathrm{k}(\ell, \mathrm{v})}$ and $\overleftrightarrow{\mathrm{k}(\ell, \mathrm{v})}$ form a pair of dual association schemes (see Theorem 2.9 in [4]). This will allow us to extend concepts from linear coding theory to these schemes.

1.3 The 0 rdered Hamming Scheme

We now construct the ordered H amming scheme as a symmetrization of thes-fold product of the scheme $(\mathrm{X}, \mathcal{A})=\overrightarrow{\mathrm{k}(\ell, \mathrm{v})}$.

In [4, Section 2.5], Delsarte makes the following observation. If (X, \mathcal{A}) is a d-class association scheme, then, for any positive integer S, we may build an association scheme on X^{s}
as follows. For vertices $a=\left(a^{(1)}, \ldots, a^{(s)}\right)$ and $b=\left(b^{(1)}, \ldots, b^{(s)}\right)$, the relation joining a to b in the new scheme is the $(d+1)$-tuplee $=\left(e_{0}, e_{1}, \ldots, e_{d}\right)$ defined by

$$
\mathrm{e}_{\mathrm{j}}=\left|\left\{\mathrm{k}: 1 \leq \mathrm{k} \leq \mathrm{s}, \mathrm{a}^{(\mathrm{k})} \stackrel{j}{\sim} \mathrm{~b}^{(k)}\right\}\right| .
$$

Delsarte calls this the extension of length sof the scheme $\overrightarrow{\mathrm{k}(\ell, \mathrm{v})}$ and observesthat it forms an association scheme. In [6], a proof of this result is given which provides extra information needed for our application.
We now apply this construction to the kernel scheme $\overrightarrow{\mathrm{k}(\ell, \mathrm{v})}$. For an s-tuple $\mathbf{i}=$ $\left(i_{1}, i_{2}, \ldots, i_{s}\right)$ over $\{0,1, \ldots, \ell\}$, definethe shape of \boldsymbol{i} by

$$
\operatorname{shape}(\mathbf{i})=\left(e_{0}, e_{1}, \ldots, e_{\ell}\right)
$$

where $e_{j}=\left|\left\{k: i_{k}=j\right\}\right|$. For each \mathbf{i}, shapee (\mathbf{i}) is an ordered $(\ell+1)$-tuple whose entries sum to s. Our new association scheme has 01 -basis \mathcal{A}_{5} consisting of matrices

$$
A_{e}:=\sum_{\text {shape(i) }=\mathrm{e}} A_{i_{1}} \otimes A_{i_{2}} \otimes \cdots \otimes A_{i_{s}}
$$

where e is any ordered ($\ell+1$)-tuple of non-negative integers whose entries sum to s. Since the kernel scheme is self-dual, Godsil's refinement of Delsarte's observation gives us

Theorem $1.6([6]) \quad\left(Y, \mathcal{A}_{5}\right)$ is an association scheme which is also formally self-dual.
We call this the ordered Hamming scheme and denote it as $\vec{H}(s, \ell, v)$. The first eigenmatrix P of this scheme is obtained from the s-fold Kronecker product $P{ }^{\otimes s}$ by summing columns indexed by tuples of equal shape and subsequently deleting repeated rows. Concretely, if eand f are ordered $(\ell+1)$-tuples summing to s and if $\mathbf{j}=\left(j_{1}, \ldots, j_{s}\right)$ has shape f , we have

$$
\begin{equation*}
\mathrm{P}_{\mathrm{fe}}=\sum_{\text {shape }(\mathrm{i})=\mathrm{e} k=1} \prod_{\mathrm{k}}^{\mathrm{s}} \mathrm{P}_{\mathrm{jk} \mathrm{k}_{\mathrm{k}}} . \tag{3}
\end{equation*}
$$

A more efficient way to generate P is as follows. Let $\mathbf{z}=\left[z_{0}, z_{1}, \ldots, z_{l}\right]^{\top}$. Then $P \mathbf{z}$ is the vector of length $\ell+1$ having entries

$$
\begin{gathered}
z_{0}+(v-1) z_{1}+\cdots+\left(v^{\ell}-v^{\ell-1}\right) z_{\ell}, \ldots \\
z_{0}+(v-1) z_{1}+\cdots+\left(v^{j}-v^{j-1}\right) z_{j}-v^{j} z_{j+1}, \ldots \\
z_{0}-z_{1} .
\end{gathered}
$$

It is straightforward to see that

$$
\begin{equation*}
\mathrm{P}_{\mathrm{fe}}=\left[\mathrm{z}_{0}^{\mathrm{ed}} \cdots \mathrm{z}_{\ell}^{\mathrm{e}_{\ell}}\right] \prod_{\mathrm{k}=1}^{\mathrm{s}}(\mathrm{Pz})_{\mathrm{j}_{\mathrm{k}}}, \tag{4}
\end{equation*}
$$

where $[m(\mathbf{z})] g(\mathbf{z})$ denotes the coefficient of the monomial $m(\mathbf{z})$ in the polynomial $g(\mathbf{z})$.
The vertex set Y of $\vec{H}(s, \ell, v)$ consists of all s-tuples of ℓ-tuples over Z_{v}; i.e., (s $\left.\ell\right)$-tuples partitioned into s groups size ℓ. If $a=\left(a^{(1)}, a^{(2)}, \ldots, a^{(s)}\right)$ belongs to Y with each $a^{(i)} \in Z_{V}^{\ell}$ now, we define

$$
\operatorname{profile}(a):=\left(\operatorname{top}\left(a^{(1)}\right), \ldots, \text { top }\left(a^{(s)}\right)\right),
$$

and we define

$$
\text { shape(a) }:=\text { shape(profile(a)). }
$$

Each shape e is an ordered partition of s. It is straightforward to check that, for $a, b \in Y$, $a \stackrel{e}{\sim} b$ in $\vec{H}(s, \ell, v)$ if and only if shape $(a-b)=e$.

Let $a \in Y$ and let ψ_{a} be the corresponding character of Y. Then, for $b \in Y$,

$$
\psi_{\mathrm{a}}(\mathrm{~b})=\prod_{\mathrm{i}=1}^{\mathrm{s}} \prod_{\mathrm{j}=1}^{\ell} \omega^{(\mathrm{a})} \mathrm{b}_{\mathrm{j}}^{(\mathrm{i})} .
$$

Using these characters, we now compute the eigenvalues of the ordered Hamming scheme.

Theorem 1.7

1. Let $a \in Y$ and let ebe an ordered $(\ell+1)$-tuple of non-negative integers summing to s. Then

$$
\mathrm{A}_{\mathrm{e}} \psi_{\mathrm{a}}=\mathrm{P}_{\mathrm{fe}} \psi_{\mathrm{a}}
$$

where $f=\operatorname{shape}(a)$.
2. Two (sl)-tuples have identical shape if and only if the corresponding characters give rise to identical eigenvalues.
3. The primitive idempotents for the Bose- M esner algebra of $\left(Y, \mathcal{A}_{s}\right)$ are

$$
\mathrm{E}_{\mathrm{f}}=\frac{1}{\mathrm{~V}^{s \ell}} \sum_{\text {shape }(\mathrm{a})=\mathrm{f}} \psi_{\mathrm{a}} \psi_{\mathrm{a}}^{\top},
$$

as f ranges over the $(\ell+1)$-tuples of non-negative integers summing to s.
In fact, the association scheme $\vec{H}(s, \ell, v)$ has a dual: it is simply the group of characters of Y with relations determined by the behaviour of the various eigenvectors (see Section 2.6 in [4]). This scheme also has one relation for each shapee. Specifically, if χ is the character corresponding to the (se)-tuple a and ψ is the character corresponding to the (sl)-tuple b, wehave $\chi \stackrel{e}{\sim} \psi$ if shape $(a-b)=$ ewhereweredefinetop to count coordinate positions from right to left. Asidefrom the ordering of the coordinates within each group of ℓ coordinates, this second scheme, $\overleftarrow{H}(\mathrm{~s}, \ell, \mathrm{v})$, is identical to the ordered H amming scheme $\overrightarrow{\mathrm{H}}(\mathrm{s}, \ell, \mathrm{v})$.

20 rdered Codes and \mathbf{O} rdered 0 rthogonal Arrays

Let us briefly recall the classical concepts on which these extensions are based.
For codes, we are interested in the minimum distance. Let C be a v -ary code of length k having m elements. View these as rows of an $\mathrm{m} \times \mathrm{k}$ array A . We say C has minimum distance d if d is the smallest number of columns of A we must delete in order that the resulting subarray has repeated rows.

Let A be an $m \times k$ array over V. If R is a subset of the columns of A, we say A is balanced with respect to R if the subarray obtained by restricting to those columns in R contains every $|\mathrm{R}|$-tuple of symbols exactly $\mathrm{m} / \mathrm{v}^{|\mathbb{R}|}$ times as a row. We say A is an orthogonal array $(O A)$ of strength at least t if A is balanced with respect to any subset of t of its columns.

The following standard lemma will be useful to us.
Lemma 2.1 (cf. [4, Theorem 4.4]) Let A be an array over Z_{v} with k columns and let C denote the set of rows of A, viewed as a subset of Z_{V}^{k}. For a subset R of $\{1, \ldots, k\}, A$ is balanced with respect to R if and only if

$$
\sum_{c \in C} \chi_{a}(c)=0
$$

for every non-trivial character χ_{a} of Z_{v}^{k} such that the support of a is contained in R.
Let A be an $\mathrm{m} \times$ se array over V which satisfies the following properties:

1. The columns are partitioned into s groups of ℓ columns, denoted G_{1}, \ldots, G_{s} (each G_{i} consists of ℓ columns);
2. Let $\left(\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{s}}\right)$ be an s -tuple of non-negative integers such that

$$
0 \leq \mathrm{t}_{\mathrm{i}} \leq \ell \text { for } 1 \leq \mathrm{i} \leq \mathrm{s}, \quad \text { and } \quad \sum_{\mathrm{i}=0}^{\mathrm{s}} \mathrm{t}_{\mathrm{i}}=\mathrm{t} .
$$

If R is the set of columns of A obtained by taking the first t_{i} columns within each group $G_{i}(1 \leq i \leq s)$, then A is balanced with respect to R.

Then we say that A is an ordered orthogonal array of strength at least t. Clearly $m=\lambda v^{t}$. We use the notation $00 A_{\lambda}(\mathrm{t}, \mathrm{s}, \ell, \mathrm{v})$. The ordered strength of a subset C of Y is the largest integer t for which these conditions hold when C is viewed as the set of rows of an array.

Let $\mathrm{C} \subseteq \mathrm{Y}$ with m elements. Associate to C , in the natural way, an $\mathrm{m} \times \mathrm{s}$ array A over V. SupposeA satisfies property (1) above and:
3. Let $\left(d_{1}, \ldots, d_{s}\right)$ be an s-tuple of non-negative integers such that

$$
0 \leq \mathrm{d}_{\mathrm{i}} \leq \ell \text { for } 1 \leq \mathrm{i} \leq \mathrm{s}, \quad \text { and } \quad \sum_{\mathrm{i}=0}^{\mathrm{s}} \mathrm{~d}_{\mathrm{i}}<\mathrm{d} .
$$

If B is the subarray of A obtained by restricting, within each group G_{i} of columns, to the first $\ell-d_{i}$ columns of $G_{i}(1 \leq i \leq s)$, then the rows of B are all distinct.

Then we say that C is an ordered code with ordered minimum distance at least d. Thus, the ordered distance of C is the smallest number, d, of coordinates (right-justified within each group) we are required to delete in order to obtain repeated rows. Independently, Rosenbloom and Tsfasman defined codes for the m-metric which are equivalent to what we are calling ordered codes. See [14] for a definition as well as an application to shared communication channels.

It is easy to see from the definitions that $d+t \leq s \ell$ if $m>v^{t}$ and $d+t \leq s \ell+1$ if $m=v^{t}$.
O bserve that the classical objects reviewed at the start of this section are obtained by taking $\ell=1$ in these definitions.

Let C be an additive subgroup of $Y=\left(Z_{v}^{\ell}\right)^{s}$ (i.e., a v-ary additive code of length $\boldsymbol{s} \ell$). The dual code of C is the subgroup C^{\perp} of $\left(\hat{Z}_{V}^{\ell}\right)^{\text {s }}$ given by

$$
C^{\perp}=\left\{\chi \in\left(\hat{Z}_{v}^{\ell}\right)^{s}: \chi(c)=1, \forall c \in C\right\}
$$

2.1 The Connection with (T, M , S)-N ets

Let $S \geq 1$ and $v \geq 2$ be integers. An elementary interval in base v is a subset of $[0,1)^{S}$ of the form

$$
E=\prod_{i=1}^{S}\left[a_{i} v^{-d_{i}},\left(a_{i}+1\right) v^{-d_{i}}\right)
$$

where a_{i} and d_{i} are non-negative integers such that $\mathrm{a}_{\mathrm{i}}<\mathrm{v}^{\mathrm{d}_{\mathrm{i}}}$ for $1 \leq \mathrm{i} \leq \mathrm{S}$. The volume of E is

$$
\prod_{i=1}^{S} v^{-d_{i}}=v^{-\sum_{i=1}^{S} d_{i}}
$$

For integers $0 \leq T \leq M$, a (T, M, S)-net in base v is a set \mathcal{N} of v^{M} points in $[0,1)^{S}$ such that every elementary interval E in base v having volume $v^{\top}-M$ contains exactly v^{\top} points of \mathcal{N}. Since their introduction by Niederreiter [13] in 1987, there has been a considerable amount of research done on (T, M , S)-nets. For a good summary of known results, see [12] and [3]. The key result for us is the following theorem, due to Schmid [15] (cf. Lawrence [7]), which shows that (T, M , S)-nets correspond to ordered orthogonal arrays with $t=\ell$.

Theorem 2.2 (Lawrence/Schmid) There exists a (T, M , s) -net in base v if and only if there exists an $00 A_{\lambda}(\mathrm{t}, \mathrm{s}, \ell, \mathrm{v})$ where $\ell=\mathrm{t}=\mathrm{M}-\mathrm{T}$ and $\lambda=\mathrm{v}^{\top}$.

The basic idea is to transform an OOA into a net by placing decimal points at the beginning of each group of ℓ columns in each row and interpreting each ℓ-tuple as a real number in $[0,1)$ in radix v notation.

On the other hand, an ordered code $C \subseteq\left(Z_{v}^{\ell}\right)^{s}$ corresponds in the same way to a (T, M, s)-packing in base v: a subset $\mathcal{P} \subseteq I^{s}$ of v^{M} points such that any elementary interval J of volume at most $v^{\top}-M$ contains at most one point of \mathcal{P}.

Theorem 2.3 There exists a (T, M, s)-packing in base vif and only if there exists an ordered codeC in $\vec{H}(s, M-T, v)$ having $|C|=v^{M}$ and ordered distanced $>(s-1)(M-T)$.

In the language of nets and packings, we have obvious bounds on these objects. Sincel ${ }^{s}$ can be partitioned into v^{k} elementary intervals of volume v^{-k}, we must have $|\mathcal{N}| \geq v^{M}-T$ and $|\mathcal{P}| \leq \mathrm{v}^{\mathrm{M}-\mathrm{T}}$ for $\mathrm{a}(\mathrm{T}, \mathrm{M}, \mathrm{S})$-net \mathcal{N} and a ($\mathrm{T}, \mathrm{M}, \mathrm{S}$)-packing \mathcal{P}.

3 MacWilliams Theorem

A recent result of Godsil [6] enables us to write down MacWilliams-type identities for any association scheme constructed in the manner described in Section 1.3. In our case, the kernel scheme, $\overrightarrow{\mathrm{k}(\ell, \mathrm{v})}$, has a dual scheme and each additive code has a dual as well. The results of [6] are particularly suited to this case.

The association scheme $\left(\mathrm{Y}, \mathcal{A}_{s}\right)$ has one relation for each shape $\mathrm{e}=\left[\mathrm{e}_{0}, \ldots, \mathrm{e}_{\ell}\right]$ where each $\mathrm{e}_{1} \geq 0$ and $\sum \mathrm{e}=\mathrm{s}$. Similarly, we have one primitive idempotent for each such ($\ell+1$)-tuple e . Let $\mathrm{C} \subseteq Y$ have characteristic vector $\mathrm{x}=\mathrm{x}_{\mathrm{C}}$, a 01 -vector of length $|\mathrm{Y}|$. To C we associate the multivariate weight enumerator (or "distance enumerator")

$$
W_{C}(z)=\frac{1}{|C|} \sum_{e}\left(x^{\top} A_{e} x\right) z_{0}^{e_{0}} z_{1}^{e_{1}} \cdots z_{\ell}^{e_{\ell}} .
$$

This sum is taken over all monomials

$$
\mathrm{m}(\mathbf{z})=\mathrm{z}_{0}^{\mathrm{e}_{0}} \mathrm{z}_{1}^{\mathrm{e}_{1}} \cdots \mathrm{z}_{\ell}^{\mathrm{e}_{\ell}}
$$

of total degree s in the variables $\mathbf{z}=\left[z_{0}, z_{1}, \ldots, z_{\ell}\right]^{\top}$. In the special case when C is an additive subgroup of Y, the coefficient of $m(z)$ is the number of elements a of C satisfying shape(a) $=e$. We also have a dual weight enumerator

$$
W_{C}^{\perp}(\mathbf{z})=\frac{v^{s \ell}}{|C|^{2}} \sum_{f}\left(x^{\top} E_{f} \mathrm{X}\right) z_{0}^{\mathrm{f}_{0} z_{1}^{f_{1}} \cdots z_{\ell}^{\mathrm{f}_{\ell}} .}
$$

Let P be the first eigenmatrix of the association scheme $\overrightarrow{k(\ell, v)}$, given in Lemma 1.4.

Proposition 3.1 (Godsil)

$$
\mathrm{W}_{\mathrm{C}}^{\perp}(\mathbf{z})=\frac{1}{|\mathrm{C}|} \mathrm{W}_{\mathrm{C}}(\mathrm{Pz}) .
$$

(We are using the fact that the association scheme (X, \mathcal{A}) is formally self-dual and hence $P^{-1}=\left(1 / v^{\ell}\right) P$.) Observe that, since $x^{\top} E_{f} x \geq 0$ for each shape f, the coefficients of the polynomial $\mathrm{W}_{\mathrm{C}}^{\perp}(\mathbf{z})$ must all be non-negative. This is equivalent to the linear programming bound which will be investigated in the next section.

Now supposeC is an additive code in Y . Then, as noted earlier, we have a dual codeC ${ }^{\perp}$ which is a subgroup of the group of characters of Y. We can view C^{\perp} as a code in $\overleftarrow{H}(\mathrm{~s}, \ell, \mathrm{v})$. So we have a weight enumerator for C^{\perp} as well, where top is redefined to count from right to left. Applying Theorem 4.1 in [6] (cf. Theorem 2.10.12 in [2]), we have

Proposition 3.2 If $\mathrm{C} \subseteq \mathrm{Y}$ is an additive code in $\overrightarrow{\mathrm{H}}(\mathrm{s}, \ell, \mathrm{v})$ and C^{\perp} is the dual code in $\overleftarrow{H}(\mathrm{~s}, \ell, \mathrm{v})$, then

$$
W_{c}^{\perp}(\mathbf{z})=W_{C_{\perp}}(\mathbf{z}) .
$$

This answers a question posed by Adams [1, p. 69].
Recall that theordered distance of C in $\vec{H}(s, \ell, v)$ (resp., $\overleftarrow{H}(s, \ell, v)$) is the largest integer d such that upon deletion of any $d-1$ coordinates right-justified within each group G_{i} (resp., left-justified), the rows of the resulting subarray remain pairwise distinct. For a monomial $m(\mathbf{z})=z_{0}^{\epsilon_{0}} \cdots z_{\ell}^{e_{\ell}}$ and for the corresponding shape $e=\left(e_{0}, e_{1}, \ldots, e_{\ell}\right)$, define the height as follows:

$$
\operatorname{height}(m(z))=\text { height }(e)=\sum_{i=0}^{\ell} \mathrm{ie}_{\mathrm{i}} \text {. }
$$

We pause hereto remark that, in [14], Rosenbloom and Tsfasman observethat the function $\partial(a, b)=$ height $($ shape $(a-b))$ defines a metric on Y.

The next two results apply to arbitrary subsets C of Y, not just to additive subgroups.

Lemma 3.3 Let C be any non-empty subset of $\overleftarrow{\mathrm{H}}(\mathrm{s}, \ell, \mathrm{v})$. Then C has minimum distance at least d if and only if its weight enumerator includes no monomials of non-zero height less than d.

Proof Suppose there is such a monomial with a non-zero coefficient. Then there exist a pair $a, b \in C$ such that $a \stackrel{e}{\sim} b$. So the tuple $a-b$ has profile $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{s}\right)$ for some \mathbf{i} such that

$$
\operatorname{shape}(\mathbf{i})=\left(e_{0}, e_{1}, \ldots, e_{\ell}\right) .
$$

Hence upon deletion of the last i_{j} coordinates from the j -th group ($\mathrm{j}=1,2, \ldots, \mathrm{~s}$), the remaining coordinates of $a-b$ are all zero. That is, the resulting subarray has two identical rows. But we have deleted fewer than d coordinates in total. This contradicts our hypothesis. The proof of the converse is left to the reader.

Using Lemma 2.1, we obtain a similar characterization of ordered orthogonal arrays.

Theorem 3.4 Let A be an array with m distinct rows and $s \ell$ columns, partitioned into s groups $\mathrm{G}_{1}, \mathrm{G}_{2}, \ldots, \mathrm{G}_{\mathrm{s}}$ of size ℓ. Let $\mathrm{C} \subseteq Y$ be the set of rows of A. Then C is an ordered orthogonal array of strength at least t if and only if its dual weight enumerator includes no monomials of non-zero height less than or equal to t.

Proof SupposeA has ordered strength strictly less than t. Then there is a set $R=R_{1} \cup \cdots \cup$ R_{s} of t columns where: (1) each R_{i} consists of the first $\left|R_{i}\right|$ columns of G_{i}, and (2) A is not balanced with respect to R. By Lemma 2.1, there exists a non-trivial character $\psi=\psi_{\mathrm{a}}$ with support contained in R such that $x_{C}^{\top} \psi \neq 0(\psi$ is an eigenvector of $\vec{H}(\mathrm{~s}, \ell, \mathrm{v}))$. If

$$
\operatorname{shape}(\mathrm{a})=\left(\mathrm{f}_{0}, \mathrm{f}_{1}, \ldots, \mathrm{f}_{\ell}\right),
$$

then by Theorem 1.7 the idempotent E_{f} can be expressed as $\mathrm{E}_{\mathrm{f}}=\psi \psi^{\top}+\mathrm{F}$ where F is a positive semidefinite matrix. Therefore, as $\mathrm{x}^{\top} \psi \psi^{\top} \mathrm{x}>0$, we have $\mathrm{x}^{\top} \mathrm{E}_{f} \mathrm{x}>0$ and $0<$ $f_{0}+f_{1}+\cdots+f_{\ell}<t$. The proof of the converse is left to the reader.

Corollary 3.5 Let C be an additive code in $\overrightarrow{\mathrm{H}}(\mathrm{s}, \ell, \mathrm{v})$ and let C^{\perp} be its dual code in $\overleftarrow{H}(\mathrm{~s}, \ell, \mathrm{v})$. Then C has ordered strength at least t if and only if C^{\perp} has ordered distance at least $\mathrm{t}+1$.

Example Below is an additive codeC in $\left(Z_{2}^{2}\right)^{2}$ and its dual, C^{\perp}. In $\vec{H}(s, \ell, v), C$ forms an ordered orthogonal array of strength two and in $\overleftarrow{H}(\mathrm{~s}, \ell, \mathrm{v}), \mathrm{C}^{\perp}$ has ordered distance three.

$$
C=\begin{array}{|ll|ll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array} \quad \quad C^{\perp}=\begin{array}{|ll|ll|}
\hline 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 \\
\hline
\end{array}
$$

In $\vec{H}(s, \ell, v)$, we have

$$
W_{C}(\mathbf{z})=z_{0}^{2}+2 z_{1} z_{2}+z_{2}^{2}
$$

The M acWilliams transform of Proposition 3.1 gives

$$
W_{C}^{\perp}(\mathbf{z})=z_{0}^{2}+2 z_{1} z_{2}+z_{2}^{2}
$$

which is identical to $W_{C \perp}(z)$ in $\overleftarrow{H}(s, \ell, v)$. If one accounts for the reordering of coordinates, C is a "self-dual" code.

Example Thefollowing is an $\mathrm{OOA}_{1}(3,3,3,2)$:

$$
A=\begin{array}{lll|lll|lll}
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline
\end{array}
$$

It can be viewed as a binary linear code of length nine with generator matrix

$$
G=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1
\end{array}\right)
$$

If C denotes the set of rows of A, then C as a subset of $\vec{H}(3,3,2)$ has weight enumerator

$$
W_{C}(\mathbf{z})=z_{0}^{3}+3 z_{1} z_{3}^{2}+3 z_{2}^{2} z_{3}+z_{3}^{3}
$$

The M acWilliams transform of Proposition 3.1 is

$$
\begin{aligned}
W_{C}^{\perp}(\mathbf{z})=z_{0}^{3} & +z_{2}^{3}+8 z_{3}^{3}+6 z_{0} z_{1} z_{3}+6 z_{0} z_{2} z_{3}+6 z_{1} z_{2} z_{3}+3 z_{0} z_{2}^{2} \\
& +6 z_{0} z_{3}^{2}+3 z_{1}^{2} z_{2}+6 z_{1} z_{3}^{2}+6 z_{2}^{2} z_{3}+12 z_{2} z_{3}^{2}
\end{aligned}
$$

By Proposition 3.2, this is also the weight enumerator of C^{\perp}, namely, the row space of the matrix

$$
H=\left(\begin{array}{lllllllll}
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Since $W_{C}(\mathbf{z})$ includes no monomial of (non-zero) height less than seven, C has ordered distance seven (Lemma 3.3). That is, we must delete seven or more right-justified columns in order to obtain repeated rows. Since ${ }_{C}{ }_{C}^{\perp}(\mathbf{z})$ includes no monomial of non-zero height less than four, Theorem 3.4 guarantees that C has ordered strength 3 . We have $\mathrm{d}=7$ and $\mathrm{t}=3$, so C achieves the bound $\mathrm{t}+\mathrm{d} \leq \mathrm{s} \ell+1$ with equality.

4 Linear Programming Bounds

Let C be a non-empty subset of $\mathrm{Y}=\left(\mathrm{Z}_{\mathrm{V}}^{\ell}\right)^{5}$ with characteristic vector x . Then

$$
\begin{equation*}
x^{\top} E_{f} x \geq 0 \tag{5}
\end{equation*}
$$

for each shape f since each E_{f} is a symmetric idempotent matrix. This is the standard approach to Delsarte's linear programming bound [4, Thm. 3.3].

Let a be the inner distribution vector of C. This is simply the vector of coefficients of the weight enumerator. We have

$$
\mathrm{a}_{\mathrm{e}}=\frac{1}{|\mathrm{C}|} \mathrm{x}^{\top} \mathrm{A}_{\mathrm{e}} \mathrm{x}
$$

Since the association scheme is formally self-dual,

$$
\begin{equation*}
E_{f}=\frac{1}{|Y|} \sum_{\mathrm{e}} \mathrm{P}_{\mathrm{fe}} \mathrm{~A}_{\mathrm{e}} \tag{6}
\end{equation*}
$$

where e and f are $(\ell+1)$-tuples of non-negative integers summing to s. Putting Equations (5) and (6) together, we have the constraints for our linear program:

$$
\begin{align*}
\mathrm{aP} & \geq 0, \tag{7}\\
\mathbf{a} & \geq 0 .
\end{align*}
$$

The entries of P are computed using the formulas in Equations (3) and (4).
Now suppose one wishes to find the largest ordered code with a given ordered distance d. Then by Lemma 3.3, one has the additional constraints

$$
\begin{equation*}
a_{\mathrm{e}}=0 \text { for all shapes e with } 0<\text { height(e) }<\mathrm{d} . \tag{8}
\end{equation*}
$$

If zero is used to denotetheindex $e=[s, 0, \ldots, 0]$ of the identity relation, one would then set $\mathrm{a}_{0}=1$ and maximize $|C|$ (i.e., the sum of the entries of a) subject to these constraints together with those in (7).

On the other hand, one might want to use (7) to obtain bounds on the size of an ordered orthogonal array with a given ordered strength t. In this case, Theorem 3.4 gives the additional constraints

$$
\begin{equation*}
(\mathrm{aP})_{\mathrm{e}}=0 \text { for all shapes } \mathrm{e} \text { with } 0<\text { height }(\mathrm{e}) \leq \mathrm{t} \text {. } \tag{9}
\end{equation*}
$$

One then sets $\mathrm{a}_{0}=1$ and minimizes the sum of the entries of \mathbf{a}.
We now present two new bounds that we proved using this linear programming approach.

Theorem 4.1 The largest value of s for which a ternary $(1,5, s)$ - net exists is $s=8$.
Proof In [3], it is indicated that a ternary ($1,5,8$)-net exists and that no ternary ($1,5,11$)net exists. The results in our paper [10] show that no ternary ($1,5,10$)-net exists. The only value remaining, therefore, is $s=9$. If a ternary ($1,5,9$)-net exists, then by Theorem 2.2 there also exists an $\mathrm{OOA}_{3}(4,9,4,3)$. Such an array would have $3^{5}=243$ rows. The linear programming approach outlined above gives us a lower bound of 245.25 on the number of rows in such an array. Thus, no ternary ($1,5,9$)-net exists. (The computation, performed by R. Bixby at Rice University, involves a linear program having 714 variables and constrains.)

Theorem 4.2 The largest value of s for which a ternary $(1,7, s)$-net exists is $s=7$.
Proof From thetables in [3], we know that a ternary (1, 7, 7)-net exists and that no ternary ($1,7,9$)-net exists. While the generalized Rao bound only tells us that $s \leq 9$ in this case, the linear programming bound rules out a ternary ($1,7,8$)-net.

In general, the linear program for an OOA $(\mathrm{t}, \mathrm{s}, \ell, \mathrm{v})$ involves $\binom{5+\ell}{\ell}-1$ variables and constraints. Let $\mathrm{LP} *(\mathrm{t}, \mathrm{s}, \ell, \mathrm{v})$ denote the optimal value of this linear program. Clearly, by simply deleting columns, one may transform an $O O A(t, s, \ell, v)$ into an $O O A\left(t, s, \ell^{\prime}, v\right)$ for any ℓ^{\prime} satisfying $1 \leq \ell^{\prime} \leq \ell$. The following inequality is a bit more subtle, yet intuitively obvious.

Proposition 4.3 $\mathrm{LP}^{*}\left(\mathrm{t}, \mathrm{s}, \ell^{\prime}, \mathrm{v}\right) \leq \mathrm{LP}^{*}(\mathrm{t}, \mathrm{s}, \ell, \mathrm{v})$ for $1 \leq \ell^{\prime} \leq \ell$.
Proof If P is the first eigenmatrix for the kernel scheme $\overrightarrow{k(\ell, v)}$, then, by Lemma 1.4, $\mathrm{P}_{0 \mathrm{i}}=$ $\mathrm{P}_{1 \mathrm{i}}$ for all $\mathrm{i}<\ell$. Now consider the first eigenmatrix P for the ordered H amming scheme $\overrightarrow{\mathrm{H}}(\mathrm{s}, \ell, \mathrm{v})$. Supposee, f and g are $(\ell+1)$-tuples of non-negative integers summing to s such that $\mathrm{e}_{\ell}=0$, and $\mathrm{f}_{\mathrm{k}}=\mathrm{g}_{\mathrm{k}}$ for all $\mathrm{k} \geq 2$. Then, from Equation (3),

$$
\begin{equation*}
\mathrm{P}_{\mathrm{fe}}=\mathrm{P}_{\mathrm{ge}} . \tag{10}
\end{equation*}
$$

The first eigenmatrix P^{\prime} for $\vec{H}(s, \ell-1, v)$ is a submatrix of P which can be obtained by deleting all rows indexed by shapes f having $f_{0}>0$ and all columns indexed by shapes e
having $\mathrm{e}_{\ell}>0$. (See Lemma 1.4 and the example following it.) Specifically, for an ($\ell+1$)tuplee, define

$$
e_{*}=\left[e_{1}, e_{2}, \ldots, e_{\ell}\right] \quad \text { and } e^{*}=\left[e_{0}, e_{1}, \ldots, e_{\ell-1}\right] .
$$

Then, for $\mathrm{f}_{0}=0$ and $\mathrm{e}_{\ell}=0$, we have

$$
P_{f_{*} e^{*}}^{\prime}=P_{\mathrm{fe}} .
$$

As an example, we give the P matrix for $\vec{H}(2,3,5)$ with the corresponding matrix P^{\prime} for $\vec{H}(2,2,5)$ highlighted:

$$
\left(\begin{array}{rrrrrrrrrr}
1 & 8 & 40 & 200 & 16 & 160 & 800 & 400 & 4000 & 10000 \\
1 & 8 & 40 & 75 & 16 & 160 & 300 & 400 & 1500 & -2500 \\
1 & 8 & 15 & 100 & 16 & 60 & 400 & -100 & -500 & 0 \\
1 & 3 & 20 & 100 & -4 & -20 & -100 & 0 & 0 & 0 \\
\mathbf{1} & \mathbf{8} & \mathbf{4 0} & -50 & \mathbf{1 6} & \mathbf{1 6 0} & -200 & \mathbf{4 0 0} & -1000 & 625 \\
\mathbf{1} & \mathbf{8} & \mathbf{1 5} & -25 & \mathbf{1 6} & \mathbf{6 0} & -100 & \mathbf{- 1 0 0} & 125 & 0 \\
\mathbf{1} & \mathbf{3} & \mathbf{2 0} & -25 & -\mathbf{4} & \mathbf{- 2 0} & \mathbf{2 5} & \mathbf{0} & 0 & 0 \\
\mathbf{1} & \mathbf{8} & -\mathbf{1 0} & 0 & \mathbf{1 6} & \mathbf{- 4 0} & 0 & \mathbf{2 5} & 0 & 0 \\
\mathbf{1} & \mathbf{3} & -\mathbf{5} & 0 & -\mathbf{4} & \mathbf{5} & 0 & \mathbf{0} & 0 & 0 \\
\mathbf{1} & \mathbf{- 2} & \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} & 0 & \mathbf{0} & 0 & 0
\end{array}\right) .
$$

The indices of the rows and columns are ordered as follows:
[2000], [1100], [1010], [1001], [0200], [0110], [0101], [0020], [0011], [0002].
Let a be any feasible solution to the linear program given by (7) and (9). Define a new vector \mathbf{a}^{\prime} whose entries are indexed by the ℓ-tuples of non-negative integers summing to s . For such a shape $f=\left[f_{0}, f_{1}, \ldots, f_{\ell-1}\right]$, define

$$
a_{f}^{\prime}=\sum_{e=\left[e, e_{1}, f_{1}, \ldots, f_{\ell-1}\right]} a_{\mathrm{e}} .
$$

Continuing with the above example, the vector

$$
\mathbf{a}=\left[\begin{array}{lllllllll}
1 & 4 & 4 & 20 & 0 & 16 & 80 & 0 & 0
\end{array}\right]
$$

which satisfies (7) for $\overrightarrow{\mathrm{H}}(2,3,5)$ is sent under this mapping to

$$
\mathbf{a}^{\prime}=\left[\begin{array}{llllll}
5 & 20 & 100 & 0 & 0 & 0
\end{array}\right]
$$

which satisfies (7) for $\vec{H}(2,2,5)$.
In general, Equation (10)-together with the relationships between P and P^{\prime} and between \mathbf{a} and \mathbf{a}^{\prime}-implies that $\mathbf{a}^{\prime} \mathbf{P}^{\prime} \geq 0$ and $\left(\mathbf{a}^{\prime} \mathbf{P}^{\prime}\right)_{e}=0$ for all shapes of non-zero height at mostt. Clearly, $\mathbf{a}^{\prime} \geq 0$. Now $a_{0}^{\prime} \geq 1$ and if $a_{0}^{\prime} \neq 1$, we may divide all entries by a_{0}^{\prime} preserving the other three properties. In this way, we obtain from any feasible solution a to
the linear program for an $00 \mathrm{OA}(\mathrm{t}, \mathrm{s}, \ell, \mathrm{v})$ a feasible solution \mathbf{a}^{\prime} to the linear program for an OOA ($\mathrm{t}, \mathrm{s}, \ell-1, \mathrm{v}$) having the property that the sum of the entries of \mathbf{a}^{\prime} is less than or equal to the sum of the entries of a. Minimizing this sum over the two solution spaces, we obtain the desired inequality for $\ell^{\prime}=\ell-1$. By induction, we are done.

This result tells us that we can use a smaller value of ℓ to obtain a smaller (and hence easier to solve) LP, which in general will yield a weaker bound. For example, by reducing ℓ to 1 , weend up with the usual linear programming bound for (ordinary) orthogonal arrays. This observation was employed to obtain the bounds in [3], among other techniques. In fact, the bounds in [3] are the result of a complex and lengthy process.

It is an interesting question to ask how the LP boundsvary as ℓ is decreased. As an example relating to Theorem 4.1, we used M APLE to show that $L P^{*}(4,9,2,3)=245.25$. Thus, it happens that $L P^{*}(4,9,2,3)=L P^{*}(4,9,4,3)$, so the $L P$ bound does not change when ℓ is reduced from 4 to 2 . Note that the smaller LP has only 54 variables and constraints, as compared to 714 in the larger one.

In Table 1, we compare three lower bounds on the number of rows in an ordered orthogonal array. The first bound is the standard LP bound for orthogonal arrays. The second bound is the generalized Rao bound from [10]. The third column lists the bound $L P^{*}(t, s, \ell, v)$ developed above. (Restricting to computations which can be done in exact arithmetic in reasonable time, we have limited the number of variables to 200.) The inequality above shows that the new bound is always at least as strong as the LP bound for OAs. As we shall prove below, the new bound is at least as strong as the generalized Rao bound when t is even. When $\ell=2$, the generalised Rao bound gives mixed results, but for larger values such as $\ell=4$, it outperforms the first bound for the values computed with only four exceptions. This small data set suggests that, while the new bound is strongest, the generalized Rao bound remains valuable because it is a closed form expression and easy to compute.

Although the main motivation for developing these tools is their relevance to the study of (T, M, S)-nets, we have limited data for our new bound in these cases due to the large size of the linear programs involved. H owever, at least one entry in Table 1 is relevant here. Since LP* $(8,10,2,2)>2^{11}$, we may conclude that there is no $00 A_{8}(8,10,2,2)$, hence no $\mathrm{OOA}_{8}(8,10,8,2)$ exists. Using Theorem 2.2, this implies that there is no binary $(3,11,10)$ net, thus improving the bounds given in [3] and [10].

O ur last result shows that, for t even, the linear programming bound is always at least as strong as the generalized Rao bound proved in [10]. The argument we use is a straightforward adaptation of the proof of Theorem 5.2 in [8]. First we prove

Proposition 4.4 If e, f, and g are compositions of s in $\ell+1$ non-negative parts, then the Krein parameter $\mathrm{q}_{\mathrm{ef}}^{\mathrm{g}}$ for scheme $\left(\mathrm{Y}, \mathcal{A}_{\mathrm{s}}\right)$ is zero whenever height(g$)>$ height $(\mathrm{e})+$ height(f$)$.

Proof Since the association scheme is formally self-dual we have $p_{\text {ef }}^{g}=q_{\text {ef }}^{g}$, so we need only verify this for the intersection number $p_{\text {ef }}^{g}$ for $\left(Y, \mathcal{A}_{5}\right)$. Supposee, f, and g are $(\ell+1)$ tuples of non-negative integers summing to sand that $p_{\mathrm{ef}}^{g}>0$. Let x, y, z be ℓ-tuples over Z_{v} with x g-related to y and z e-related to x and f-related to y. Consider tuples x, y and z in the s-fold product scheme $\left(\mathrm{Y}, \mathcal{A}^{\otimes \mathrm{S}}\right)$ of the kernel scheme $(\mathrm{X}, \mathcal{A})$. Suppose z is i -related to x and \mathbf{j}-related to y and that x and y are \mathbf{k}-related in $\left(\mathrm{Y}, \mathcal{A}^{\otimes \mathrm{s}}\right)$. Write $\mathbf{i}=\left(\mathrm{i}_{1}, \ldots, \mathrm{i}_{\mathrm{s}}\right)$,
$\mathbf{j}=\left(\mathrm{j}_{1}, \ldots, \mathrm{j}_{\mathrm{s}}\right)$, and $\mathbf{k}=\left(\mathrm{k}_{1}, \ldots, \mathrm{k}_{\mathrm{s}}\right)$. Since height($\left.\mathbf{k}\right)>$ height $(\mathbf{i})+$ height (\mathbf{j}), there exists a coordinate h in which $k_{h}>\max \left(i_{h}, j_{h}\right)$. Thus, in the kernel scheme, the intersection number $p_{i_{n j n}}^{k_{n}}$ is zero (Corollary 1.3), yielding a contradiction.

Now let M be any matrix in the Bose M esner algebra of ($\mathrm{Y}, \mathcal{A}_{s}$). We may write

$$
\mathrm{M}=\sum_{\mathrm{e}} \alpha_{\mathrm{e}} \mathrm{~A}_{\mathrm{e}}=\mathrm{v}^{\mathrm{s}^{\ell}} \sum_{\mathrm{f}} \beta_{\mathrm{f}} \mathrm{E}_{\mathrm{f}},
$$

where, in both cases, the sum is over all compositions of $\operatorname{sinto} \ell+1$ non-negative parts. If M satisfies the three conditions

1. M is non-negative;
2. $\beta_{\mathrm{f}} \leq 0$ for all f having height $>\mathrm{t}$;
3. $\beta_{0}=1$
(where the subscript 0 denotes the $(\ell+1)$-tuple ($s, 0, \ldots, 0$) corresponding to the identity relation in ($\mathrm{Y}, \mathcal{A}_{5}$), then it is known [8] that α_{0} provides a lower bound on the optimal value of the above linear program. In fact, this is essentially the linear programming dual to Delsarte's inequal ities for designs.

Theorem 4.5 (cf. Theorem 3.5, [10]) IfC is the set of rows of an $\mathrm{OOA}_{\lambda}(\mathrm{t}, \mathrm{s}, \ell, \mathrm{v})$, and $\mathrm{D} \subseteq$ Y is defined by

$$
D=\left\{a \in\left(Z_{v}^{\ell}\right)^{s}: \text { height }(a) \leq\lfloor t / 2\rfloor\right\},
$$

then $|\mathrm{C}| \geq|\mathrm{D}|$.
Proof Define

$$
\mathcal{E}=\left\{\left(\mathrm{e}_{0}, \ldots, \mathrm{e}_{\ell}\right): \sum_{\mathrm{i}=0}^{\ell} \mathrm{e}_{\mathrm{i}}=\mathrm{s}, \sum_{\mathrm{i}=0}^{\ell} \mathrm{i} \mathrm{e}_{\mathrm{e}} \leq\lfloor\mathrm{t} / 2\rfloor\right\} .
$$

The rank of E_{f} is equal to the number of tuples $a=\left(a^{(1)}, \ldots, a^{(s)}\right)$ having shape f. This follows from Theorem 1.7(3). Let

$$
\begin{gathered}
N=\sum_{f \in \varepsilon} E_{f}, \\
\gamma=\frac{v^{2 s \ell}}{\sum_{f \in \varepsilon} \text { rank } E_{f}},
\end{gathered}
$$

and define

$$
\mathrm{M}=\gamma(\mathrm{N} \circ \mathrm{~N})
$$

where o denotes entrywise product of matrices. Then M satisfies condition (1) since $\gamma>0$ and $N \circ N$ is obviously non-negative. We leave it to the reader to check that condition (3) is also satisfied. By definition of the Krein parameters, we have

$$
N \circ N=\left(\sum_{f \in \mathcal{E}} E_{f}\right) \circ\left(\sum_{f \in \mathcal{E}} E_{f}\right)=\frac{1}{V^{s \ell}} \sum_{g}\left(\sum_{e \in \mathcal{E}} \sum_{f \in \mathcal{E}} q_{\mathrm{ef}}^{g}\right) E_{g} .
$$

Therefore, using the previous proposition, we have $\beta_{\mathrm{g}}=0$ for any composition g having height greater than t . Thus M also satisfies condition (2). Now we may compute

$$
\alpha_{0}=\sum_{\mathrm{f} \in \mathcal{E}} \operatorname{rank} \mathrm{E}_{\mathrm{f}} .
$$

Observe that any tuplea of height less than or equal to $\lfloor t / 2\rfloor$ has shape f for some $f \in \mathcal{E}$. So $\alpha_{0}=|\mathrm{D}|$. As α_{0} is a lower bound on the optimal value of the linear program for our array, this gives the desired bound.

\mathbf{t}	\mathbf{s}	ℓ	\mathbf{v}	OA LP bound	GR bound	OOA LP bound
3	3	2	2	8	8	8
3	4	2	2	8	10	12
3	5	2	2	12	12	16
3	6	2	2	16	14	16
3	7	2	2	16	16	16
3	8	2	2	16	18	20
3	9	2	2	20	20	24
3	10	2	2	24	22	24
4	3	2	2	8	13	16
4	4	2	2	16	19	26.3
4	5	2	2	16	26	32
4	6	2	2	26.6	34	36.9
4	7	2	2	42.6	43	48.7
4	8	2	2	64	53	64
4	9	2	2	85.3	64	85.3
4	10	2	2	85.3	76	85.3
5	3	2	2	8	22	32
5	4	2	2	16	34	51.2
5	5	2	2	32	48	64
5	6	2	2	32	64	64
5	7	2	2	53.3	82	102.9
5	8	2	2	85.3	102	136.6
5	9	2	2	128	124	170.3
5	10	2	2	170.6	148	191.8
6	3	2	2	8	26	64
6	4	2	2	16	47	96
6	5	2	2	32	76	128
6	6	2	2	64	114	199.2
6	7	2	2	64	162	240
6	8	2	2	112	221	256
6	9	2	2	192	292	387.4
6	10	2	2	320	376	475.8
7	4	2	2	16	78	128

\mathbf{t}	\mathbf{s}	ℓ	\mathbf{v}	OA LP bound	GR bound	OOA LP bound
7	5	2	2	32	132	256
7	6	2	2	64	204	332.8
7	7	2	2	128	296	477.8
7	8	2	2	128	410	682.6
7	9	2	2	224	548	896
7	10	2	2	384	712	1024
8	4	2	2	16	96	256
8	5	2	2	32	181	384
8	6	2	2	64	309	682.6
8	7	2	2	128	491	944.3
8	8	2	2	256	739	1331.0
8	9	2	2	256	1066	2012.6
8	10	2	2	460.8	1486	2633.1
4	3	4	2	8	13	16
4	4	4	2	16	19	26.6
4	5	4	2	16	26	32
5	3	4	2	8	26	32
5	4	4	2	16	38	53.3
5	5	4	2	32	52	64
6	3	4	2	8	38	64
6	4	4	2	16	63	106.6
6	5	4	2	32	96	128
7	3	4	2	8	76	128
7	4	4	2	16	126	213.3
7	5	4	2	32	192	256
8	3	4	2	8	104	256
8	4	4	2	16	192	426.6
8	5	4	2	32	321	512

Key Each of the three columns provides lower bounds on the number of rows in an ordered orthogonal array with the given parameters.

OA bound: linear programming bound for orthogonal array formed by the set of first columns of an 00A.
GR bound: Generalized Rao bound derived in [10].
OOA LP bound: Our linear programming bound $L P *(t, s, l, v)$ for ordered orthogonal arrays, executed in exact arithmetic in M APLE.

Acknowledgements This research was carried out while the second author was on sabbatical with the Department of Computer Science at the University of M anitoba. Hewould like to thank the department for its hospitality.

The authors' research is supported as follows: NSERC grant OGP 0155422 (WJM), and N SERC grant RGPIN \#203114-98 (DRS).

We are grateful to Bob Bixby for his assistance in solving a large linear program using theCPLEX software. We have benefited from comments from a variety of readers; we wish to thank Phillippe Delsarte, M ark Lawrence, Vladimir Levenshtein and Wolfgang Schmid.

Note added in proof Since this paper was submitted for publication, more linear programming bounds have been computed (in exact arithmetic) using the software packages M APLE and CPLEX. The results are reported in [9].

References

[1] M. J. Adams, Generalized Orthogonal Arrays and Related Structures. Ph.D. thesis, Department of M athe matics, University of Wyoming, Laramie, Wyoming, May 1997.
[2] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance Regular Graphs. Springer-Verlag, Berlin, 1989.
[3] A. T. Clayman, K. M. Lawrence, G. L. Mullen, H. Niederreiter and N. J. A. Sloane, Updated tables of parameters of ($\mathrm{T}, \mathrm{M}, \mathrm{S}$)-nets. J. Combin. Des., to appear.
[4] P. Delsarte, An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10(1973).
[5] C. D. Godsil, Algebraic Combinatorics. Chapman and Hall, New York, 1993.
[6] , M acWilliams theorem for product schemes. Preprint.
[7] K. M. Lawrence, A combinatorial interpretation of (t, m, s)-nets in baseb. J. Combin. Des. 4(1996), 275-293.
[8] W. J. M artin, Designs in product association schemes. Designs, Codes and Cryptography, 16(1999) 271-289.
[9] , Linear programming bounds for ordered orthogonal arrays and (t, m, s)-nets. Proceedings of the Third International Conference on M onte Carlo and Quasi-M onte Carlo M ethods in Scientific Computing. Lect. Notes Comput. Sci. Eng., Springer-Verlag, to appear.
[10] W. J. M artin and D. R. Stinson, A generalized Rao bound for ordered orthogonal arrays and ($\mathrm{t}, \mathrm{m}, \mathrm{s}$)-nets. Canad. M ath. Bull., to appear.
[11] G. L. Mullen and G. Whittle, Point sets with uniformity properties and orthogonal hypercubes. Monatsh. M ath. 113(1992), 265-273.
[12] G. L. Mullen, A. M ahalanabis and H. Niederreiter, Tables of (T, M, S)-net and (T, S)-sequence parameters. In: Monte Carlo and Quasi-M onte Carlo Methods in Scientific Computing (eds. H. Niederreiter and P. Shiue), Lecture Notes in Statist. 106, Springer, New York, 1995, pp. 58-86.
[13] H. Niederreiter, Point sets and sequences with small discrepancy. M onatsh. M ath. 104(1987), 273-337.
[14] M. Yu. Rosenbloom and M. A. Tsfasman, Codes for the m-metric. Problems Inform. Transmission (1) 33(1997), 45-52.
[15] W. Ch. Schmid, (t, m, s)-nets: Digital Constructions and Combinatorial Aspects. Ph.D. thesis, Institute of M athematics, University of Salzburg, Salzburg, Austria, M ay 1995.
[16] S. Yamamoto, Y. Fujii and N. Hamada, Computation of some series of association algebras. J. Sci. Hiroshima University (2) 29(1965), 181-215.

Mathematics and Statistics	Combinatorics and Optimization
University of Winnipeg	University of Waterloo
Winnipeg, M anitoba R3B 2E9	Waterloo, Ontario, N2L 3G1
email: William.M artin@UWinnipeg.ca	email: dstinson@cacr.math.uwaterloo.ca

[^0]: Received by the editors June 9, 1997; revised April 23, 1999.
 AM S subject classification: Primary: 05B15; secondary: 05E30, 65C99.
 (C)Canadian M athematical Society 1999.

