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The presence of very-large-scale motions in wall-bounded turbulent flows is commonly
associated with their footprint in the form of the superposition of the large scales at the
wall and the additional amplitude modulation of small-scale near-wall turbulence. These
two phenomena are currently understood to be interlinked, with the superposed large-scale
velocity gradient causing the modulation of small-scale activity in the proximity of the
wall. To challenge this idea, we devise a numerical strategy that selectively suppresses
either superposition or amplitude modulation, in an effort to isolate and study the
remaining phenomenon. Results from our direct numerical simulations indicate that a
positive correlation between the amplitude of the small scales in the near-wall region and
the large-scale signal in the outer flow persists even when near-wall large-scale motions
are suppressed – i.e. in absence of superposition. Clearly, this kind of correlation cannot be
caused by the near-wall large-scale velocity or its gradients, as both are absent. Conversely,
when modulation is blocked, the near-wall footprints of the large scales seem to disappear.
This study has been carried out on channel flows at friction Reynolds number Reτ = 1000
in both standard simulation domains and minimal streamwise units (MSUs), where the
streamwise fluctuation energy is enhanced. The consistency of the results obtained by the
two approaches suggests that MSUs can capture correctly this kind of scale interaction at
a much reduced cost.
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1. Introduction

Our ability to model and control turbulent flows relies on the understanding of the
interactions between structures of different characteristic length and time scales that
coexist in wall-bounded turbulence (Marusic, Mathis & Hutchins 2010a; Jiménez 2018).
Near-wall streaks and quasi-streamwise vortices are the smallest coherent features of a
turbulent flow in the vicinity of a wall (Kline et al. 1967; Jeong et al. 1997). They form the
near-wall spectral peak in the premultiplied energy spectrogram of velocity fluctuations,
and obey viscous scaling – meant as scaling with the friction velocity u∗

τ and length scale
ν∗/u∗

τ , where ν∗ is the kinematic viscosity. In this article, an asterisk superscript (·)∗
denotes dimensional values, whereas (·)+ implies that viscous scaling is used. At the other
extreme, the size of the largest turbulent features scales with some characteristic length h∗
stemming from the geometry of the flow, such as the thickness of a turbulent boundary
layer (Hutchins & Marusic 2007a) or the half-height of a channel flow (Monty et al. 2007);
the latter convention is adopted in this paper. The most evident statistical footprint of
these outer-scaling structures is the appearance of a broad large-scale spectral peak in the
premultiplied energy spectrogram of streamwise and spanwise velocity fluctuations (Kim
& Adrian 1999; Hutchins & Marusic 2007a; Lee & Moser 2018), the magnitude of which
increases with the friction Reynolds number Reτ = h∗u∗

τ /ν
∗ = h+. Different taxonomies

of the eddies contributing to such a peak have been proposed (Bailey & Smits 2010; Smits,
McKeon & Marusic 2011; Marusic & Monty 2019), which might as well be coincident;
regardless, the generic term large-scale motions, or simply large scales, will be used in the
following to simplify the discussion.

In recent decades, the availability of high-fidelity turbulent data at high Reynolds
number has made it possible to investigate the role of large-scale motions and their
interaction with small-scale near-wall turbulence (see, for instance, Cimarelli et al. 2016;
Cho, Hwang & Choi 2018; Kawata & Alfredsson 2019; Lee & Moser 2019; Jacobi et al.
2021; Chiarini et al. 2022). One of the possible approaches for this task is to analyse
different joint statistics of small- and large-scale flow features, once these have been
separated through adequate filtering procedures. Within this approach, pursued also in
the present paper, the coexistence and interaction between small and large scales are
classified into three phenomena: the superposition of large-scale fluctuations at the wall
(Abe, Kawamura & Choi 2004) and the amplitude (Mathis, Hutchins & Marusic 2009)
or frequency (Ganapathisubramani et al. 2012; Vinuesa et al. 2015; Baars, Hutchins
& Marusic 2017; Iacobello, Ridolfi & Scarsoglio 2021) modulation of small-scale wall
structures by the large scales.

Superposition, sometimes called footprinting, is related to the space-filling nature
of large-scale motions. While large-scale motions induce the strongest streamwise
fluctuations within the outer layer, their influence reaches the near-wall region, where their
imprint can be found in both velocity fluctuations and wall-shear stress (Abe et al. 2004;
Hoyas & Jiménez 2006; Schlatter et al. 2009). This is responsible for the well-documented
failure of viscous scaling for the wall-parallel fluctuation intensities in the near-wall region
(Örlü & Alfredsson 2012; Eitel-Amor, Örlü & Schlatter 2014; Monkewitz & Nagib 2015).

Amplitude and frequency modulation (see, for instance, Baars et al. 2017) refer to the
fact that the instantaneous amplitude and frequency of a small-scale signal – such as a
filtered temporal velocity fluctuation signal measured by a hot-wire anemometer in the
near-wall region of a turbulent boundary layer – appear to be proportional to the large-scale
signal at the same position, with the small-scale amplitude and frequency leading the
large-scale signal. Some authors report amplitude modulation to be asymmetric with
respect to positive and negative large-scale events (Ganapathisubramani et al. 2012;
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Agostini & Leschziner 2019b). Frequency modulation has not been featured extensively in
the literature, and this study will focus on its amplitude counterpart. Historically, amplitude
modulation has been investigated by computing the single-point correlation between the
large-scale streamwise velocity signal and the envelope of the small-scale one (Mathis
et al. 2009), where the latter can also be replaced by a suitable approximation (Eitel-Amor
et al. 2014), typically the small-scale velocity signal squared. Such a correlation shows
positive values in the near-wall region, indicating the presence of amplitude modulation,
whereas in the logarithmic layer, a so-called phase reversal is commonly observed. There,
the correlation is negative, indicating that the amplitude (and frequency) of the small scales
is inversely proportional to the large-scale signal, with large scales seemingly having a
phase lead (Baars et al. 2017).

These single-point correlations are intimately linked to the skewness of the probability
density function (p.d.f.) of the streamwise velocity (Mathis et al. 2011b; Duvvuri &
McKeon 2015), and concerns have been raised with regard to their reliability to detect
modulation (Schlatter & Örlü 2010). In this respect, Bernardini & Pirozzoli (2011) showed
that using two-point correlations (or covariances) can provide a refined measure of the
phenomenon. By doing so, it is revealed that the amplitude of near-wall small scales
correlates well not only with the local, near-wall large-scale signal, but also with the large
scales in the logarithmic layer (and more generally with the large-scale signal at almost
any wall-normal position; see Agostini, Leschziner & Gaitonde 2016). In contrast to the
single-point correlation, the value of this inner–outer correlation is not affected by the
skewness of the velocity distribution, hence it represents a credible measure.

It is also important to acknowledge that the process of quantifying modulation is in
many aspects arbitrary, and yet yields robust results. Indeed, the scale decomposition of
the velocity signal is inherently arbitrary in the choice of the threshold between large
and small scales; moreover, different types of filters can be deployed to achieve such a
decomposition. For instance, one could opt for sharp Fourier filtering as in this paper, or
for a filter based on the empirical mode decomposition (Agostini & Leschziner 2019a)
or on a wavelet transform (Baars et al. 2017); filtering can then be performed in time or
in the streamwise direction (Mathis et al. 2009; Baars et al. 2017), or in the spanwise
direction (Bernardini & Pirozzoli 2011). Finally, many different correlation or covariance
coefficients have been defined in the literature for the measurement of modulation (Dogan
et al. 2019), all of which constitute a valid choice. Independently of the chosen approach,
the picture of modulation phenomena that one obtains matches the one described above,
as has been shown by Dogan et al. (2019).

Although initial studies on the matter understood and modelled modulation as an
inner–outer mechanism (Hutchins & Marusic 2007b; Mathis et al. 2009; Marusic, Mathis
& Hutchins 2010b; Mathis, Hutchins & Marusic 2011a), the idea that prevailed later
is that small scales near the wall are modulated by near-wall, superimposed large ones
(Baars et al. 2017). These two ideas are not necessarily contradicting, and indeed the latter
idea was already present in the former studies; the wall-normal coherence of the large
scales implies that the near-wall large-scale signal can be a reasonable estimate of the
outer-layer one, and vice versa (Mathis et al. 2009; Bailey & Smits 2010). Jiménez (2012)
showed that profiles of the streamwise fluctuation intensity associated with regions of
enhanced or diminished large scales collapse when scaled with the local friction velocity;
moreover, there is a correlation between the sign of the large-scale velocity gradient
and the fluctuation intensities all across the channel. Modulation has been interpreted as
the response of small scales to large-scale fluctuations of the wall-shear stress caused
by superposition (Ganapathisubramani et al. 2012; Mathis et al. 2013; Hutchins 2014);
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this was later formalised by the quasi-steady quasi-homogeneous theory of Zhang &
Chernyshenko (2016). Agostini & Leschziner (2019a) elaborated further on this, linking
modulation to a local increase of the production of small scales caused by the large-scale
shear stress. Involvement of the large-scale shear instead of the velocity in modulation
mechanisms can also explain why one of the walls of a Couette flow exhibits an atypical
negative modulation region (Pirozzoli, Bernardini & Orlandi 2011).

Amplitude modulation has also been linked to the spanwise converging and diverging
motions induced at the wall by large-scale log-layer circulations. Toh & Itano (2005)
observed from instantaneous flow snapshots that near-wall low-speed streaks seem to
cluster and merge below log-layer low-speed structures. They thus conjectured the
presence of a co-supporting cycle, in which large-scale sweeps (high-speed regions
associated with a downward fluctuation) at the wall energise near-wall small scales,
favouring the formation of streaks. These streaks then drift under the influence of
large-scale spanwise motions, so that they cluster below log-layer low-speed regions; the
streaks would then merge and burst, feeding a large-scale ejection (a low-speed region
associated with an upward motion) and thus the large-scale circulation. Later studies are
in substantial agreement concerning the presence of wall-penetrating circulatory motions
associated with log-layer sweeps and ejections (Hutchins & Marusic 2007b; Hwang et al.
2016; Hwang & Sung 2017); the associated spanwise motions are also likely to advect
near-wall streaks (Zhou, Xu & Jiménez 2022). The modulation of near-wall spanwise
fluctuations by large-scale sweeps has been observed (Agostini & Leschziner 2014; Hwang
et al. 2016); also, log-layer sweeps and ejections have been linked to increased and
decreased values of the near-wall swirling strength (Hutchins & Marusic 2007b; Hwang
& Sung 2017) and of the local skin friction (Hwang & Sung 2017). However, the idea of
near-wall streaks clustering below log-layer low-speed regions as proposed by Toh & Itano
(2005) contrasts with the notion of frequency modulation, as one would expect the streak
spacing to increase in correspondence of negative large-scale events (see also Zhou et al.
2022); moreover, quantitative evidence regarding the bottom-up effect described by Toh
& Itano (2005) is contradictory (Hwang et al. 2016; Zhou et al. 2022).

The common theme of all these theories and models is that modulation phenomena
are tied intimately to the presence of large-scale motions at the wall, be it in the form
of a large-scale gradient or of a wall-penetrating circulatory motion; it is this idea that
we want to challenge with the present work. Assessing the causal relationship between
superposition and modulation is challenging under natural circumstances, since these
phenomena occur simultaneously; we hence devise a numerical strategy to artificially
remove either of the two, so to verify whether the other phenomenon persists when
isolated. Details of the numerical dataset generated for this study are provided in § 2,
alongside a discussion of how amplitude modulation is measured and general details of the
forcing used to suppress the two phenomena. A case-specific formulation of the forcing is
discussed in § 2.1 for the suppression of superposition, and in § 2.2 for the suppression of
modulation; results are presented in § 3. Finally, § 4 contains a summarising remark.

2. Numerical experiments

In the following, the streamwise, wall-normal and spanwise axes of a fully-developed
turbulent channel flow are denoted by x, y and z, respectively; the corresponding
velocity components are u, v and w. When no superscript is provided, lengths are made
non-dimensional with the channel half-height h∗; velocities are always reported in wall
units, although the (·)+ superscript is sometimes dropped in the discussion when the
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Type Reτ L∗
x/h∗ L∗

z /h∗ L+
x L+

z Nx × Ny × Nz �x+ �z+ �y+
min T∗u∗

τ /h∗

LSD 1000 4π 2π 12 566 6283 1024 × 500 × 1024 12.3 6.1 0.97 150
MSU 1000 0.4 7 400 7000 40 × 500 × 1148 10.0 6.1 0.97 300

Table 1. Details of the long streamwise domain (LSD) and minimal streamwise unit (MSU) simulations, where
L∗

x and L∗
z are the streamwise and spanwise extents of the computational box, and Nx and Nz are the numbers

of Fourier modes in the homogeneous directions (additional modes are used for dealiasing, according to the
3/2 rule), while Ny is the number of collocation points in the wall-normal direction. The resulting spatial
resolutions �x+ and �z+ in the streamwise and spanwise directions, respectively, as well as the wall-normal
resolution �y+

min at the wall, are reported. Here, T∗ is the temporal interval over which statistics have been
collected after discarding the transient.

scaling is not relevant. Let 〈·〉 denote averaging along directions of statistical homogeneity
and time; the fluctuation of a generic velocity component, for instance the streamwise one
u′, is given by the Reynolds decomposition of the velocity itself, u′ = u − 〈u〉.

The analysis of the present work relies on a newly produced direct numerical simulations
(DNS) database of turbulent channel flows at friction Reynolds number Reτ = 1000 in
streamwise and spanwise periodic domains; its peculiarity is the selective suppression of
either modulation or superposition phenomena, which is discussed below. The simulations
are performed with the mixed-discretisation spectral solver for the incompressible
Navier–Stokes equations in divergence-free wall-normal velocity and vorticity formulation
by Luchini & Quadrio (2006) at constant pressure gradient. As for the size of the
computational domain, we resort to both moderately long streamwise domains (LSDs), in
which the streamwise periodicity is L∗

x/h∗ = 4π, and minimal streamwise units (MSUs),
for which L∗

x/h∗ = 0.4h (Abe, Antonia & Toh 2018). MSUs are used here by virtue of their
simplified flow physics and reduced computational cost; their suitability for the study of
amplitude modulation is also assessed. All other discretisation parameters are set to values
that are standard in DNS practice; a summary can be found in table 1.

To quantify amplitude modulation (AM), we resort to the two-point scale-decomposed
skewness C∗

AM (Schlatter & Örlü 2010; Bernardini & Pirozzoli 2011; Mathis et al. 2011b;
Eitel-Amor et al. 2014):

C∗
AM =

〈
u+

SS
2
( y+

SS) u+
LS( y+

LS)
〉
, (2.1)

where uLS and uSS indicate, respectively, the low- and high-pass filtered streamwise
velocity fluctuation signals, at two different wall-normal positions yLS, ySS. Notice that
the asterisk in C∗

AM is kept for consistency with the literature and does not indicate that
C∗

AM is a dimensional quantity. Positive values of C∗
AM indicate the presence of amplitude

modulation, whereas negative values indicate a region of phase reversal. This C∗
AM has

been preferred to many other statistics available in the literature (see, for instance, Dogan
et al. 2019) owing to the fact that it is not normalised by

〈
u+

LSu+
LS
〉 1/2. Indeed, as will

be explained below in the context of suppression of superposition, the large-scale signal
u+

LS is damped in specific portions of the channel, thus yielding
〈
u+

LSu+
LS
〉 → 0. Filtering is

performed in the spanwise direction with a sharp Fourier filter; a conventional threshold
wavelength λ+z,c = h+/2 = 500 is used (see, for instance, Bernardini & Pirozzoli (2011),
at a similar value of Reτ ), unless stated explicitly. In the context of suppression of
modulation, practical considerations led to a choice λ+z,c = h+ = 1000.
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The suppression of either superposition or modulation is achieved by artificial damping
of selected turbulent motions via a volume-force term f added to the right-hand side of
the momentum balance of the incompressible Navier–Stokes equations, such that

∂u+

∂t
+ (

u+ · ∇)u+ = −∇p+ + 1
Reτ

∇2u+ + f , (2.2)

∇ · u+ = 0, (2.3)

where u = (u, v, w), and p is the pressure. Again, notice that lengths are scaled in outer
units in the equation above, so that time is made non-dimensional with h∗/u∗

τ . The artificial
damping is most conveniently defined in the spectral Fourier space:

ˆ̂f = −α(κx, κz, y)
c

ˆ̂u+, (2.4)

where ˆ̂(·) denotes the Fourier coefficient for a given streamwise and spanwise wavenumber
pair (κx, κz) at a specific y-position. The arbitrary parameter c determines the strength of
the damping; its value c∗/(h∗/u∗

τ ) = 10−3 is chosen empirically (see, for instance, Stroh
et al. 2016; Forooghi et al. 2018) to achieve a forcing that is as small as possible, while
still ensuring satisfactory damping of the selected modes. The dimensionless function
α(κx, κz, y) selects which scales and wall-normal locations are damped, and is defined
in the following, depending on whether superposition (denoted by subscript S, αS) or
modulation (αAM) is removed.

Notice that the forcing is active on all components of velocity, although the amplitude
modulation analysis is carried out only on the streamwise component. Moreover, the
equations of motion are solved using the wall-normal velocity and vorticity formulation
that automatically fulfils the divergence-free constraint. Although the forcing that we use
might have non-zero divergence (just like the nonlinear term of (2.2)), only its solenoidal
component affects the governing equations – so the continuity equation (2.3) is verified at
all times.

2.1. Suppression of superposition
A straightforward way of suppressing superposition of large scales at the wall is damping
spanwise Fourier modes contributing to uLS in that region. While this clearly defines the
scales at which modal damping is activated (λ+z > h+/2, owing to the definition of uLS in
§ 2), the wall-normal portion of the domain in which this is done is yet to be specified. To
address this issue, we propose a definition of the space-scale region in which superposition
takes place as the one where large near-wall motions are fed energy from other scales and
wall normal positions; this region can be identified rigorously by analysing the spectral
turbulent kinetic energy (TKE) budget decomposed in spanwise Fourier modes (Cho et al.
2018):

∂
〈
ê
〉+
x,t

∂t+
= P̂+ + ε̂+ + T̂ +

t + T̂ +
p + T̂ +

ν = 0. (2.5)

Here, ˆ(·) represents the coefficient of the spanwise Fourier transform associated with
wavenumber κz = 2π/λz, where λz is the spanwise wavelength, and〈

ê
〉+
x,t

(
y+, κ+

z
) = 1

2

〈
|û′|2 + |v̂′|2 + |ŵ′|2

〉+
x,t

(2.6)
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Figure 1. Premultiplied spanwise spectra of (a,b) the turbulent transport κ+
z T +

t , and (c,d) the dissipation term
κ+

z ε+, of the spectral TKE budget. Both the reference (unperturbed) LSD and MSU cases are reported. The
solid black lines mark the boundaries of the region in which modal damping is performed.

is the TKE. Averaging is performed here only in time and in the streamwise direction
(hence not in the homogeneous z-direction), as denoted by the subscript 〈·〉x,t. The terms
P̂ and ε̂ denote turbulent production and dissipation, respectively, while T̂t, T̂p and T̂ν are
turbulent, pressure and viscous transport, respectively. Particular focus lies on the turbulent
transport

T̂ +
t = Re

〈
−
(

û′
i
+)H ∂

∂x+
j

û′
iu

′
j
+
〉

x,t

, (2.7)

and turbulent dissipation

ε̂+ = −
〈(

∂ û′
i
+

∂x+
j

)H
∂ û′

i
+

∂x+
j

〉
x,t

, (2.8)

where the superscript (·)H denotes the complex conjugate, and Re indicates the real part
of a complex number. As reported by Cho et al. (2018) and Lee & Moser (2019), these two
terms dominate the TKE budget in the vicinity of the wall for large wavelengths λz (small
κz); while by definition turbulent dissipation subtracts energy from given Fourier modes,
turbulent transport can actually feed them power (when T̂ t > 0), thus being suitable for
the identification of superposition modes.

From our definition and figure 1, which shows T̂ +
t and ε̂+ for the reference MSU

and LSD cases, we identify the near-wall region in which superposition is suppressed as
2.3( y+)2 � λ+z , as this region corresponds to the near-wall positive peak of T +

t ; in other
words, large scales are here being fed energy. A similar locus was identified by Cho et al.
(2018).

This complements the criterion λ+z > h+/2 that defines uLS; the complete boundaries
of the space-scale region suppressed in this section are shown in figure 1. As desired, the
near-wall turbulent dissipation peak (figures 1c,d), which is commonly associated with
small scales, is excluded from the definition of the large, superposed ones. The following
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Figure 2. Schematic representation of the suppression of modulation for the discretisation used in this paper.
Each box represents a spanwise Fourier mode with its value of nz; wavenumbers are reported under the boxes.
Note that only low-wavenumber, positive modes are represented. Large-scale, modulating modes are coloured
in black, while small-scale carrier ones are white. The modes being suppressed, namely the sideband of each
carrier, are cancelled out.

expression for αS(κ
+
x , κ+

z , y+) stems from the present discussion:

αS(κ
+
x , κ+

z , y+) =

⎧⎪⎨⎪⎩1, if κ+
z � min

(
2π

500
,

2π

2.3
(

y+)2
)

except κ+
x = κ+

z = 0,

0, otherwise.

(2.9)

Note that mode (κ+
x , κ+

z ) = (0, 0) is not damped, since this corresponds to the
instantaneous streamwise and spanwise spatial average; other than that, the value of κx
plays no role, meaning that all κx modes are suppressed if the condition on κz is verified.
While similar damping strategies have been attempted in the literature (see, for instance,
de Giovanetti, Hwang & Choi 2016), the peculiarity of the present one is that large scales
are removed only in the vicinity of the wall and not throughout the whole domain.

2.2. Suppression of modulation
As for amplitude modulation, its suppression is not as trivial, and its spectral representation
needs to be discussed first. Let us consider a toy problem, where a large-scale spanwise
sinusoid cos(κlz) modulates a small-scale carrier wave cos(κsz), where κl and κs are
the respective wavenumbers; the Fourier representation of the large-scale signal has
energy content only on the κz = ±κl mode (or κz = ±κs for the small-scale one). The
modulated signal will be, for example, [1 + cos(κlz)] cos(κsz). It can be proven easily, by
applying the angle addition formula for trigonometric functions (Abramowitz & Stegun
1964), that such a modulated signal has energy content exclusively on modes κz = ±κs,
corresponding to the original carrier wave, and κz = ±(κs ± κl), such modes being named
sidebands.

In the context of our spectral DNS, we identify the first six non-zero spanwise discrete
Fourier modes κz = ±(κz,0, . . . , 6κz,0) as the large-scale, modulating signal. Bear in mind
that the simulation grid is equally spaced in the Fourier-κz direction, the spacing being
κz,0 = 2π/Lz ≈ 0.898. Consider now a generic small-scale carrier with wavenumber κz =
κs being modulated by the large modes; the sideband will comprise the six discrete Fourier
modes preceding and following κs, namely κz = ±κs ± (κz,0, . . . , 6κz,0). As an example,
figure 2 highlights the sideband of mode κs = 14κz,0; the integer nz referenced there is
defined as

nz = κ∗
z /κ∗

z,0. (2.10)

By suppressing the sidebands of each possible small-scale carrier in our simulation,
we make amplitude modulation non-representable in our domain – in other words, we
suppress it. Practically, this is done by suppressing six spanwise modes every seven for the
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Separating large-scale superposition and modulation in turbulent channels

small scales, as shown in figure 2; the effective spacing �κz between non-zero (or, more
precisely, non-damped) spanwise small-scale modes is thus increased from �κz = κz,0 to
�κz = 7κz,0. This is done only in the proximity of the wall (y+ � 40), where positive
modulation takes place, in order to limit intrusiveness. Hence αAM is defined as

αAM(κ+
x , κ+

z , y+) =
{

1, if y+ � 40 ∧ nz/7 /∈ Z ∧ nz > 6,

0, otherwise,
(2.11)

where Z is the group of integer numbers. Once again, the value of κx plays no role in
the above definition, so that suppression is active for all κx modes in correspondence with
values of κz that get suppressed.

Notice that the large scales are here effectively defined as having |nz| < 7, which
translates to λ+z > h+ = 1000 in terms of wavelengths. This value of the large–small
threshold wavelength is larger than the one stated at the beginning of this section and
will be used exclusively in cases where modulation is suppressed, for instance for the
calculation of C∗

AM . The different choice is meant to limit intrusiveness of the forcing:
by choosing a larger threshold wavelength, not only is the bandwidth of the large scales
reduced, but also the width of the sidebands of small carrier modes is reduced. Since
these sidebands are being suppressed, the smaller the sidebands, the smaller the amount
of energy being subtracted from the flow.

The effect of this forcing on scale interactions is better understood by considering
triadic interactions (Cho et al. 2018) between spanwise Fourier modes. These interact
in pairs through the nonlinear term of the Navier–Stokes equations, resulting in a
transfer of momentum (and energy) to a third mode. Using the angle addition formula
as before, it can be shown that where the forcing is active, interactions between
small-scale modes cannot yield a transfer of energy to (or from) large scales, with
the exception of the large κz = 0 mode. Moreover, interactions between a large-scale
(except κz = 0) mode and a smaller-scale (except κz = 7κz,0) one would produce an
energy transfer to (or from) suppressed modes; the effects of these interactions are thus
nullified.

As for C∗
AM , similar considerations show that where the forcing is active, the signal u2

SS
has no content on large-scale Fourier modes, except for mode κz = 0. Thus the covariance
C∗

AM = 〈u+
SS

2 u+
LS〉 has at most contributions from the interaction between u2

SS and mode
κz = 0 of uLS; all other contributions are null. In other words, the only modulation-like
effect that could be observed is a correlation in time (and in the streamwise direction)
between the spanwise average of uLS and the spanwise average of u2

SS. This is a very weak
effect, as will be shown later; moreover, if it were removed, then the value of C∗

AM should
be zero, where suppression of modulation is performed.

2.3. Energy-conserving smoothed spectra
The modulation-suppressing procedure described in § 2.2 produces a banded pattern in
the spanwise (co-)spectra of the Reynolds stresses, as can be seen later, in figure 13,
for instance. The banded pattern not only affects the near-wall region where the forcing
is active, but rather propagates to the core of the channel, making the spectra hard to
visualise. We therefore define a smoothed version Φ̄ of a generic spanwise (co-)spectrum
Φ that improves readability while being energy-conserving, meaning that the correct
values of the Reynolds stresses can be recovered by integrating the smoothed spectral
contributions given by Φ̄.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Averaged to Φ̄7 Averaged to Φ̄8Φ̄0, Φ̄1,..., Φ̄6

Figure 3. Schematic representation of the averaging procedure used to recover smooth (co-)spectra of the
Reynolds stresses.

In the context of our numerical simulations, the spanwise spectrum Φ (at any
wall-normal distance) is evaluated at a discrete set of equally spaced spanwise
wavenumbers κz,n = nκz,0, where n is a non-negative integer, yielding a set Φ(κz,n). The
smoothed spectrum is instead evaluated at a set of spanwise wavenumbers corresponding
to modes that are not suppressed, yielding a set of values Φ̄j (where j is also a
non-negative integer). These are defined so that⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Φ̄j = Φ(κz, j), if 0 � j � 6,

Φ̄j = 1
4
∑3

i=0 Φ(κz,j+i), if j = 7,

Φ̄j = 1
4
∑0

i=−3 Φ(κz,nmax+i), if j = jmax,

Φ̄j = 1
7
∑3

i=−3 Φ(κz,7( j−6)+i), otherwise,

(2.12)

where nmax and jmax are the maximum values of n and j, respectively. In other words,
the spectrum is left untouched for large-scale modes; for the small-scale modes, the
value of Φ for each non-suppressed mode is averaged with the values of Φ of the six
adjacent suppressed modes (three per side) to yield a single value of Φ̄. For the first
(j = 7) and last (j = jmax) small-scale modes, the average is performed on only one side,
that is, with only the three preceding or successive suppressed modes. Notice that the
number of points in the spanwise direction is chosen so that the mode with the highest
wavenumber is not suppressed. The procedure is illustrated in figure 3, and yields a
sensible spectral representation of the Reynolds stresses when applied at all wall-normal
positions – including those at which the forcing is not active. See, for instance, figure 13.

3. Results

To begin with, statistics of interest are reported for the reference (unperturbed) LSD and
MSU cases, for reference and validation. Large-scale structures of streamwise velocity
fluctuations are significantly enhanced in MSUs due to the impaired nature of the
pressure–strain correlation (Abe et al. 2018); they are quasi-streamwise-invariant and thus
lack the characteristic inclination observed in larger domains. Figure 4 shows the mean
velocity profile U+ = 〈u〉+ (figure 4a) and fluctuation intensities (figure 4b) for two LSD
and MSU unperturbed simulations, used as a reference case for the numerical experiments.
Both cases compare well against literature LSD data in Lee & Moser (2019) and MSU data
in Abe et al. (2018). The enhanced streamwise fluctuations of the MSU, clearly visible in
figure 4(b), result in a plateau for

〈
u′u′〉+ that is otherwise visible at much higher values

of Re in longer domains. On the other hand, v′ and w′ fluctuations have lower intensity
in MSUs, and the mean velocity profile exhibits an anomalous wake region starting at
y+ ≈ 400 (Flores & Jiménez 2010). An enhancement of u′ fluctuations in the MSU can
also be observed from the spanwise one-dimensional spectrum, reported in figures 5(a,b)
for the LSD and MSU cases. Although the spectra share the same qualitative behaviour,
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Figure 4. Profiles of (a) the mean velocity and (b) fluctuation intensities, for the unperturbed MSU (solid)
and LSD (dashed) cases. Green shows

〈
u′u′〉+, red shows

〈
v′v′〉+, and blue shows

〈
w′w′〉+. The uncertainty at

a 99.7 % confidence level quantified as described in Russo & Luchini (2017) is shown for the MSU case as a
shaded area. MSU data in Abe et al. (2018) are marked with +, while × indicates LSD data in Lee & Moser
(2015).
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Figure 5. Reference simulations (without forcing). (a,b) Premultiplied one-dimensional spanwise spectra
κ+

z φ+
uu of the streamwise velocity fluctuations. (c,d) Amplitude modulation coefficient C∗

AM ; colour levels
starting from zero (white) with increments of (c) ±0.3 for LSD, and (d) ±0.5 for MSU.

with a small-scale buffer-layer energy peak and a large-scale outer-layer one (see also Lee
& Moser 2018), both these peaks are more intense for the MSU case.

It is possibly these energised large scales, combined with the absence of their
meandering, that make amplitude modulation more intense in the MSU; this can
be observed from figures 5(c,d), which compare the distribution of the two-point
scale-decomposed skewness C∗

AM for the LSD and the MSU. Apart from the intensity,
the qualitative structure of the C∗

AM map of figure 5 in the y+
SS < 30 region is the same

for both LSD and MSU, suggesting that the smaller domain can still capture correctly
scale-interaction phenomena such as amplitude modulation. In agreement with previous
observations (Bernardini & Pirozzoli 2011; Agostini et al. 2016; Dogan et al. 2019), two
positive peaks are present at y+

SS ≈ 10, one of which lies on the diagonal of the plot
(y+

LS ≈ 10), whereas the other will be referred to as off-diagonal (y+
LS ≈ 150). As discussed

already, the diagonal peak of C∗
AM is affected by the skewness of the velocity signal

(Schlatter & Örlü 2010; Mathis et al. 2011b), whereas the off-diagonal peak is not, hence
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x∗
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z∗/h∗

Figure 6. Visualisation of an instantaneous streamwise velocity field on wall-parallel planes for the reference
(unperturbed) MSU simulation. Colour: small-scale activity u+

SS
2 at y+ = 10. Black lines are contours of zero

large-scale fluctuations (u+
LS = 0) at y+ = 100. Regions of positive large scales are shaded.

constituting a more reliable detector of modulation phenomena (Bernardini & Pirozzoli
2011). As expected, a negative-C∗

AM region is also present, mainly involving small scales
in the outer layer; the contour of this region becomes much more regular for the MSU
case, and can be approximated by a straight horizontal line y+

SS ≈ 100 for y+
LS < 150.

This regularity is possibly a consequence of the lack of inclination of the large structures,
which are quasi-homogeneous along the streamwise direction in the MSU cases.

A graphical representation of what the skewness coefficient C∗
AM quantifies is

provided in figure 6. Here, the near-wall (y+
SS ≈ 10) small-scale activity u+

SS
2 and the

log-layer (y+
LS ≈ 100) large-scale signal u+

LS from an instantaneous flow realisation
of the unperturbed MSU simulation are represented in a streamwise–spanwise plane.
Notice that these wall-normal coordinates correspond to the off-diagonal peak of the
C∗

AM map (figures 5c,d), and that the covariance of the two represented quantities
corresponds to C∗

AM . As expected, regions of positive large scales exhibit increased values
of the small-scale activity with respect to regions of negative large scales, although
this correspondence is imperfect as it holds only in a statistical sense. An analogous
consideration was made by Hutchins & Marusic (2007b), who first observed amplitude
modulation in experimental data, except that modulation was seen in time signals. Due
to the minimal streamwise domain size, in MSUs regions of positive (or negative) large
scales extend all across the streamwise domain length, whereas changes of sign of the
large scales are encountered mainly along the spanwise direction. Hence in MSUs, the
correlation between uLS and u2

SS is mainly to be seen in the spanwise direction.

3.1. Suppression of superposition
In § 2.1, it was shown how the footprint of large scales at the wall (also known as
superposition) can be removed numerically through modal damping; essentially, energy
is removed from selected near-wall large scales. To validate the data produced with this
forcing, some simple statistics are reported in figure 7. Figure 7(a) shows the mean velocity
profile for the forced MSU and LSD cases as compared to the unperturbed simulations;
as desired, the suppression strategy has no substantial effect on the mean velocity profile,
either in the inner or in the wake region. The same holds for the distribution of Reynolds
shear stress (figure 7b), as well as for the spanwise and wall-normal fluctuation intensities
(figures 7c,d), although the forcing is active also on these two components of velocity.
This suggests that the removed motions have only a marginal relevance for both the inner
and outer dynamics of the flow.

The reason for the negligible effect of the forcing on the mean flow properties
can be found in the spanwise co-spectra of the Reynolds shear stress, which are
shown in the Appendix for simulations with and without forcing. These spectra
represent the contribution of each spanwise Fourier mode to the profiles of figure 7(b).
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Figure 7. One-point statistics for the simulations with suppression of superposition (solid line for MSU,
dashed for LSD). For comparison, the same statistics are reported for the reference unperturbed cases (+ for
MSU, × for LSD). (a) Mean velocity profile; (b) Reynolds shear stress; (c,d) fluctuation intensities (colours as
in figure 4).

The superposition-removing forcing blocks near-wall large-scale sweeps and ejections,
whose spectral contribution to

〈
u′v′〉 is insignificant; the

〈
u′v′〉 profile is thus substantially

unaffected by their removal, and so is the mean momentum balance in turn. This is not
trivial, as the removal of near-wall large scales could also have an indirect effect on the〈
u′v′〉 profile owing to nonlinearities, which is not observed: the superposition appears to

be linear in this context. A similar argument holds for
〈
v′v′〉 and

〈
w′w′〉: the space-scale

region that is being suppressed contributes only marginally to the two normal stresses
(spectra are not shown for brevity), hence the profiles match the ones of the unperturbed
cases.

The forcing has a significant effect only on the streamwise fluctuation intensity
〈
u′u′〉

(figures 7c,d), which is significantly reduced in the near-wall region; this drop in TKE is
expected, as the forcing subtracts power from the flow in the proximity of the wall. The
drop is larger for the MSU case (figure 7c) than for the LSD case (figure 7d); indeed, as
explained above, the removed large scales are more intense in the former case. As expected,
towards the core of the channel, where the forcing is no longer active, profiles of 〈u′u′〉+
for the perturbed cases approach the values of their unperturbed counterparts.

The effect of superposition removal is explored further by analysing the spanwise energy
and turbulent transport spectrum, as well as the C∗

AM map. These are reported in figure 8
for the MSU case; results for the longer domain are not shown for brevity, except for the
C∗

AM map. The energy spectrum (figure 8a) and the turbulent transport one (figure 8b)
indicate success of the suppressing action: not only is no energy content present for the
superposition modes, as expected, but also no energy content is being deposited by T̂ +

t
on these modes. For wavelengths at which modal damping is active, the usual near-wall
positive peak of T̂ +

t vanishes, and it reappears at the nearest position to the wall where
the suppressing action is absent. This also results in the negative large-scale region of
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Figure 8. Simulations with suppression of large-scale superposition at the wall. Premultiplied spanwise
spectra of (a) the streamwise fluctuation κ+

z φ+
uu, and (b) the turbulent transport term κ+

z T +
t , for the MSU

case. Amplitude modulation coefficient C∗
AM for the (c) LSD and (d) MSU cases. Colour map and levels as in

figures 1 and 5.
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Figure 9. Visualisation of an instantaneous streamwise velocity field on wall-parallel planes for the MSU
simulation with suppression of superposition. Colour indicates small-scale activity u+

SS
2 at y+ = 10; colour

map as in figure 6. Black lines are contours of zero large-scale fluctuations (u+
LS = 0) at y+ = 100. Regions of

positive large scales are shaded.

T̂ +
t being shifted towards the core of channel. In the outer layer, large scales still persist

in spite of their suppression near the wall, as can be seen in the energy spectrum; the
same was reported by Zhou et al. (2022), who performed a similar numerical experiment.
This suggests that the outer flow region has some degree of autonomy from the wall,
corroborating the results of Flores & Jiménez (2006), Mizuno & Jiménez (2013) and Kwon
& Jiménez (2021).

Unexpected results can be observed from the C∗
AM maps of figures 8(c) and 8(d); while

the diagonal peak predictably disappears, the off-diagonal one is not only still present, but
also unaltered in intensity with respect to figure 5, indicating the persistence of modulation
phenomena on small scales in the buffer layer (y+

SS ≈ 10). This hints at the fact that
superposition and modulation are not so closely interlinked as previously thought, to the
point that one phenomenon can be suppressed without significantly affecting the other.
It is noteworthy, moreover, that the large-scale signal uLS is being entirely suppressed for
y+ < 14.7, whereas the small-scale signal still exhibits modulation in that region; this
clearly excludes that amplitude modulation be caused entirely by the superimposed, local
large scales, or by fluctuations in the wall-shear stress. Since the superposition-suppressing
forcing is active on all components of velocity, there cannot be any converging or diverging
spanwise large-scale motion at the wall either.

The persistence of modulation phenomena is reinforced by figure 9, showing an
instantaneous realisation of the near-wall small-scale activity u+

SS
2 and of the log-layer

large-scale signal u+
LS. No qualitative difference with respect to figure 6 can be observed,

suggesting that not only does the forcing not significantly alter the flow structure, but also
a correlation between the large scales and the small-scale activity is still present.
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Figure 10. Visualisation of an instantaneous streamwise velocity field on wall-parallel planes for (a)
the reference MSU simulation with λ+z,c = h+ = 1000, and (b) the MSU simulation with suppression of

modulation. Colour indicates small-scale activity u+
SS

2 at y+ = 10; colour map as in figure 6. Black lines are
contours of zero large-scale fluctuations (u+

LS = 0) at y+ = 100. Regions of positive large scales are shaded.
In (b), large scales are plotted only for z∗/h∗ > 3; on the left, dashed lines are used to highlight the reduced
period of small scales.

In spite of the above evidence, theories implying that modulation of the small scales
is caused by near-wall large ones might still be able to capture the behaviour of the
diagonal peak of the C∗

AM map. Indeed, if the variation of the amplitude of the small-scale
signal is caused by the large-scale shear, as proposed for instance by Agostini &
Leschziner (2019a), then a positive peak of C∗

AM should appear at the nearest wall normal
position where no modal damping is active. A weak diagonal peak seems to appear in
figures 8(c,d) at y+ ≈ 50; however, this peak cannot be distinguished clearly from the
non-diagonal positive-modulation region, thus making further investigation necessary.

3.2. Suppression of modulation
The modulation-suppression strategy presented and explained in the spectral domain in
§ 2.2 also has a clear physical interpretation. The small scales uSS perceive a computational
box whose spanwise periodicity is forcedly reduced to h∗ (from 7h∗, that is the spanwise
size of the periodic simulation domain); indeed, the modal damping effectively increases
the spacing �κz between non-zero small-scale spanwise Fourier modes (see § 2.2 or
figure 2), which translates to a decrease of the period of uSS owing to the definition of
the Fourier series (Brigham 1988). Large-scale modes are not affected. The shortened
spanwise period can be observed in figure 10(b), where near-wall small-scale activity u+

SS
2

and large scales u+
LS from the log-layer are represented for an MSU with suppression

of modulation. Patterns of u+
SS

2 have spanwise period 1h∗, whereas the large-scale
isocontours are qualitatively similar to figures 6 and 9, with a spanwise period matching
the spanwise domain size (7h∗). As a consequence of the different period, large and small
scales are now uncorrelated: (x, z)-regions of positive u+

LS (shaded in figure) no longer
correspond to regions of increased small-scale activity, and vice versa. The observed
pattern differs from that of figure 10(a): this shows the same plot for the reference MSU
case, hence being a reproduction of figure 6, except that the spanwise threshold wavelength
of the filter now matches the one used in this context (λ+z,c = h+; see § 2.2). In the reference
case, small and large scales appear to be correlated, as is confirmed later by calculating
C∗

AM .
In light of the above, our modulation-suppressing strategy does not differ much from

the multi-block large-eddy simulation (LES) strategy of Pascarelli, Piomelli & Candler
(2000), which captures the near-wall small scales of a boundary layer by using a small
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Figure 11. One-point statistics for the simulations with suppression of modulation (solid line for MSU, dashed
for LSD). For comparison, the same statistics are reported for the reference unperturbed cases (+ for MSU,
× for LSD). (a) Mean velocity profile; (b) Reynolds shear stress; (c,d) fluctuation intensities (colours as in
figure 4). A black vertical line marks the boundary to the left of which modal damping is active.

periodic simulation domain. This is then reproduced several times in the spanwise
direction to match the width of a larger domain, designed to capture large scales in the
outer layer. Notice that, unlike ours, this approach (as well as many improvements of
it – see Tang & Akhavan 2016; Sandham, Johnstone & Jacobs 2017) cannot reproduce
near-wall large scales. A refined multi-block strategy was proposed by Chen & He (2022),
which allows for the presence of near-wall small scales with a restricted spanwise period
as well as near-wall large scales, analogously to our approach. In their case, however, the
coupling between blocks of different sizes manages to overcome the different periodicity
and to reproduce modulation phenomena, which we instead suppress; also notice that
unlike all LES studies mentioned here, our concern is the investigation of the flow physics,
rather than the reduction of computational costs.

Also for this forcing, one-point statistics produced in both MSU and LSD are compared
to the ones for the unperturbed simulations (figure 11). As for the mean velocity
(figure 11a), the usual collapse of the near-wall profile is seen. However, forced simulations
differ significantly from the reference cases in the wake region, showing increased values
of the flow rate at constant pressure gradient; that is, the forcing has a drag-reducing effect.
The different velocity profiles are closely linked to the Reynolds shear stress profiles
seen in figure 11(b). For y+ � 40 – that is, where the forcing is active – the profiles of
forced simulations are shifted towards the channel core with respect to their references;
this is expected in drag-reduced flows where near-wall turbulence is affected (e.g. flows
over riblets; see, for instance, Luchini, Manzo & Pozzi 1991). Otherwise, there is good
agreement between forced and reference simulations.

Profiles of the various fluctuation intensities (figures 11c,d) also show a qualitative
agreement between forced and reference simulations, with a close collapse towards the
channel centre. Where the forcing is active (y+ � 40), the profile of

〈
u′u′〉 of the forced

simulations appears to be shifted towards the core of the channel, just like the Reynolds
shear stress. Moreover,

〈
u′u′〉 profiles reach slightly higher peak values in the forced
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Figure 12. Plots of C∗
AM maps with a modified threshold wavelength λ+z,c = 1000. (a) Reference, unperturbed

MSU case. (b,c) MSU with suppression of modulation, where in (c), the modulating effects given by mode
κz = 0 have been removed. (d) LSD with suppression of modulation. The modulation-suppressing forcing is
active on small scales at y+

SS � 40; the boundary of this region is marked with a black line. Colour map and
levels as in figure 5 except for (d), for which colour levels are (−0.5; 0; 0.18; 0.25).

simulations, whereas
〈
v′v′〉 and

〈
w′w′〉 show reduced values in the near-wall region.

This suggests that the forcing alters the way energy is redistributed among components.
Right above the region where the forcing is active, at y+ = 50–100, the values of
the fluctuation intensities of all three velocity components rapidly increase in forced
simulations, so that

〈
v′v′〉 and

〈
w′w′〉 reach their maxima, and

〈
u′u′〉 has a secondary peak.

The suppressed modes effectively perceive a wall at y+ = 40 and are therefore free to
develop only above such a position; it is their development that causes the presence of
the observed peak and maxima. Interestingly, no corresponding bulging of the Reynolds
shear stress can be observed in this region, suggesting that the energy produced by the
developing suppressed modes is not coherent in terms of u′ and v′.

The increased flow rate and changes in the buffer-layer fluctuation intensities are not to
be attributed to the reduced spanwise period of the near-wall small scales, as confirmed
by an additional simulation with a spanwise-restricted domain (not shown for brevity);
we therefore attribute them to the modified interaction between small and large scales
described in § 2.2.

The C∗
AM maps resulting from the suppression of modulation are reported in

figures 12(b–d). The map is also shown for the reference MSU simulation (figure 12a),
with an updated filter threshold wavelength to match the one used for simulations with
suppression of modulation (λ+z,c = h+; see § 2.2). The suppressing action is successful: in
the MSU case with suppression of modulation in figure 12(b), for instance, both positive
peaks disappear from the C∗

AM maps (in comparison to the reference case of figures 12a);
the LSD case of figure 12(d) shows the same topology, but with lower values. Owing to
the effect of mode κz = 0 (see § 2.2), the value of C∗

AM is not zero as expected in the
region where the forcing is active (y+

SS � 40): a slight positive peak can be observed at
y+

LS ≈ y+
SS ≈ 10, as well as some regions where the correlation is negative. By recomputing

the values of C∗
AM without including contributions from mode κz = 0 (figure 12c), a well

behaved map is recovered. A further analysis (not shown for brevity) reveals that the
positive, diagonal peak of figure 12(b) is caused mainly by mode (κx, κz) = (0, 0) – that
is, by time fluctuations of a streamwise and spanwise constant mode of uLS. Fluctuations
of this mode are expected to be lower, the larger the domain is – as the larger the domain,
the better the mode approximates the mean velocity. This explains why this diagonal,
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Figure 13. Premultiplied spanwise spectrum κ+
z φ+

uu of the streamwise fluctuation. (a,b) LSD and MSU cases
with suppression of modulation; (c,d) same cases, with the spectrum being smoothed as explained in § 2.3.
The boundaries of the region where the forcing is active are marked with a solid black line. Colour map as in
figure 5.

positive peak is weaker for the LSD, to the point that it seems to disappear. The remaining
regions of negative C∗

AM below y+ = 40 are caused by spanwise-constant modes, whose
streamwise wavelength is, however, small (as a consequence of the small domain size in
that direction). Finally, right above the region where suppression of modulation takes place
(that is, right above y+ = 40), a positive diagonal C∗

AM peak appears, possibly linked to the
fact that this area serves as a buffer layer for suppressed modes as discussed previously.

Having confirmed that the C∗
AM map behaves as expected, the focus is now turned to the

main result of interest for this case – that is, energy spectra. These are shown in figure 13
for the MSU and LSD cases with suppression of modulation; the boundaries of the region
where the suppression is active are marked by a solid black line. As expected, spectra
exhibit a striped pattern in this region, alternating single, extremely excited modes with
depressed regions corresponding to suppressed modes. Interestingly, the striped pattern is
also observed further away from the wall where the forcing is not active, in what seems
to be a bottom-up effect; at the same time, modes that were previously suppressed are
now free to develop in this area, contributing to the unusual secondary peak in

〈
u′u′〉

seen in figure 11. To recover a meaningful spectrum from the observed striped pattern,
the smoothing technique described in § 2.3 is used; results are shown in figures 13(c,d).
It is revealed that the striped pattern hides a small-scale buffer-layer peak typical of
wall-bounded turbulence, which is (at least qualitatively) captured correctly. Although
near-wall small scales are being targeted by the forcing, their corresponding values of
the spectrum are increased with respect to the unperturbed simulations (see figure 5
for comparison). Instead, near-wall large scales of the forced simulations show unusually
low energy, as will be discussed below; overall, the increase in small-scale energy
dominates, so that excess energy is seen on the streamwise fluctuations in the near-wall
region (as observed in the

〈
u′u′〉 profiles of figure 11). Large scales in the core of the

channel are captured reasonably correctly also in presence of the forcing, indicating that
these can exist in the absence of near-wall modulation; this once again corroborates the
idea that outer layers are autonomous (Flores & Jiménez 2006; Mizuno & Jiménez 2013;
Kwon & Jiménez 2021).

The reduction of the near-wall large-scale energy content of figure 13(b) (for instance)
with respect to the unperturbed case (figure 5b) cannot be explained trivially; these
scales are indeed not affected directly by the forcing. At ( y+, λ+z ) ≈ (10.2, 1750), an
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87 % reduction in the value of φ+
uu is observed. This might be interpreted as the absence

of superposition phenomena, possibly suggesting that superposition might in fact be
enhanced by large-scale modulation of the amplitude of the small scales. The above
conjecture is supported by evidence of a small- to large-scale power transfer in the
buffer layer of wall-bounded flows observed, for instance, by Cho et al. (2018), Andreolli,
Quadrio & Gatti (2021) and Chiarini et al. (2022). Exploiting a generalised quasi-linear
approximation of a turbulent channel flow, Hernández, Yang & Hwang (2022) also
support the idea that small-scale fluctuations may be involved in large-scale generation
mechanisms. They found that the inhibition of particular triadic interactions involved
in inverse energy transfer in the spanwise direction within the near-wall region led to
suppression of the near-wall positive turbulent transport at large scales. However, we deem
the suppression technique employed here too intrusive to make a firm statement: another
possible explanation for the lack of energy from near-wall large scales could be that all the
near-wall large-scale activity is lumped into the Fourier mode with λ+z ≈ 1000, for which
the spectrum shows an unusually high value.

4. Conclusions

In the present work, we performed and analysed numerical simulations in which either
the superposition of the large scales at the wall or amplitude modulation of the near-wall
small scales was suppressed thanks to purposely designed body forces. Both standard,
long streamwise domains (LSDs) and minimal streamwise unit (MSU) domains have
been used; no qualitative difference between the two has been observed in the results,
although quantitative differences do arise. This suggests that MSUs can capture the
fundamental mechanisms of the investigated scale interactions; a similar conclusion was
drawn by Kawata & Tsukahara (2021). Streamwise-elongated structures that are longer
than the computational box of the MSU will be represented in such restricted domains
as streamwise-invariant (Toh & Itano 2005); the lifetime of these structures in an MSU
reflects their streamwise extent in an LSD (Abe et al. 2018). Therefore, we expect the large
scales of an MSU to modulate the amplitude of the small ones in the spanwise direction
and in time; this is indeed what we observe.

Our findings concerning the scale interactions are summarised in figure 14. Suppression
of superposition means that large scales are removed from the near-wall region. In the
absence of the near-wall large scales, it is revealed that the amplitude of the buffer-layer
small scales still correlates well with the outer-layer large ones. According to some studies
(for instance, Ganapathisubramani et al. 2012; Zhang & Chernyshenko 2016; Agostini &
Leschziner 2019a), the removed large scales cause the amplitude modulation (AM) of
the small scales; this is depicted schematically in figure 14 by a grey line. However, it
is self-evident that the correlation that we observe currently cannot be explained as an
effect of the superposed large scales, or of the large-scale gradient at the wall or in its
proximity, as these have been removed. Hence amplitude modulation should be understood
not as a local modulation mechanism, but rather as a correlation of the amplitude of
the small scales in the buffer layer with large scales from several wall-normal positions,
represented in figure 14 by a black line. Other authors have linked scale interactions to the
circulatory congregative and dispersive motions induced at the wall by log-layer sweeps
and ejections (for instance, Toh & Itano 2005; Hwang et al. 2016). Since the superposition
removal affects all velocity components, our results also challenge the theory of Toh
& Itano (2005): in the absence of near-wall large scales, there cannot be any spanwise
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Figure 14. A schematic representation of the widely accepted scale interaction mechanism (grey arrows) and
our observations (black).

large-scale wind transporting near-wall streaks towards large-scale ejections as proposed
by the authors. Moreover, it is unclear how the large-scale circulatory structure associated
with log-layer sweeps and ejections, observed for instance by Hwang et al. (2016), would
penetrate to the wall as it normally does.

Suppression of modulation is performed near the wall by making modulation
non-representable in the spectral simulation domain, more precisely by damping selected
small-scale spanwise Fourier modes. In addition to blocking modulation, this forcing
prevents the interaction between small-scale modes resulting in a transfer of energy to
large scales; moreover, triadic interactions between small and large modes are blocked
indirectly. Interestingly, this forcing significantly affects the mean velocity profile, as the
produced flow rate is substantially increased at constant pressure gradient. Also, near-wall
large-scale modes seem to vanish, indicating that these might receive a significant amount
of energy from the interaction of near-wall small-scale modes, rather than from a top-down
footprinting effect; this idea is reported schematically in figure 14 as a black line.

While the latter observation is in line with the evidence of a small-to-large energy
transfer in the near-wall region found by Cho et al. (2018), Jacobi et al. (2021) and
Hernández et al. (2022), the results yielded by suppression of superposition show that
the present understanding of amplitude modulation is still only partial. Our results do not
exclude that, for instance, the large-scale velocity gradient may locally have a modulating
action on small-scale activity as proposed by Agostini & Leschziner (2019a); moreover,
the ansatz that near-wall small scales are locally modulated by near-wall large scales (for
instance, Zhang & Chernyshenko 2016) can still be a starting point for models that yield
satisfactory results, owing to the spatial coherence of the large scales. Nevertheless, our
data indicate that a local mechanism involving near-wall large scales can only partially
explain the correlation commonly known as amplitude modulation.
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(b, f ) Cases with suppression of superposition (c,d,g,h) Cases with suppression of modulation, where in (d,h)
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Appendix

The spanwise co-spectra of the Reynolds shear stress are shown in figure 15 for all forced
and unforced cases in both the LSD and MSU domains. The co-spectra of the unperturbed
cases (figures 15a,e) show an elongated peak that extends from near-wall small scales to
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large scales in the outer layer; this qualitative structure is retained by the simulations with
suppression of superposition and with suppression of modulation.

In the simulation with suppression of superposition, large-scale motions are removed
from the proximity of the wall; the contour of the suppressed region is marked with a black
line in figures 15(b, f ). In the reference cases (figures 15a,e), the values of the co-spectrum
are negligibly low in this region, meaning that large-scale near-wall sweeps and ejections
contribute only marginally to the profile of the Reynolds shear stress. As expected, their
removal proves to be rather unintrusive in figures 15(b, f ); the only noticeable difference
with figures 15(a,e) is that suppressed modes are somewhat weakened by the suppressing
action at the wall, even at a distance from it. This results in a slight distortion of the bottom
border of the spectral

〈
u′v′〉 peak.

As for the simulation with suppression of modulation, the co-spectra of figures 15(c,g)
show the usual striped pattern associated with this forcing (see figure 13). Figures 15(d,h)
show the same spectrum by smoothing it with the procedure described in § 2.3. This yields
a qualitatively correct co-spectrum that resembles the one of figures 15(a,e), albeit with
minor distortions. Unlike the spectrum of streamwise fluctuations (figure 13), no particular
increase (or decrease) of the values of the co-spectrum is seen with respect to the reference
case.

REFERENCES

ABE, H., ANTONIA, R.A. & TOH, S. 2018 Large-scale structures in a turbulent channel flow with a minimal
streamwise flow unit. J. Fluid Mech. 850, 733–768.

ABE, H., KAWAMURA, H. & CHOI, H. 2004 Very large-scale structures and their effects on the wall
shear-stress fluctuations in a turbulent channel flow up to Reτ = 640. Trans. ASME J. Fluids Engng
126 (5), 835–843.

ABRAMOWITZ, M. & STEGUN, I.A. 1964 Handbook of Mathematical Functions. Applied Mathematics
Series, vol. 55. National Bureau of Standards.

AGOSTINI, L. & LESCHZINER, M. 2019a The connection between the spectrum of turbulent scales and the
skin-friction statistics in channel flow at Reτ ≈ 1000. J. Fluid Mech. 871, 22–51.

AGOSTINI, L. & LESCHZINER, M. 2019b On the departure of near-wall turbulence from the quasi-steady
state. J. Fluid Mech. 871, R1.

AGOSTINI, L., LESCHZINER, M. & GAITONDE, D. 2016 Skewness-induced asymmetric modulation of
small-scale turbulence by large-scale structures. Phys. Fluids 28 (1), 015110.

AGOSTINI, L. & LESCHZINER, M.A. 2014 On the influence of outer large-scale structures on near-wall
turbulence in channel flow. Phys. Fluids 26 (7), 075107.

ANDREOLLI, A., QUADRIO, M. & GATTI, D. 2021 Global energy budgets in turbulent Couette and Poiseuille
flows. J. Fluid Mech. 924, A25.

BAARS, W.J., HUTCHINS, N. & MARUSIC, I. 2017 Reynolds number trend of hierarchies and scale
interactions in turbulent boundary layers. Phil. Trans. R. Soc. Lond. A 375 (2089), 20160077.

BAILEY, S.C.C. & SMITS, A.J. 2010 Experimental investigation of the structure of large- and very-large-scale
motions in turbulent pipe flow. J. Fluid Mech. 651, 339–356.

BERNARDINI, M. & PIROZZOLI, S. 2011 Inner/outer layer interactions in turbulent boundary layers: a refined
measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23 (6), 061701.

BRIGHAM, E.O. 1988 The Fast Fourier Transform and its Applications. Prentice-Hall Signal Processing
Series, vol. 1. Prentice Hall.

CHEN, C. & HE, L. 2022 On locally embedded two-scale solution for wall-bounded turbulent flows. J. Fluid
Mech. 933, A47.

CHIARINI, A., MAURIELLO, M., GATTI, D. & QUADRIO, M. 2022 Ascending–descending and
direct–inverse cascades of Reynolds stresses in turbulent Couette flow. J. Fluid Mech. 930, A9.

CHO, M., HWANG, Y. & CHOI, H. 2018 Scale interactions and spectral energy transfer in turbulent channel
flow. J. Fluid Mech. 854, 474–504.

CIMARELLI, A., DE ANGELIS, E., JIMÉNEZ, J. & CASCIOLA, C.M. 2016 Cascades and wall-normal fluxes
in turbulent channel flows. J. Fluid Mech. 796, 417–436.

DOGAN, E., ÖRLÜ, R., GATTI, D., VINUESA, R. & SCHLATTER, P. 2019 Quantification of amplitude
modulation in wall-bounded turbulence. Fluid Dyn. Res. 51 (1), 011408.

958 A37-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.103


Separating large-scale superposition and modulation in turbulent channels

DUVVURI, S. & MCKEON, B.J. 2015 Triadic scale interactions in a turbulent boundary layer. J. Fluid Mech.
767, R4.

EITEL-AMOR, G., ÖRLÜ, R. & SCHLATTER, P. 2014 Simulation and validation of a spatially evolving
turbulent boundary layer up to ReΘ = 8300. Intl J. Heat Fluid Flow 47, 57–69.

FLORES, O. & JIMÉNEZ, J. 2006 Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid
Mech. 566, 357–376.

FLORES, O. & JIMÉNEZ, J. 2010 Hierarchy of minimal flow units in the logarithmic layer. Phys. Fluids
22 (7), 071704.

FOROOGHI, P., STROH, A., SCHLATTER, P. & FROHNAPFEL, B. 2018 Direct numerical simulation of flow
over dissimilar, randomly distributed roughness elements: a systematic study on the effect of surface
morphology on turbulence. Phys. Rev. Fluids 3 (4), 044605.

GANAPATHISUBRAMANI, B., HUTCHINS, N., MONTY, J.P., CHUNG, D. & MARUSIC, I. 2012 Amplitude
and frequency modulation in wall turbulence. J. Fluid Mech. 712, 61–91.

DE GIOVANETTI, M., HWANG, Y. & CHOI, H. 2016 Skin-friction generation by attached eddies in turbulent
channel flow. J. Fluid Mech. 808, 511–538.

HERNÁNDEZ, C.G., YANG, Q. & HWANG, Y. 2022 Generalised quasilinear approximations of turbulent
channel flow. Part 2. Spanwise triadic scale interactions. J. Fluid Mech. 944, A34.

HOYAS, S. & JIMÉNEZ, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to Reτ = 2003.
Phys. Fluids 18 (1), 011702.

HUTCHINS, N. 2014 Large-scale structures in high Reynolds number wall-bounded turbulence. In Progress in
Turbulence V, Springer Proceedings in Physics, vol. 149, pp. 75–83. Springer.

HUTCHINS, N. & MARUSIC, I. 2007a Evidence of very long meandering features in the logarithmic region
of turbulent boundary layers. J. Fluid Mech. 579, 1–28.

HUTCHINS, N. & MARUSIC, I. 2007b Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc.
Lond. A 365 (1852), 647–664.

HWANG, J., LEE, J., SUNG, H.J. & ZAKI, T.A. 2016 Inner–outer interactions of large-scale structures in
turbulent channel flow. J. Fluid Mech. 790, 128–157.

HWANG, J. & SUNG, H.J. 2017 Influence of large-scale motions on the frictional drag in a turbulent boundary
layer. J. Fluid Mech. 829, 751–779.

IACOBELLO, G., RIDOLFI, L. & SCARSOGLIO, S. 2021 Large-to-small scale frequency modulation analysis
in wall-bounded turbulence via visibility networks. J. Fluid Mech. 918, A13.

JACOBI, I., CHUNG, D., DUVVURI, S. & MCKEON, B.J. 2021 Interactions between scales in wall turbulence:
phase relationships, amplitude modulation and the importance of critical layers. J. Fluid Mech. 914, A7.

JEONG, J., HUSSAIN, F., SCHOPPA, W. & KIM, J. 1997 Coherent structures near the wall in a turbulent
channel flow. J. Fluid Mech. 332, 185–214.

JIMÉNEZ, J. 2012 Cascades in wall-bounded turbulence. Annu. Rev. Fluid Mech. 44 (1), 27–45.
JIMÉNEZ, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.
KAWATA, T. & ALFREDSSON, P.H. 2019 Scale interactions in turbulent rotating planar Couette flow: insight

through the Reynolds stress transport. J. Fluid Mech. 879, 255–295.
KAWATA, T. & TSUKAHARA, T. 2021 Scale interactions in turbulent plane Couette flows in minimal domains.

J. Fluid Mech. 911, A55.
KIM, K.C. & ADRIAN, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417–422.
KLINE, S.J., REYNOLDS, W.C., SCHRAUB, F.A. & RUNSTADLER, P.W. 1967 The structure of turbulent

boundary layers. J. Fluid Mech. 30 (4), 741–773.
KWON, Y. & JIMÉNEZ, J. 2021 An isolated logarithmic layer. J. Fluid Mech. 916, A35.
LEE, M. & MOSER, R.D. 2015 Direct numerical simulation of turbulent channel flow up to Reτ ≈ 5200.

J. Fluid Mech. 774, 395–415.
LEE, M. & MOSER, R.D. 2018 Extreme-scale motions in turbulent plane Couette flows. J. Fluid Mech.

842, 128–145.
LEE, M. & MOSER, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high

Reynolds number. J. Fluid Mech. 860, 886–938.
LUCHINI, P., MANZO, F. & POZZI, A. 1991 Resistance of a grooved surface to parallel flow and cross-flow.

J. Fluid Mech. 228, 87–109.
LUCHINI, P. & QUADRIO, M. 2006 A low-cost parallel implementation of direct numerical simulation of wall

turbulence. J. Comput. Phys. 211 (2), 551–571.
MARUSIC, I., MATHIS, R. & HUTCHINS, N. 2010a High Reynolds number effects in wall turbulence. Intl

J. Heat Fluid Flow 31 (3), 418–428.
MARUSIC, I., MATHIS, R. & HUTCHINS, N. 2010b Predictive model for wall-bounded turbulent flow. Science

329 (5988), 193–196.

958 A37-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.103


A. Andreolli, D. Gatti, R. Vinuesa, R. Örlü and P. Schlatter

MARUSIC, I. & MONTY, J.P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51 (1),
49–74.

MATHIS, R., HUTCHINS, N. & MARUSIC, I. 2009 Large-scale amplitude modulation of the small-scale
structures in turbulent boundary layers. J. Fluid Mech. 628, 311–337.

MATHIS, R., HUTCHINS, N. & MARUSIC, I. 2011a A predictive inner–outer model for streamwise turbulence
statistics in wall-bounded flows. J. Fluid Mech. 681, 537–566.

MATHIS, R., MARUSIC, I., CHERNYSHENKO, S.I. & HUTCHINS, N. 2013 Estimating wall-shear-stress
fluctuations given an outer region input. J. Fluid Mech. 715, 163–180.

MATHIS, R., MARUSIC, I., HUTCHINS, N. & SREENIVASAN, K.R. 2011b The relationship between the
velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary
layers. Phys. Fluids 23 (12), 121702.

MIZUNO, Y. & JIMÉNEZ, J. 2013 Wall turbulence without walls. J. Fluid Mech. 723, 429–455.
MONKEWITZ, P.A. & NAGIB, H.M. 2015 Large-Reynolds-number asymptotics of the streamwise normal

stress in zero-pressure-gradient turbulent boundary layers. J. Fluid Mech. 783, 474–503.
MONTY, J.P., STEWART, J.A., WILLIAMS, R.C. & CHONG, M.S. 2007 Large-scale features in turbulent

pipe and channel flows. J. Fluid Mech. 589, 147–156.
ÖRLÜ, R. & ALFREDSSON, P.H. 2012 Comment on the scaling of the near-wall streamwise variance peak in

turbulent pipe flows. Exp. Fluids 54 (1), 1431.
PASCARELLI, A., PIOMELLI, U. & CANDLER, G.V. 2000 Multi-block large-eddy simulations of turbulent

boundary layers. J. Comput. Phys. 157 (1), 256–279.
PIROZZOLI, S., BERNARDINI, M. & ORLANDI, P. 2011 Large-scale motions and inner/outer layer interactions

in turbulent Couette–Poiseuille flows. J. Fluid Mech. 680, 534–563.
RUSSO, S. & LUCHINI, P. 2017 A fast algorithm for the estimation of statistical error in DNS (or experimental)

time averages. J. Comput. Phys. 347, 328–340.
SANDHAM, N.D., JOHNSTONE, R. & JACOBS, C.T. 2017 Surface-sampled simulations of turbulent flow at

high Reynolds number: surface-sampled simulations of turbulent flow. Intl J. Numer. Meth. Fluids 85 (9),
525–537.

SCHLATTER, P. & ÖRLÜ, R. 2010 Quantifying the interaction between large and small scales in wall-bounded
turbulent flows: a note of caution. Phys. Fluids 22 (5), 051704.

SCHLATTER, P., ÖRLÜ, R., LI, Q., BRETHOUWER, G., FRANSSON, J.H.M., JOHANSSON, A.V.,
ALFREDSSON, P.H. & HENNINGSON, D.S. 2009 Turbulent boundary layers up to ReΘ = 2500 studied
through simulation and experiment. Phys. Fluids 21 (5), 051702.

SMITS, A.J., MCKEON, B.J. & MARUSIC, I. 2011 High-Reynolds number wall turbulence. Annu. Rev. Fluid
Mech. 43 (1), 353–375.

STROH, A., HASEGAWA, Y., SCHLATTER, P. & FROHNAPFEL, B. 2016 Global effect of local skin friction
drag reduction in spatially developing turbulent boundary layer. J. Fluid Mech. 805, 303–321.

TANG, Y. & AKHAVAN, R. 2016 Computations of equilibrium and non-equilibrium turbulent channel flows
using a nested-LES approach. J. Fluid. Mech. 793, 709–748.

TOH, S. & ITANO, T. 2005 Interaction between a large-scale structure and near-wall structures in channel flow.
J. Fluid. Mech. 524, 249–262.

VINUESA, R., HITES, M.H., WARK, C.E. & NAGIB, H.M. 2015 Documentation of the role of large-scale
structures in the bursting process in turbulent boundary layers. Phys. Fluids 27 (10), 105107.

ZHANG, C. & CHERNYSHENKO, S.I. 2016 Quasisteady quasihomogeneous description of the scale
interactions in near-wall turbulence. Phys. Rev. Fluids 1 (1), 014401.

ZHOU, Z., XU, C.X. & JIMÉNEZ, J. 2022 Interaction between near-wall streaks and large-scale motions in
turbulent channel flows. J. Fluid Mech. 940, A23.

958 A37-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.103

	1 Introduction
	2 Numerical experiments
	2.1 Suppression of superposition
	2.2 Suppression of modulation
	2.3 Energy-conserving smoothed spectra

	3 Results
	3.1 Suppression of superposition
	3.2 Suppression of modulation

	4 Conclusions
	A Appendix
	References

