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Enhancing solute dispersion in electrically actuated flows has always been a
challenging proposition, as attributed to the inherent uniformity of the flow field
in the absence of surface patterns. Over the years, researchers have focused their
attention towards circumventing this limitation, by employing several fluidic and
geometric modulations. However, the corresponding improvements in solute dispersion
often turn out to be inconsequential. Here we reveal that by exploiting the interplay
between an externally imposed temperature gradient, subsequent electrical charge
redistribution and ionic motion, coupled with the rheological complexities of the fluid,
one can achieve enhancement of up to one order of magnitude of solute dispersion
in a pressure-driven flow of an electrolyte solution. Our results demonstrate that
the complex coupling between thermal, electrical, hydrodynamic and rheological
parameters over small scales, responsible for such exclusive phenomenon, can be
utilized in designing novel thermally actuated microfluidic and bio-microfluidic
devices with favourable solute separation and dispersion characteristics.

Key words: microfluidics

1. Introduction
Integrating multiple fluidic processes into a single platform has become progressively

important in modern lab-on-a-chip devices where separation and mixing often turn
out to be two of the most critical processes (Hunter 1981; Probstein 1994; Stroock
et al. 2002; Ghosal 2004; Stone, Stroock & Ajdari 2004; Masliyah & Bhattacherjee
2006; Whitesides 2006). With the rapid advancement in microfabrication technologies,
a large number of research efforts have been dedicated towards developing strategies
for improved fluidic mixing or separation (Anderson et al. 2000; Glasgow, Batton &
Aubry 2004; Karniadakis, Beskok & Aluru 2005; Zhang, He & Liu 2006; Chang &
Yang 2008; Sugioka 2010; Ghosh & Chakraborty 2012). Towards achieving enhanced
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mixing in microdevices, diffusion and dispersion are undoubtedly the two most
common phenomena. Accordingly, significant research interest in this domain has
developed over the past years, with a vision of employing different flow-actuating
mechanisms as well as geometric alterations in the fluidic pathways, so as to achieve
the desired functionalities.

Although flow actuation using electric fields has wide spectrum of applications in
both engineering and medical domains (Becker & Gärtner 2000; Garcia et al. 2005;
Van Der Heyden, Stein & Dekker 2005; Das, Das & Chakraborty 2006; Das &
Chakraborty 2007; Haeberle & Zengerle 2007; Ohno, Tachikawa & Manz 2008; Berli
2010; Mark et al. 2010; Zhao 2011; Bandopadhyay & Chakraborty 2012; Nguyen
et al. 2013; Goswami et al. 2015; Das et al. 2018), one of the major aspects of the
classical electro-osmotic flow in the presence of homogeneous interfacial conditions is
the existence of the uniform velocity profile which arises when the electrical double
layer (EDL) becomes very thin compared to the channel dimension (Ghosal 2004;
Masliyah & Bhattacherjee 2006). This results in a plug-type velocity distribution,
thus reducing the extent of mixing significantly.

Hydrodynamic dispersion is the band broadening of a solute which mainly arises
from the non-uniformity in the flow field (Taylor 1953; Aris 1956, 1959; Chatwin
1970, 1975; Chatwin & Sullivan 1982; Smith 1982; Barton 1983; Watson 1983;
Mazumder & Das 1992; Ng & Yip 2001; Zholkovskij & Masliyah 2004; Ajdari,
Bontoux & Stone 2006; Ng 2006; Ghosal 2006; Jansons 2006; Sounart & Baygents
2007; Dutta 2008; Datta & Ghosal 2008; Ghosal & Chen 2012; Arcos et al. 2018;
Chu et al. 2019). Under ideal circumstances, the velocity profile of electro-osmotic
flow does not contribute to shear-induced axial dispersion because of the flatness of
the velocity profile as opposed to the case of Poiseuille flow (which is parabolic
in nature) (Gaš, Štědrý & Kenndler 1997; Ghosal 2004; Mukherjee et al. 2019).
However, in practice, any inhomogeneity in the flow condition or flow domain can
give rise to strong perturbation in the flow field, thereby inducing an axial pressure
gradient, which is accompanied by the generation of secondary flow component
in order to maintain the flow continuity. In applications demanding augmented
dispersion, classical electro-osmotic flow is modulated in two ways, either bringing
non-uniformity in the channel geometry or introducing axial variation in the zeta
potential (Ajdari 1995, 1996; Ghosal 2002; Mandal et al. 2015; Ghosh, Mandal &
Chakraborty 2017; Arcos et al. 2018).

Over the years, conventional studies of electrokinetics mainly directed their
focus towards different techniques of flow actuation, energy conversion and zeta
potential measurement under isothermal flow conditions (Levine et al. 1975; Zeng
et al. 2001; Sinton et al. 2002; Brask, Kutter & Bruus 2005; Gao et al. 2005;
Venditti, Xuan & Li 2006; Li, Wong & Nguyen 2009; Mogensen et al. 2009; Das &
Chakraborty 2010; Bandopadhyay & Chakraborty 2011; Li, Wong & Nguyen 2011).
The corresponding literature for non-isothermal flow is relatively scarce because of
the lack of understanding of the physics involved. In non-isothermal systems, several
complexities come into the picture. First, the modulated thermo-physical properties
of an electrolyte solution, like viscosity, electrical permittivity, thermal conductivity,
ionic diffusivity and thermophoretic mobility, in the presence of a thermal gradient,
strongly influence the fluid motion. Besides this alteration in hydrodynamics, an
additional contribution of dielectrophoretic body force due to permittivity variation,
accompanied by an induced axial pressure gradient, comes into play in addition to the
conventional electrokinetic forcing, thereby bringing complexity to the flow physics
(Ghonge et al. 2013; Dietzel & Hardt 2017). Additionally, zeta potential, which
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plays a crucial dole in governing the flow physics in electrokinetic flows, no longer
remains constant in the presence of a thermal gradient (Revil et al. 1999; Reppert
2003; Revil, Pezard & Glover 2003; Venditti et al. 2006; Ghonge et al. 2013). Also,
the determination of the temperature field may require a knowledge of other effects
like heat generation due to induced streaming field or viscous dissipation which in
turn affect fluid physical properties and convective contribution to the temperature
distribution. Apart from this, contrary to the conventional electrokinetic studies, the
assumption of mechanical equilibrium of ions within the electrical double layer (under
isothermal conditions) is no longer valid where the effect of thermo-diffusion of ions
needs to be incorporated in the transport equation of ionic species along with other
components (Zhou et al. 2015; Zhang et al. 2019).

The distortion of the local equilibrium of ions in the electrical double layer (EDL)
creates a departure from the classical Boltzmann distribution of ions which has direct
consequences for the potential distribution. This alteration in charge distribution
influences the flow dynamics via electrokinetic forcing, where the intricate coupling
between thermal and electrical effects is already prevalent through the aforesaid
property variation and an additional dielectrophoretic force. Further, in the absence of
any external electric field, the net ionic current turns out to be zero. This condition
is itself another source of nonlinearity in the analysis where both conduction and
streaming current undergo marked alteration under the influence of finite temperature
difference. In addition, it is worth mentioning that, when an electrolyte solution is
subjected to an imposed temperature gradient, a thermoelectric field is induced by
virtue of the movement of ions in response to the thermal driving force, commonly
known as the Soret effect (Ghonge et al. 2013; Zhou et al. 2015; Dietzel & Hardt
2016, 2017; Zhang et al. 2019). Moreover, an additional form of thermoelectric
field can be induced within the system because of the diffusivity difference between
the ions even if their Soret coefficients remain the same. Besides, the mode of
application of thermal gradient can cause significant rearrangement of ions within the
EDL and, hence, the subsequent potential distribution for a transverse temperature
gradient may not necessarily be the same as that for longitudinal temperature
gradient, altering the hydrodynamics in a rather profound manner. Considering
the aforementioned intricacies in coupling thermal, electrical and hydrodynamical
effects in micro-confinements, research efforts towards addressing various aspects of
thermo-solutal convection of electrolyte solutions have turned out to be relatively
inadequate, despite having widespread applications in processes like water treatment,
charge separation, zeta potential determination, waste heat recovery and energy
conversion (Würger 2008, 2010; Sandbakk, Bentien & Kjelstrup 2013; Dietzel &
Hardt 2016; Jokinen et al. 2016; Barragán & Kjelstrup 2017; Dietzel & Hardt 2017;
Li & Wang 2018). As such, the research focus in this domain has been directed
primarily towards incorporating non-isothermal effects as a secondary force in the
alteration of hydrodynamics of simple fluids (Maynes & Webb 2003; Tang et al.
2003; Xuan et al. 2004; Chakraborty 2006; Huang & Yang 2006; Xuan 2008; Garai
& Chakraborty 2009; Sadeghi et al. 2011; Dey, Chakraborty & Chakraborty 2011;
Sánchez et al. 2018). Therefore, except for some limited physical scenarios, such
an exclusive effect has not been utilized to a significant practical benefit (Dietzel &
Hardt 2016, 2017; Zhang et al. 2019).

Recently, incorporation of a thermal gradient has emerged as an alternative tool
in augmenting dispersion where interplay between thermal and electrical effects over
small length scales, almost exclusively, dictates the flow physics (Chen et al. 2005;
Sánchez et al. 2018; Mukherjee et al. 2019). In addition, it may be noted that with
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the emergence of new-generation medical devices, complex bio-fluids have more
prominently come into the paradigm of microfluidics (Das & Chakraborty 2006;
Berli & Olivares 2008; Olivares, Vera-Candioti & Berli 2009; Berli 2010; Zhao &
Yang 2011, 2013). Such fluids exhibit strikingly distinct behaviour compared to the
fluids obeying Newton’s law of viscosity (Owens 2006; Fam, Bryant & Kontopoulou
2007; Moyers-Gonzalez, Owens & Fang 2008; De Loubens et al. 2011; Brust et al.
2013; Silva, Alves & Oliveira 2017). Some recent studies have demonstrated that the
constitutive behaviour of these biological fluids has close resemblance to the rheology
of viscoelastic fluids, and therefore the inclusion of fluid rheology and viscoelasticity
in dispersion characteristics has attracted significant attention lately (Brust et al. 2013;
Arcos et al. 2018; Hoshyargar et al. 2018; Mukherjee et al. 2019). While considering
the thermally induced electrokinetic flow of viscoelastic fluids, an additional source of
nonlinearity crops up as mediated by the constitutive behaviour of the fluid (Afonso,
Alves & Pinho 2009; Coelho, Alves & Pinho 2012; Afonso, Alves & Pinho 2013;
Ghosh & Chakraborty 2015; Ferrás et al. 2016; Ghosh, Chaudhury & Chakraborty
2016; Mukherjee et al. 2017a,b). Moreover, the degree of viscoelasticity, which is
determined using physical properties like fluid viscosity and relaxation time, is a
strong function of the prevalent thermal gradient, augmenting the complexity of the
problem to a large extent (Bautista et al. 2013; Mukherjee et al. 2019).

To the best of our knowledge, dispersion characteristics of thermally induced
electrokinetic transport of complex fluids in microfluidic environments, where the
temperature gradient is solely used for flow manipulation, have not been addressed
in the literature. Here, we report the effect of an external temperature gradient on the
dispersion characteristics of an electrolyte solution in a parallel-plate microchannel.
We subsequently discuss the charge redistribution upon application of the thermal
gradient, subsequent perturbation of the fluid motion and its implications for
hydrodynamic dispersion, considering both Newtonian and viscoelastic fluids. Our
results reveal that by combining some of the electrokinetic, thermal and fluidic
parameters coupled with rheological aspects, it is possible to achieve massively
augmented solute dispersion, while for some combinations significant enhancement
in streaming potential (compared to the solely pressure-driven flow) can also be
obtained. We believe that the present analysis can be used as a fundamental basis in
the design of thermally actuated micro- and bio-fluidic devices demanding improved
solute dispersion where the interplay between electromechanics, thermal effects,
hydrodynamics and rheological aspects in narrow confinement can be coupled together
to a beneficial effect. Additionally, a wide variety of thermal and fluidic problems
can also be approached on the basis of the present theoretical framework (Raj et al.
2002; Das, Chakraborty & Dutta 2004; Chakraborty & Chakraborty 2007; Ghatak &
Chakraborty 2007; Chakraborty & Srivastava 2007; Chakraborty & Padhy 2008).

2. Problem formulation
We consider non-isothermal electrokinetic flow of a binary 1 :1 symmetric electrolyte

solution through a parallel-plate microchannel. We choose a rectangular Cartesian
coordinate system where x and y coordinates represent longitudinal and transverse
directions, respectively, while the origin is placed at the centreline of the channel.
Length scales in the two directions are l and h, respectively, where the half-channel
height (h) is very small compared to the channel length (l), i.e. h� l or β = h/l� 1.
We have employed two different types of thermal gradients: case 1, axially applied
temperature gradient; case 2, temperature gradient applied in the transverse direction
(figure 1).
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FIGURE 1. Schematic of the combined pressure-driven and temperature-gradient-induced
flow of electrolyte solution through a parallel-plate microchannel. (a) Temperature gradient
is applied in the axial direction. (b) Temperature gradient is applied in the transverse
direction.

2.1. Dispersion coefficient: a broad perspective
We consider the hydrodynamic dispersion characteristics of a combined pressure-
driven and thermal-gradient-driven electrokinetic flow of an electrolyte solution.
According to the definition of the band-broadening phenomenon, the hydrodynamic
dispersion coefficient (Deff ) depends on the rate of change of variance of solute
displacement band as Deff =

1
2(d/dt)σ 2(t), where σ 2 is the variance of solute

displacement. This temporal variation with respect to the centroid of the band
depends on the plate height (h′) as h′ = (d/dx′)σ 2(x′), where x′ denotes the location
of the band centroid. Knowledge of the plate height is necessary in determining
the dispersion coefficient because of its ability to incorporate any change in the
variance of the mean concentration. For a band of non-adsorbing solute flowing in
a rectangular channel, the velocity of the centre mass becomes equal to the mean
axial velocity of flow, i.e. uavg = dx′/dt. Using the descriptions of h′ and x′, one can
rewrite the expression of the dispersion coefficient as

Deff = uavgh′/2. (2.1)

Here, uavg is the mean velocity averaged cross-sectionally. As reported in the literature
(Van Deemter, Zuiderweg & Klinkenberg 1956), the plate height is related to the mean
velocity as

h′ = 2D/uavg + (uavgh2
min/8D). (2.2)

In (2.2), hmin is the minimum plate height for a given flow condition and D is
diffusivity. On the right-hand side, the contribution of the molecular diffusion is
represented by the first term while the second term represents the contribution due
to the non-uniformity in the flow field. By following some recent studies (Arcos et al.
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2018; Hoshyargar et al. 2018), we have used the following expression for evaluating hmin:

h2
min =

16
h

∫ h

0

∫ y

0
[{(u/uavg)− 1} dy]2 dy. (2.3)

Combining all this, the dimensionless form of the dispersion coefficient (Deff ) reads as

Deff = 1+ (PeDuavghmin)
2/16, (2.4)

where PeD is the dispersion Peclet number, hmin = hmin/h and uavg = uavg/uc is the
dimensionless average flow velocity with uc being the characteristic velocity scale.

For the sake of brevity, the detailed mathematical expressions for obtaining the
hydrodynamic dispersion coefficient are presented in § A of the supplementary
material, available at https://doi.org/10.1017/jfm.2020.369, which clearly illustrates
the complicated mathematical and physical interplay of the solutal, hydrodynamic and
thermal fields, restrained by the consideration of overall electroneutrality. As clear
from the definition, the dispersion coefficient depends directly on the velocity field,
which in turn is influenced strongly by the charge distribution modulated by external
temperature gradient, mediated by a two-way coupling. The governing equations
delineating the same are discussed in the subsequent subsection.

2.2. Governing equations and boundary conditions
In this section, we first present the governing equation for the temperature distribution.
Unlike conventional streaming-field-induced electrokinetic flow, here temperature (T)
within the microchannel does not remain constant which is given by the following
energy equation:

ρCp

(
u
∂T
∂x
+ v

∂T
∂y

)
=
∂

∂x

(
k
∂T
∂x

)
+
∂

∂y

(
k
∂T
∂y

)
+Qgen +Qvd, (2.5)

where the left-hand side is the advective contribution, the first two terms on the right-
hand side are the conductive contributions, Qgen=σE2

x = (2z2e2Dn∞/kBT)(−∂φ/∂x)2 is
the heat generation term due to the induced streaming field and Qvd=µ[2{(∂u/∂x)2+
(∂v/∂y)2} + (∂u/∂y+ ∂v/∂x)2] − 2

3µ(∇ · v)
2 is the viscous dissipation term with µ=

µref exp[−ω1(T − Tref )] being the fluid viscosity. Parameters ρ and Cp are the density
and specific capacities of the fluid, Ex =−∂φ/∂x is the induced streaming field and
σ is the bulk electrical conductivity, where σ = 2z2e2Dn∞/kBT with z, e, D, n∞ and
kB being the valence of ions, elementary electronic charge, average diffusivity of ions,
bulk ionic number density and Boltzmann constant, respectively. Using the respective
scales of the pertinent variables, the corresponding dimensionless form can be written as

βPeT

(
u
∂θ

∂x
+ v

∂θ

∂y

)
= β2 ∂

∂x

(
k

kref

∂θ

∂x

)
+
∂

∂y

(
k

kref

∂θ

∂y

)
+ β2 εκ2D

kref1Tref

(
kBTC

ze

)2 (
∂φ

∂x

)2

+
µuc

2

kref1Tref

[
2β2

{(
∂u
∂x

)2

+

(
∂v

∂y

)2
}
+

(
∂u
∂y
+ β2 ∂v

∂x

)2
]
, (2.6)

where u = u/uc is the dimensionless axial velocity component, v = vl/(uch)
is the dimensionless transverse velocity component, θ = (T − TC)/1Tref is the
dimensionless temperature, φ = (zeφ)/(kBTC) is the dimensionless potential, ε =
εref exp[−ω2(T − Tref )] is the electrical permittivity and k = kref exp[ω3(T − Tref )]
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is the thermal conductivity of the fluid. Parameters uc and TC = Tref are taken as
characteristic scales of velocity and temperature with 1Tref = (TH − TC)/2 being the
characteristic temperature difference. Here, κ is the inverse of the EDL thickness
and PeT is the thermal Peclet number PeT = uchρCp/kref . The assumptions for
the simplification of the energy equation are described in detail in § A1 of the
supplementary material. For temperature gradient applied in the axial direction, the
simplified non-dimensional equation is

∂

∂x

(
k
∂θ

∂x

)
= 0. (2.7)

This equation is subjected to a low temperature TC at the channel entrance (i.e. at
x= 0) and a high temperature TH at the channel exit (i.e. at x= l).

For the transport of the ionic species, here, in the presence of a thermal gradient,
ions no longer remain in equilibrium and one cannot consider a Boltzmann distribution
assumption while obtaining the potential distribution. One needs to find the ionic
number concentration (ni) first, which can be obtained by employing the classical
Nernst–Planck equation ∇ · Ji = 0, where

Ji = niv −Di∇ni − niDTi∇T − niµi
∗
∇φ. (2.8)

Here, the ionic flux Ji consists of four components: advective (niv), diffusive (Di∇ni),
thermo-diffusive (niDTi∇T) and electro-migrative (niµ

∗

i∇φ) components. Parameter
Di is the diffusivity and DTi and µ∗i = eziDi/(kBT) are the thermophoretic and
electrophoretic mobilities, respectively. The dimensionless form of the Nernst–Planck
equation reads as

β2Pei

(
u
∂ni

∂x
+ v

∂ni

∂y

)
= β2 ∂

∂x

[
Di

D

(
∂ni

∂x
+ niSTiγ

∂θ

∂x

+
zini

1+ γ θ
∂φ

∂x

)]
+
∂

∂y

[
Di

D

(
∂ni

∂y
+ niSTiγ

∂θ

∂y
+

zini

1+ γ θ
∂φ

∂y

)]
, (2.9)

where STi= (DTi/Di)TC is the Soret coefficient of ions, Pei= ucl/D is the ionic Peclet
number, ni = ni/n0 is the non-dimensional ionic number concentration and zi = zi/z
is the dimensionless valence of ions. Potential φ consists of two terms: φ = φ(x) +
ψ(x, y), where φ(x) is the induced streaming field with ψ(x, y) being the potential
induced within EDL. Equation (2.9) is subject to (a) the symmetry condition at the
channel centreline (at y= 0, ∂ni/∂y= 0) and (b) the number density being equal to the
bulk number concentration in the electroneutral region (i.e. ni = ni∞ at ψ = 0). Once
the ionic number concentration is known, one can obtain the potential distribution
using the Poisson equation:

∇ · (ε∇φ)=−ρe =−e
∑

i

zini. (2.10)

The simplified form of the potential distribution is given by

ε
∂2ψ

∂y2 = κ
2
eff sinh

(
ψ

1+ γ θ

)
. (2.11)

The potential distribution described by (2.11) is subject to the temperature-dependent
zeta potential boundary conditions at the channel walls (i.e. at y = ±1, ψ = ψ/ζ =
[1 + Cζγ θ ]). The simplifications of the ionic number concentration and subsequent
potential distribution are presented in detail in § A2 of the supplementary material.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.369


897 A23-8 S. Mukherjee, S. DasGupta and S. Chakraborty

Now, we first address the flow field for Newtonian fluids, to provide as a basis for
comparison. For the same, one can determine the velocity field using the momentum
equation where the above-obtained temperature distribution and potential distribution
are employed:

0=−∇p+∇ ·µ[∇v + (∇v)T] + FEK + FDEP. (2.12)

The left-hand side of (2.12) is zero because the flow is in the inertial regime
(Re � 1). Here, p is the hydrodynamic pressure, µ[∇v + (∇v)T] the viscous
stress, FEK = −ρe∇φ the electrokinetic force and FDEP = −(1/2)(∇φ)2∇ε the
dielectrophoretic force. The simplifications for the velocity distribution are discussed
in detail in § A3 of the supplementary material. The simplified form of the two
components of the momentum equation reads as

x-component : 0=−
∂p
∂x
+µ

∂2u
∂y2 +

λε

κ2
eff

[
∂2ψ

∂y2

∂φ

∂x
+

1
2
γCε

(
∂ψ

∂y

)2
∂θ

∂x

]
,

y-component : 0=−
∂p
∂y
+
λε

κ2
eff

∂2ψ

∂y2

∂ψ

∂y
.

 (2.13)

In (2.13), the parameter λ is the ratio of the induced velocity due to osmotic pressure
to the characteristic flow velocity. Now, we use the no-slip condition at the channel
wall (i.e. at y= 1, u= 0) and symmetry condition at the channel centreline (at y= 0,
∂u/∂y= 0) to obtain the velocity profile. For the completeness of the flow field, one
needs to evaluate the streaming potential induced by the combined action of imposed
pressure gradient and temperature gradient by using the electroneutrality constraint,
i.e. Inet = Istreaming + Iadvection = 0.

The final part of the present study is to highlight the effect of fluid viscoelasticity
on the hydrodynamic dispersion coefficient for which the constitutive equation of the
simplified Phan-Thien–Tanner (sPTT) model has been used. The stress components of
the sPTT model take the following form (Afonso et al. 2009; Bautista et al. 2013;
Arcos et al. 2018):

2µeff
∂u
∂x
= Fτxx + λeff

(
u
∂τxx

∂x
+ v

∂τxx

∂y
− 2

∂u
∂x
τxx − 2

∂u
∂y
τyx

)
,

2µeff
∂v

∂y
= Fτyy + λeff

(
u
∂τyy

∂x
+ v

∂τyy

∂y
− 2

∂v

∂x
τxy − 2

∂v

∂y
τyy

)
,

µeff

(
∂u
∂y
+
∂v

∂x

)
= Fτxy + λeff

(
u
∂τxy

∂x
+ v

∂τxy

∂y
−
∂u
∂y
τyy −

∂v

∂x
τxx

)
,


(2.14)

where F = 1 + δλeff (τxx + τyy)/µeff is the stress coefficient function with δ being the
extensibility of the fluid and λeff = λref exp[−ω4(T − Tref )] the fluid relaxation time.

3. Solution methodology
For a temperature gradient applied in the axial direction, we have obtained

both exact solutions and approximate analytical solutions, while for a transverse
temperature gradient, approximate analytical solution and numerical solution are
obtained. For an approximate analytical solution, an asymptotic approach has been
followed where any variable ϕ can be expanded as

ϕ = ϕ0 + γ ϕ1 + γ
2ϕ2, (3.1)
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where γ = 1T/TC is the thermal perturbation parameter which is the ratio of the
imposed temperature difference to the cold-side temperature. Therefore, γ → 0
represents the isothermal condition. To check the validity of the asymptotic solution,
we have compared it with the exact solution (for axial thermal gradient) and numerical
solutions (for transverse thermal gradient) and the upper limit of γ has been fixed
accordingly. This comparison is shown in § C2 of the supplementary material.

4. Results and discussion
Since this analysis involves a large set of parameters, numerous results can be

obtained by combining all pertinent parameters. However, for improved readability, we
have highlighted some key results involving velocity distribution, induced streaming
potential, volumetric flow rate and finally the dispersion coefficient (which in turn
depends on previous parameters). For representing the results, we have employed some
dimensionless parameters. These parameters along with their expressions, physical
significance and typical ranges are given in table 1.

The reason for choosing the range of the dimensionless parameters is discussed in
§ C1 of the supplementary material.

4.1. Effect of axial temperature gradient
In figure 2, the variation of streaming potential ratio (Er) is plotted against some
key parameters. Here, Er is defined as the ratio of the streaming potential induced
due to the combined action of externally imposed thermal and pressure gradients
to that induced due to the sole action of pressure gradient. While realizing the
alteration in the flow field upon applying a thermal gradient, one can expect the
effect of the electrical permittivity variation induced dielectrophorteic force on the
flow field by inducing an axial pressure gradient, i.e. osmotic pressure gradient due to
excess charge redistribution. Also, further source of alteration is expected through the
physical property variation where these properties depend strongly on the temperature
distribution thereby influencing strongly the fluid motion. However, the description of
the flow physics is not completed here because one needs to look into the inherent
temperature dependence of the ionic species. This contribution comes into the picture
via the ionic species transport, typically known as the Soret effect. The movement
of the ionic species in a thermal gradient is a response subject to the imposed
temperature gradient. This effect is incorporated through the thermo-diffusion term
(niDTi∇T) in the Nernst–Planck equation (the dimensionless form of Nernst–Planck
equation is shown by equation (S9) of the supplementary material) where the Soret
coefficient (STi = DTi/Di = Qi/kBT2) depends on the heat of transport of ions (Qi).
Here, Qi is the quantification of the degree of sensitivity of ionic mobility with
temperature, i.e. thermophoretic mobility of ions. Now, let us first consider the
sole action of the Soret effect on the flow dynamics by assuming the absence of
any other pertinent forces. A positive value of Qi suggests that ions should have
a propensity to move towards the cold region from the hot region and as a result
a thermoelectric field should be induced in the same direction while role reversal
should be observed for negative Qi. Interestingly, the conventional streaming field
arising from the imposed pressure gradient is induced in the reverse direction to
the applied pressure gradient, i.e. from the hot region to the cold region. So, the
thermal-gradient-induced thermoelectric streaming field (assuming positive value of
Qi) seems to act in the same direction as the pressure-gradient-induced streaming field
and intuition tells us that the combined action of these two gradients should result in
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Dimensionless Expression Physical significance Typical range
parameters of parameters

γ γ =1T/TC Thermal perturbation 0 6 γ 6 0.1
parameter

Cµ Cµ =−(1/µ)(∂µ/∂T)TC Relative sensitivity of fluid 10−1 6 Cµ 6 10
viscosity with temperature

Cε Cε =−(1/ε)(∂ε/∂T)TC Relative sensitivity of fluid 10−1 6 Cε 6 10
electrical permittivity with

temperature
Ck Ck = (1/k)(∂k/∂T)TC Relative sensitivity of fluid Ck = 1

thermal conductivity with
temperature

χ χ = (D+ −D−)/(D+ +D−) Diffusivity difference −0.3 6 χ 6 0
between ions

1ST 1ST = (ST+ − ST−) Difference in Soret 0 61ST 6 1
coefficients between ions

−∂p0/∂x −∂p0/∂x= (−∂p0/∂x)(h2/µuc) Strength of imposed 0 6−∂p0/∂x 6 10
pressure gradient

κ0 κ0 =

(√
2n∞z2e2

εref kBT

)
h Inverse of the EDL 1 6 κ0 6 10

thickness (determines
degree of confinement)

CD CD = (1/D)(∂D/∂T)TC Relative sensitivity of 0 6 CD 6 5
diffusivity of ions with

temperature
Cζ Cζ = (1/ζref )(∂ζ/∂T)TC Relative sensitivity of zeta 0 6 Cζ 6 4

potential with temperature
De (Deborah De= λrefκref uc Relative sensitivity of 0 6 De 6 1
number) elastic and viscous effects
Cλ Cλ =−(1/λR)(dλR/dT)TC Relative sensitivity of fluid 0.25 6 Cλ 6 3

relaxation time with
temperature

TABLE 1. The dimensionless parameters, their expressions, physical significance and
typical ranges.

an enhancement of the net induced streaming potential. However, the situation does
not remain the same if there is a difference in thermophoretic mobilities between
the co-ions (here negative ions) and counter-ions (positive ions). The extent of
thermophobic behaviour, i.e. the tendency of ions to move away from the hot region,
can change depending on the difference in the thermophoretic mobilities (1ST)
between cations and anions. Increasing 1ST indicates higher heat of transport of
counter-ions compared to co-ions, so the counter-ions are more likely to move towards
the cold region than the co-ions. This leads to a clear axial separation between the
ions and gives rise to an accumulation of the counter-ions in the upstream section, i.e.
in the cold region. This induces a form of thermoelectric field downstream (because
of 1ST) while another form of it is formed upstream (because of the sole action of
the Soret effect). Hence, the net streaming field (due to combined pressure-driven
and temperature-gradient-induced flow) depends on the relative strength of these two
counteracting thermoelectric fields. For very low value of 1ST , these two opposing
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FIGURE 2. Dependence of streaming potential ratio (Er) on (a) 1ST , (b) χ , (c) Cµ,
(d) Cε, (e) γ and ( f ) κ0.

factors are comparable to each other and the streaming potential ratio (Er) is close
to unity up to 1ST = 0.05. As one starts increasing 1ST , the effect of 1ST-induced
streaming field overshadows the temperature-gradient-induced streaming field and net
streaming potential ratio experiences a massive reduction. For higher 1ST , the effect

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.369


897 A23-12 S. Mukherjee, S. DasGupta and S. Chakraborty

becomes so pronounced that it completely nullifies the pressure-gradient-induced
streaming field (shown by the red solid line in figure 2a).

Now, we look into the expression of the bulk number density of ions which
reads as (∂ ln ni/∂x) = −STi(∂θ/∂x)γ (equation (S11) of the supplementary material,
where x is the dimensionless axial coordinate, x = x/l; ni the dimensionless bulk
number concentration, ni = ni/n0; STi the dimensionless Soret coefficient of ions,
STi = (DTi/Di)TC; and θ the dimensionless temperature, θ = (T − TC)/1Tref ), which
clearly tells us that the application of the external 1T in the positive x direction
induces an axial concentration gradient of ions in the opposite direction, i.e. from the
hot region to the cold region. The concentration gradient (∂ni/∂x) creates a migration
of the ions towards the upstream section. Now, we focus our attention towards the
definition of the parameter χ = (D+ − D−)/(D+ + D−) which is an indicator of the
diffusivity difference between the cations and anions. A positive value of χ implies
that the diffusivity of cations (here counter-ions) is higher than that of anions which
leads to more migration of counter-ions upstream. As a result, there will be an
accumulation of counter-ions upstream, while downstream there will be more co-ions.
This segregation of ions in different axial locations creates an axial separation between
them thus creating a stronger induced streaming field. A negative value of χ means
more mobility of anions thereby leading to more accumulation of co-ions in the
upstream section resulting in a weaker streaming field. Here we show the variation
of streaming potential ratio (Er) for χ ranging from −0.2 to 0 (figure 2b). Here, the
value of χ is ion-specific. For typical electrolyte solutions like aqueous KCl, NaCl
and LiCl, the value of χ ranges between −0.3 and 0 (approximately) (Zhang et al.
2019) and we have chosen the range of χ accordingly when presenting the results.

On closely observing the governing equations involving velocity profile and induced
streaming field (equations (S21) and (S26) of the supplementary material), one can
understand that the contribution of Cµ comes through the viscous resistance term in
the fluid advective motion and the subsequent advective current calculation involved
in the electroneutrality condition. Since Cµ indicates the temperature sensitivity of
viscosity with temperature, increasing Cµ means viscosity becomes more susceptible
to any change in temperature thus resulting in a strong reduction in fluid viscosity.
Therefore, the viscous resistance to the flow reduces to a great extent. Thus, the
induced streaming field due to migration of ions upon applying a pressure gradient
and the streaming field due to migration of ions with induced concentration gradient
assist each other (both are induced in the direction from the hot region to the cold
region) resulting in significant augmentation in the streaming potential ratio (Er).
Here, increasing Cµ from 1 to 10 results in ∼3 times (shown by the green solid line)
augmentation of the streaming potential ratio (Er), as seen in figure 2(c).

Now, examining the equation describing the potential distribution (equation (S13)
of the supplementary material), it can be observed that unlike the conventional
electrokinetic problem, here the EDL thickness (λD) no longer remains constant.
Instead, the effective EDL thickness (λDeff ) becomes a strong function of temperature
and departs significantly from its reference value (of isothermal condition) in the

following way: λDeff = λD0

√
exp{−γ θ(Cε − STavg)}. Keeping other parameters fixed,

with increasing Cε (which is the temperature sensitivity of the electrical permittivity)
streaming potential ratio (Er) decreases sharply by following an exponential thinning
behaviour. Since electrical permittivity decreases with temperature, the thickness of
the EDL also decreases which results in less penetration of diffuse layer of the
EDL to the bulk, so greater is the region of electroneutrality (which means the
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region where there is equal number of counter-ions and co-ions). Now, the strength
of streaming current involved in the streaming potential estimation depends on this
degree of penetration. In the region 10−1 6 Cε 6 1, the rate of reduction of Er with
Cε is not significant: it decreases slightly from 1.2 to 1.1. However, this reduction
becomes amplified beyond Cε ∼ 1; Er decreases sharply and falls to ∼0.2 at Cε = 10
(figure 2d).

For fixed value of the factors mentioned above, like 1ST , χ , Cµ and Cε, since this
analysis is restricted up to order γ , a linear dependence is expected of perturbation
parameter on flow field and streaming potential. In figure 2(e), Cζ indicates the
relative sensitivity of zeta potential with temperature. For constant zeta potential
(Cζ = 0), Er is increased up to ∼1.12 times as γ varies from 0 to 0.1. However, for
temperature-dependent zeta potential, its enhanced sensitivity with temperature results
in a significant increase of streaming potential where Er increases up to ∼1.3 and
∼1.85 times for Cζ = 1 and Cζ = 4, respectively (figure 2e).

Now, the degree of confinement is incorporated within the parameter κ0, i.e. inverse
of the thickness of the EDL. The variation of streaming potential ratio (Er) with κ0
is shown in figure 2( f ). Increasing κ0, on the one hand, increases the region of
electroneutrality (ensuring a reduction of streaming current), while on the other hand,
the strength of acting electrokinetic forces becomes modulated and net Er is decided
by these two factors. For the case of constant zeta potential (i.e. Cζ = 0), Er first
decreases with κ0 up to κ0 = 1.7, then increases slowly up to κ0 = 3, beyond which
it falls sharply resulting in only ∼1.12 times increase of Er at higher κ0 (κ0 = 10).
However, the presence of amplified zeta potential (for temperature-dependent zeta
potential case, i.e. Cζ = 1) means role reversal of κ0 as Er first increases with κ0
in the region 1 6 κ0 6 3.9, beyond which similar decaying behaviour (as seen for
Cζ = 0) with κ0 is observed (figure 2f ).

Now we recall the boundary condition involved in evaluating the potential
distribution, i.e. where ψ = ψ/ζ is the dimensionless zeta potential ψ = [1+ Cζγ θ ].
Instead of being constant, zeta potential gradually develops in the axial direction.
Any alteration in the zeta potential creates a perturbation in the near-wall fluid
velocity and affects the adjacent layer of flow through viscous interaction. This axial
variation of zeta potential affects the fluid momentum transport by generating a
secondary component of flow. Overall, one important conclusion from figure 2 is
that as far as the thermoelectric energy conversion is concerned, the inclusion of
temperature-dependent zeta potential should be necessary else this could lead to a
grossly erroneous estimation of induced streaming potential.

Figure 3 mainly highlights the effect of two parameters, Cε and 1ST , on the
velocity distribution both in the absence and in the presence of external pressure
gradient. In the absence of pressure gradient, the flow physics is solely governed
by the external temperature difference and the velocity profile here follows uniform
plug-type distribution (evident in both figures 3a and 3c) which is also typically
observed in purely electro-osmotic flows. As one starts introducing pressure gradient
(−∂p0/∂x = 0.001), departure from uniformity in flow field is noticeable and at
higher strength of pressure gradient (−∂p0/∂x= 0.01), velocity distribution becomes
parabolic similar to Poiseuille flow. At higher strength, the effect of pressure gradient
becomes so dominant that it dictates the flow physics where the effect of thermal
gradient becomes overshadowed. As already discussed, keeping other parameters
constant, increasing Cε results in higher sensitivity of electrical permittivity with
temperature which results in attenuation of the EDL thickness thus leading to a
reduction in the streaming current and the induced streaming field. So, the strength
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FIGURE 3. Velocity profile in the y direction (a) in the absence and (b) in the presence
of pressure gradient for different Cε. Variation of the same (c) in the absence and (d) in
the presence of pressure gradient for different 1ST (evaluated at x= 1).

of streaming-field-driven back electro-osmotic flow also decreases thereby resulting
in an enhancement in the magnitude of the net flow velocity. In the absence of
pressure gradient, an increment of ∼1.8 times can be observed as one increases Cε

from 1 to 5. Now, the rate of increase in velocity magnitude upon increasing Cε gets
damped as one introduces pressure gradient where an increase up to ∼1.54 times
and ∼1.14 times in flow velocity magnitude are observed for −∂p0/∂x = 0.001 and
−∂p0/∂x = 0.01, respectively, as seen in figure 3(b). Increasing pressure gradient
beyond 0.01 makes it so dominant that the effect of Cε becomes indistinguishable
(inset of figure 3b).

The effect of 1ST on the velocity field is shown in figures 3(c) and 3(d) where
increasing 1ST signifies increasing heat of transport of counter-ions creating enhanced
axial separation of ions. The resulting thermoelectric streaming field acts in the
opposite direction to that induced due to concentration gradient (which is induced
due to external 1T)-driven migration of ions thus leading to a suppression of the
net streaming field and reverse electrokinetic flow. As a result, augmentation up to
∼1.9 times in velocity magnitude is seen as 1ST varies from 0 to 1. Here also, with
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FIGURE 4. (a) Dependence of the dispersion coefficient ratio (Deff ) on Cµ. (b) Variation
of the dispersion coefficient ratio (Deff ) with γ for varying strength of imposed pressure
gradient. Insets I and II show the average velocity values of leading order and O(γ ) with
γ for three different values of non-dimensional pressure gradient (0, 10−3 and 10−2).

growing pressure gradient, its effect on the flow field starts to become important thus
suppressing the effectiveness of 1ST . As clear from figure 3(d), as pressure gradient
is increased 10-fold (−∂p0/∂x = 0.01), velocity magnitude with 1ST is increased
only up to ∼1.15 times (while for −∂p0/∂x= 0.001, this ratio is ∼1.6). Beyond this,
the effect of 1ST on the flow field becomes inconsequential (evident from the inset).

Figure 4 highlights the dependence of the dispersion coefficient ratio (Deff ) on the
parameters involved, where Deff is the ratio of the net dispersion resulting from the
combined action of two driving forces, pressure gradient and thermal gradient, with
respect to that arising from the sole action of pressure gradient. From the definition
of hydrodynamic dispersion coefficient (see (2.4)), it is clearly evident that any
small change in the flow field results in introduction of higher perturbation in the
dispersion coefficient as compared to the net volumetric throughput. This is because
the estimation of dispersion coefficient involves parameters like non-dimensional
average velocity and plate height, where the plate height further depends on the
square of the mean velocity thus showing strong dependence on the flow field.
In contrast to Poiseuille flow, in the case of electro-osmotic flow, because of the
uniformity in flow field, the main contribution of solute dispersion in the absence of
shear-induced dispersion comes from molecular diffusional dispersion thus resulting
in lower extent of dispersion. Since pressure-driven flow of electrolyte induces an
electro-osmotic flow in the reverse direction, the combined effect of these two results
in reduction of the net dispersion coefficient. However, in the presence of an external
thermal gradient, the induced thermoelectric streaming field may aid or oppose the
pressure-gradient-induced streaming field depending on the different fluidic conditions
or parameters as discussed earlier. A typical variation of dispersion coefficient ratio
(Deff ) with Cµ is illustrated in figure 4(a). Evaluated at γ = 0.1, Deff obeys a linear
relationship with Cµ at the initial stages (for 1 6 Cµ 6 2), then increases abruptly to
experience a pronounced amplification of dispersion coefficient ratio as an increase
of ∼4.5 times in Deff with Cµ can be seen from figure 4(a).

The variation of Deff with γ is shown in figure 4(b), where γ is the ratio of the
imposed temperature difference to the cold-side temperature which determines the
degree of thermal perturbation to the flow field. In insets I and II of figure 4(b), we
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have presented the dimensionless average velocity variations for leading order (u0avg,
which represents the sole effect of pressure gradient) and first-order degree O(γ ) of
perturbations (u1avg, which shows the effect of thermal perturbation). The red dotted
line in inset II shows the dependence of the average velocity for purely thermally
(1T) driven flow (i.e. −∂p0/∂x = 0). In the insets, results are shown for increasing
strength of pressure gradient (−∂p0/∂x, dimensionless) starting from 0 to 10−2 (three
values of −∂p0/∂x are chosen: 0, 10−3 and 10−2). For O(γ ) average velocity u1avg,
an increase in the slope with increasing pressure gradient can be noticed. However,
when one compares insets I and II, one can understand that the rate of enhancement
of the average velocity magnitude with increasing −∂p0/∂x is higher in leading order
(i.e. u0avg) as compared to the increase in O(γ ) average velocity (i.e. u1avg). Since
the dispersion coefficient is directly related to the square of the average velocity, it is
reflected in the variation of Deff with γ . With increasing strength of pressure gradient,
although the net magnitude of dispersion coefficient becomes lower, its sensitivity
with thermal perturbation parameter γ increases and at −∂p0/∂x= 10, Deff increases
from ∼1.16 times to ∼1.19 times as γ changes from 0 to 0.1 (shown by blue dotted
line), while at lower pressure gradient it remains constant at Deff ∼ 2 at −∂p0/∂x= 0.1
(shown by red solid line).

Another important parameter influencing the flow physics is the degree of channel
confinement (κ0), depending on which the interacting forces may become predominant
or become insignificant. The effect of κ0 on dispersion coefficient ratio (Deff ) is
demonstrated in figure 5. Irrespective of the degree of thermal perturbation (value of
γ ), here Deff decreases gradually with increasing κ0, and beyond a critical value of κ0,
it reaches a constant value where this magnitude becomes higher with increasing γ
with saturation occurring relatively earlier (figure 5a). The reduction in the streaming
current and resulting streaming potential with increasing Cε leads to an increase in
dispersion coefficient as Deff rises to ∼1.29 from 1.22 as Cε is changed from 1
to 10 (evaluated at γ = 0.1, as shown in figure 5b). The dependence with κ0 for
varying Cε is similar to figure 5(a) where, after decaying gradually, Deff approaches a
constant value at higher κ0 with saturation occurring later at higher γ . Also, at higher
γ , the influence of Cε on dispersion coefficient is greater because of strengthened
thermoelectric perturbation. In figure 5(c), variation of the same with κ0 is shown
with varying Cµ for two different strengths of pressure gradient. For lower strength
(−∂p0/∂x = 1), Deff first decreases with κ0 for lower Cµ and approaches a constant
value beyond κ0 = 2.3, while role reversal is observed for higher Cµ (with saturation
occurring later) because of pronounced reduction of flow resistance. For higher
strength (−∂p0/∂x = 10), the variation of Deff with κ0 remains unaffected for lower
Cµ, while at higher Cµ, after increasing gradually with κ0, Deff reaches a constant
value of ∼4.5 later at κ0 = 5.2. Overall, the magnitude of Deff always remains much
higher compared to unity because of easier actuation of flow owing to lesser viscous
resistance. At lower strength of pressure gradient (i.e. −∂p0/∂x= 1), the reduction of
streaming potential with thermophoretic mobility difference (1ST) is reflected through
the enhancement of Deff with increasing 1ST as depicted in figure 5(d), although the
influence is very weak. At higher strength (shown in the inset of figure 5d), trends
are similar where the magnitude of Deff is reduced from ∼2.005 to ∼1.97 as seen in
figure 5(d).

4.2. Effect of transverse temperature gradient
Both the cases of axially applied temperature gradient and temperature gradient
applied in the transverse direction are of fundamental importance as far as the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.369


Augmentation of solute dispersion in viscoelastic micro-flows 897 A23-17

100

100 101 

-̊
0

101100
-̊

0
101

100 101100 101

2.005

2.003
Cµ = 10
Cµ = 5
Cµ = 1

C´ = 10
C´ = 5
C´ = 1

C´ = 10
C´ = 5
C´ = 1

2.001

1.999

D-
ef

f
D-

ef
f

D-
ef

f

D-
ef

f
D-

ef
f

D-
ef

f

-̊
0 = 4.5

-̊
0 = 4.5

-̊
0 = 5.4

-̊
0 = 3.8

-̊
0 = 5.2

-̊
0 = 3.1

© = 0.1
© = 0.05
© = 0.025

-̊
0 = 2.3

Const.

Const.

Const.

Const.
Const.

Const.

Const.

Const.

Const.

-™p-0/™x- = 0.1

-™p-0/™x- = 1

ÎS-T = 1
ÎS-T = 0

1.97

1.96

1.95

2.2

2.1

2.0

1.9

-™p-0/™x- = 1

-™p-0/™x- = 105

3

1

1.22(a) (b)

(c) (d)

1.20

1.18

1.16

1.22

1.20

1.18

1.16

1.30

1.25

1.20

© = 0.05

© = 0.1

FIGURE 5. Variation of dispersion coefficient ratio with κ0 for different (a) γ , (b) Cε,
(c) Cµ and (d) 1ST .

hydrodynamic dispersion characteristics are concerned. For the sake of conciseness,
we have presented the results for the transverse thermal gradient in § D of the
supplementary material.

4.3. Effect of fluid rheology
The inclusion of the effect of rheological aspects of fluid on streaming potential is
highlighted in figure 6 where the variation of the streaming potential ratio (Er) with
Deborah number (De) is shown in the case of an axially applied thermal gradient.
For simplicity of analysis, here we have chosen dilute polymeric solution mixed with
electrolyte (aqueous solutions of well-known polymers like polyethylene oxide or
polyacrylamide can be taken as examples) as a reference viscoelastic fluid. If the
polymer concentration remains below a certain threshold concentration (commonly
known as cross-over or overlap concentration), no interaction between the polymer
chains can take place and we can assume the solution to belong within the dilute
regime (Tirtaatmadja, McKinley & Cooper-White 2006; Del Giudice et al. 2015;
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FIGURE 6. Streaming potential ratio (Er) as a function of Deborah number (De) for
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Del Giudice, Haward & Shen 2017). For dilute solutions, the imposed driving force
creates a disturbance to the polymer chain, in response to which there is an expansion
of the polymer chain (Larson 2005). This expansion in turn returns a disturbance
to the flow field thus influencing the velocity distribution. Here, it is necessary to
highlight the significance of Deborah number (De) which determines the relative
strength between elastic and viscous effects. The higher the value of De, the higher
is the extent of viscoelasticity, which can be attributed to either increased elasticity
of fluid (thus creating more disturbance in the flow field) or attenuated viscous
resistance in the flow (because of pronounced shear-thinning effect). For purely
pressure-driven flow (γ = 0, i.e. isothermal condition), elastic behaviour of fluid
remains unaffected and increasing De causes a significantly amplified shear-thinning
effect which facilitates the fluid advective motion, and therefore streaming potential
ratio (Er) increases up to ∼2.7 times as compared to a Newtonian fluid (i.e. De= 0).
Now, as thermal gradient is imposed, the degree of viscoelasticity gets strongly
influenced as fluid viscosity and relaxation time both become strong functions of
temperature. Here, it is worth mentioning that in the dilute regime, the relaxation
time of a polymeric solution remains independent of the polymer concentration,
described by the widely known Zimm relaxation time (λz) (Tirtaatmadja et al. 2006;
Del Giudice et al. 2017; Pan et al. 2018). Previous experimental studies have reported
an inverse relationship of λz with temperature which can be approximated by an
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exponential thinning behaviour (i.e. in the form of λeff = λref exp[−ω4(T − Tref )]) (Pan
et al. 2018). It is important to mention that although λz has been widely used in
the rheological characterization of polymeric fluids, some experimental studies have
reported that, even for dilute solutions, fluid relaxation time can vary with the polymer
concentration (Tirtaatmadja et al. 2006). The effective relaxation time (λeff ) can be
up to one order of magnitude higher than the Zimm relaxation time depending on
polymer concentration. Here, we have chosen the Zimm relaxation time to represent
the results for viscoelastic fluids, while the variation of relaxation time with polymer
concentration and its consequences for streaming potential and dispersion coefficient
are highlighted in § E1 of the supplementary material.

As evident from the governing equation of viscoelastic fluids (equation (S56) of
the supplementary material), the net effect of viscoelasticity on streaming potential
depends on the relative sensitivity of viscosity (Cµ) and relaxation time (Cλ) of
fluid with temperature. For a fixed value of Cµ and Cλ, introducing thermal gradient
(γ = 0.1) results a reduction in the net streaming potential with De where an increase
of ∼1.27 times in Er is observed as opposed to ∼2.7 times increase for γ = 0
(figure 6a). Interestingly, a cross-over at De= 0.3 takes place between the graphs of
γ = 0 and γ = 0.1. Below this critical De, the magnitude of the streaming potential
is higher for combined temperature-gradient- and pressure-driven flow, and beyond
De = 0.3, it falls below the streaming potential in isothermal condition in which case
the strongly pronounced shear-thinning effect with increasing De dictates the flow
physics creating faster rise in streaming potential. Now, at lower Cµ (denoting lower
temperature sensitivity of fluid viscosity), the two previously mentioned counteracting
factors are of comparable magnitude resulting in a slight increase in Er (from 1.12
times to 1.28 times) as De varies from 0 to 1, seen in figure 6(b). With increasing Cµ,
its effect starts to become dominant over Cλ and Er undergoes significant enhancement
up to ∼3.86 times (at Cµ = 3) compared to a Newtonian fluid. Similarly, increasing
Cλ from 0.25 leads to faster reduction in fluid relaxation time denoting elevated
elasticity-mediated disturbance to the axial separation between ions thus lowering the
net streaming potential. As evident from figure 6(c), Er decreases from 1.46 to 0.79
as Cλ is increased from 0.25 to 3. Beyond Cλ= 1, Er starts to fall with De (from its
reference value ∼1.12) and becomes less than unity at higher De. This tells us that if
Cλ is high (i.e. rapid reduction of fluid relaxation time with temperature), employing
a Newtonian fluid is more advantageous than employing a viscoelastic fluid as far as
streaming potential generation is concerned. Now, as shown in the inset of figure 6(c),
the influence of Cλ on streaming potential gets damped at higher Cµ (Cµ = 2) where
Er reduces at a lower rate from 2.75 times to 2.3 times (with respect to a Newtonian
fluid) with increasing Cλ.

This section has reached its culmination where the dependence of the dispersion
coefficient ratio (Deff ) on Deborah number (De) is shown in figure 7 for two crucial
parameters Cµ and Cλ. Similar to the variation of Er, Deff is also highly sensitive to
the variation in fluid viscosity and relaxation time. Looking into the constitutive form
of a viscoelastic fluid one can realize that the inherent nonlinearity in stress-tensor
terms becomes amplified with increasing Cµ. Physically, the impact of physical
property alteration is reflected more in viscoelastic fluids compared to Newtonian
fluids and, accordingly, Deff increases up to 1.9 times at higher Cµ (at Cµ= 3). Also,
changing Cλ can result in significant alteration in the dispersion coefficient where
Deff exhibits an inverse dependence on De at higher Cλ, as observed in figure 7(b).
Overall, Deff undergoes a reduction from 1.53 to 1.1 as Cλ is increased from 0.25 to
3.
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(a) different Cµ and (b) different Cλ. (c) Variation of Deff for specific combinations of Cµ

and Cλ.

If one considers the volumetric flow rate variation for the case of viscoelastic fluid
(this is presented in § E2 of the supplementary material), it is clearly evident that
increasing Cµ and decreasing Cλ turn out to be favourable as far as the enhancement
of dispersion is concerned. When we combine these two factors, under strong
thermal perturbation (at γ = 0.1), the variation of Deff with De experiences massive
augmentation. The dotted blue line represents the ratio of relative increase of Deff
in viscoelastic fluid for combined pressure-gradient and thermal-gradient-driven flow
as compared to that for a purely pressure-driven flow where Deff is increased up
to ∼4.3 times (figure 7c) evaluated at Cµ = 5, Cλ = 0.25. The red dash-dotted
line expresses the ratio of the net dispersion coefficient in viscoelastic fluid to
that compared to the solely pressure-driven flow of a Newtonian fluid where it
augments further up to ∼12.5 times as De is varied from 0 to 1. Keeping in
mind its applicability under actual experimental conditions, we now focus on the
physically relevant values of Cµ and Cλ. As reported in the literature, the relative
change of fluid viscosity with temperature −(1/µ)(∂µ/∂T) for electrolyte solutions
is approximately 15 × 10−3 K−1 (Dietzel & Hardt 2017) which can be used in the
expression of µ=µ/µref = exp(−γCµθ), where the value of Cµ turns out to be close
to 5. Also the reduction of fluid relaxation time with temperature can be correlated
in a similar fashion (λ= λeff /λref = exp(−γCλθ)) where the value of Cλ is chosen as
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3 (the reason behind this particular combination of parameters is discussed in § E2
of the supplementary material). For Cµ = 5, Cλ = 3, Deff is increased up to ∼8.1
times as compared to a Newtonian fluid. Therefore, we conclude that, employing this
combination of parameters under the combinatorial effect of external pressure gradient
and temperature difference, it is indeed practically possible to achieve an enhancement
of up to one order of magnitude (approximately) in the dispersion coefficient. For
completeness of the present analysis, the results for transverse thermal gradient are
presented in § E3 of the supplementary material.

5. Experimental perspective

A practical experimental set-up can be designed on the basis of the presented
theoretical framework. We here discuss an outline of the same. For this purpose, the
first step should be microchannel fabrication for which the standard photolithography
protocol followed by soft lithography technique can be employed (Raj, Dasgupta &
Chakraborty 2017). Typical dimensions of the microchannel can be: width ∼100 µm,
height (h)∼ 50 µm and length (l)∼ 5 cm.

At the two ends of the microchannel, two reservoirs can be made and the
microchannel needs to be filled with the electrolyte solution (0.1 to 1 mM aqueous
NaCl or aqueous KCl solution can be chosen as an example). The dimensions of the
reservoirs should be large enough such that entrance and exit losses can be avoided.
It also needs to be ensured that the fluid level at the two reservoirs is balanced
perfectly such that no flow can take place by virtue of pressure head. Platinum
electrodes should be immersed fully within the fluids in order to ensure proper
electrical connectivity. In order to generate the temperature gradient, a strip heater
can be employed which is usually connected to a voltage source meter. For the
measurement of temperature at both ends, thermocouples along with data acquisition
system need to be connected. To apply the pressure gradient, a syringe pump can be
used along with a pressure sensor for continuously monitoring the pressure drop. The
next step is to measure the induced streaming potential under the combined action of
imposed pressure gradient and temperature gradient for which a voltmeter needs to be
connected in parallel with the electrode. The higher end of the voltmeter probe needs
to be connected to the downstream electrode with the lower end connected with the
upstream electrode (Van Der Heyden et al. 2005, 2007; Morikawa et al. 2010; Das
et al. 2018).

The final step is the measurement of the hydrodynamic dispersion coefficient
for which a plug of dye such as a dilute solution of fluorescein can be prepared
first and then it needs to be transported by the combined pressure-driven and
temperature-gradient-induced flow of the electrolyte solution. Then the position
of the plug along the channel needs to be determined. For a fixed dimension of the
channel and fixed flow condition, this measurement needs to be done several times at
different locations along the channel. For the recording of the fluorescence intensity,
a CCD camera coupled to a microscope can be used along with a mercury lamp
(with a specific filter for fluorescein). Recorded data will consist of fluorescence
intensities at two different positions falling under the same time scale of observation.
The post-processing of the fluorescence images can be done using standard image
processing software or by developing an in-house code where the average fluorescence
intensity in each position needs to be calculated. Once this intensity is known as
a function of time, the mean axial flow velocity (uavg) can then be obtained as
uavg = (x2 − x1)/(tmax 2 − tmax 1) (Bontoux et al. 2006), with tmax i indicating the time
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required for the intensity to reach its maximum at position i. When the solute
equilibrates in the transverse direction after a sufficiently long time passed, the
concentration distribution can be given by (Bontoux et al. 2006)

c=
1√

4πDeff t
exp

(
−
(x− uavgt)2

4Deff t

)
, (5.1)

where Deff denotes the effective dispersion coefficient. In the long-time regime, the
position x can be written as x= uavgtmax and (5.1) can be rewritten as (Bontoux et al.
2006)

c=
1√

4πDeff tmax
exp

(
−

uavg
2(tmax − t)2

4Deff tmax

)
. (5.2)

Now, considering the intensity variation in terms of concentration and then fitting
the concentration profile in a Gaussian distribution, using the values of its fitting
parameters one can determine the dispersion coefficient using a procedure similar to
that discussed in Bontoux et al. (2006).

One key factor for the experiments is the inclusion of a non-Newtonian fluid.
For this purpose, dilute aqueous polymeric solutions such as polyethylene oxide
or polyacrylamide can be mixed with the electrolyte solution and then stirred for
24 h (Huang et al. 2016; Mukherjee et al. 2017a). In this context, it is important to
mention that the polymer concentration should remain in the dilute regime, i.e. below
the threshold concentration c∗ (also known as overlap or cross-over concentration)
above which it would be difficult to drive the flow because of the strongly enhanced
viscous resistance. When the concentration undergoes a transition from the dilute
to the semi-dilute regime, both its elastic behaviour (i.e. fluid relaxation time) and
viscosity increase with concentration. However, the rate of increase in viscosity is
higher as compared to the increase in the fluid relaxation time (Del Giudice et al.
2015). Therefore, it will be judicious to operate within the dilute regime where the
shear-thinning behaviour of the polymer can be beneficial in driving the fluid because
of less viscous resistance compared to the case of a Newtonian fluid.

In previous years, experimental studies of hydrodynamic dispersion were performed
usually for pressure-driven flow (Bontoux et al. 2006; Ling et al. 2018), while studies
of non-isothermal electrokinetic flow mainly focused on the Joule heating effect and
its consequences for the resulting flow dynamics (Xuan et al. 2004; Venditti et al.
2006; Xuan 2008). To the best of our knowledge, no such experimental study has been
reported for the case of hydrodynamic dispersion in non-isothermal electrokinetic flow.
In this scenario, we believe that this present outline can be implemented practically
to set up an experimental analysis, while the presented theoretical model provides
the relevant parameters and flow conditions with an objective of achieving augmented
dispersion by optimizing the relevant physical space.

6. Conclusions
We have considered thermally modulated electrokinetic transport to realize

significant enhancement in solute dispersion of a complex fluid through a microfluidic
channel. Although several techniques in the past have been deployed towards
modulating the uniform velocity profile of electrically actuated flows, improved
hydrodynamic dispersion still remains unexplored. In this context, the present study
shows that combining the interplay between thermal and electrical effects coupled
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with fluid rheology, one can achieve up to one order of magnitude enhancement of
dispersion coefficient in a pressure-driven flow of an electrolyte. This is mediated
by breaking the equilibrium of the charge distribution within the EDL with imposed
thermal gradient, subsequent modulation in thermo-physical properties and eventual
alterations in the fluid motion. We believe that such complex coupling between
thermal, electrical, hydrodynamic and rheological parameters in small scales can
be exploited not only to benefit the design of thermally actuated microfluidic and
bio-microfluidic devices demanding improved hydrodynamic dispersion but also can
act as a basis for solving several thermal and fluidic problems (Sarkar et al. 2002;
Dua & Chakraborty 2005; Chakraborty 2007; Chakraborty & Durst 2007; Rana,
Chakraborty & Som 2014; Bandopadhyay et al. 2016).
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