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Abstract

We use microlocal sheaf theory to show that knots can only have Legendrian isotopic conormal
tori if they themselves are isotopic or mirror images.
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1. Introduction

A knot K C R3 determines, by taking the unit conormals, a torus in the
unit cosphere bundle. By general position arguments, the smooth type of this
embedding Tx C S*R* knows nothing about the knot. However, this embedding
is that of a Legendrian in a contact manifold, and a smooth isotopy of knots
K ~ K’ induces a Legendrian isotopy of conormals Tx ~ T . Thus, the
Legendrian isotopy type of Tk is a topological invariant of K.

More generally, taking the cosphere or cotangent bundle gives a natural
functor from smooth topology to contact or symplectic geometry, and it is
a fundamental question in these subjects to understand what this functor
remembers and what it forgets. A representative example is Arnold’s conjecture
that every compact exact Lagrangian in the cotangent bundle is Hamiltonian
isotopic to the zero section; there has been much recent work in this direction
[N1, ESS, Abo, AK].

The question regarding the extent to which Tk determines K has previously
been studied by holomorphic curve techniques, using the relative contact
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homology of the pair (S*R?, Tx). Perhaps, the first indication of the true strength
of this invariant was in [Ng3], where it was shown to detect the unknot. More
recently, this was extended to torus knots [GLi].

In the present article, we take a different approach to the study of Tg. In
general, one can study the geometry of Legendrians in cosphere bundles by
assigning, to a Legendrian A C $*M, the category of sheaves with microsupport
in A. This approach reaches back in some sense to the microlocal analysis
of Sato and Hormander, is technically built on the microlocal sheaf theory of
Kashiwara and Schapira [KS], and was applied to study symplectic geometry
by Tamarkin [Tam] and subsequent authors [GKS, Gui, Gui2, Gui3, Chi, STZ,
STWZ, STW]. Using this method, we give here the first proofs of the following
results.

THEOREM 1. Let L, L' be oriented nonsplit links in R3. If there is a

parameterized Legendrian isotopy T; — T/, then there is a topological isotopy
L— L.

THEOREM 2. For knots K, K’ in R?, if there is any Legendrian isotopy Tx —
T, then the knots are either isotopic or mirror.

In the first theorem, by ‘parameterized isotopy’, we mean that the isotopy
respects the homotopy classes of the meridians and longitudes of the tori; we do
not impose this condition in the second theorem. Also, in the first theorem, by
nonsplit, we mean that no sphere separates some components of the link from
some others.

The strategy of proof is as follows. A standard consequence of Gray’s stability
theorem [Gr] is that a Legendrian isotopy is induced by an ambient contact
isotopy, which can moreover be chosen to be constant away from an open
set around the Legendrian isotopy. Henceforth, by Legendrian isotopy, we
will always implicitly mean such an extension. The sheaf quantization of this
contact isotopy [GKS] gives an equivalence of derived categories shr, (R*) =
shr,, (R?).

These categories of sheaves carry information about the fundamental group
of the knot complement, which (when marked by the peripheral subgroup)
determines the knot [Wal]. Nevertheless, extracting this information is a
nontrivial problem: the derived category of local systems on the complement is
only a piece of sht, (R?). Moreover, it is not generally possible to determine
a ring from its abelian category of modules, and it is not generally possible to
extract an abelian category from its derived category. For instance, the existence
and significance of derived equivalences in birational algebraic geometry
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[Orl, BO] is a subtle and fascinating subject. In fact, we do not know whether
a derived equivalence of knots shr, (R) = shr,, (R3) forces K to be isotopic
to K'.

Instead, we use additional geometric information to rigidify this isomorphism.
The key observation is that because we are working in the noncompact R?, the
isotopy can be pushed off the fiber at a point. This point provides a fiber functor
which rigidifies our categories sufficiently to eventually extract the group ring.
In particular, we do not know whether the result still holds with R? replaced by
S3. This would follow if it was shown that no nontrivial derived equivalences of
knots could exist.

To finish the proof, we appeal to known results in 3-manifold topology. First,
the fundamental group of a link complement is left-orderable [HS, Lemma 2]
and, hence, can be recovered from its integral group ring. Finally, by the work of
Waldhausen [Wal], the fundamental group of the complement together with the
classes of the meridians and longitudes determines the link.

REMARK 1. An approach to these results using Legendrian contact homology
now exists [ENS]. It relies on [CELN], which amounts to a comparison theorem
between sheaves and LCH in this setting. Other comparisons can be extracted
from [Corl, Cor2], and [BEY].

2. Some review of sheaf theory

We first recall some basic facts about sheaves; for details, see, for example,
[KS, Chs. 1,2]. For a topological space T, a presheaf is a functor from the
category whose objects are open sets and whose morphisms are inclusions. A
sheaf is such a functor satisfying certain locality conditions. We write Sk (T) for
the category of sheaves of Z-modules on T'.

The category Sh(T) is abelian, and one may form its derived category sh(T).
By definition, this is the localization of the category of complexes of sheaves
along the quasi-isomorphisms. In our main foundational reference [KS], the
authors work with the bounded derived category and regard it as a triangulated
category. It is more typical these days to work in the unbounded derived category
and, moreover, to regard derived categories as dg categories. All sheaves which
will appear here are in fact bounded, but it is never important for us that they
are bounded (except that strictly speaking [KS] requires this). All arguments
we make in fact only require the triangulated structure, but at some points, it is
more natural to have a dg point of view, for example, to formulate the statement
(which we will not use) that derived endomorphisms of the stalk functor identify
loc(M) = C,(2M) — mod. Henceforth, by ‘sheaf’, we mean an object of
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the derived category sh(T) unless explicitly specified otherwise. All functors
between sheaf categories will mean the derived functors; the word isomorphism
in this context means quasi-isomorphism. We also adopt the convention that we
write = to mean an isomorphism so canonical that no confusion can possibly
arise.

Given amap f : T — S, there is an adjoint pair of (derived) pullback and
pushforward functors f* : sh(S) < sh(T) : f,.. For locally compact spaces,
there are also ‘compact support’ versions f, : sh(T) < sh(S) : f'.

For a sheaf F on S, we will often abbreviate f*F as F|r, especially when T
is a subset of S. In particular, for a point s € S, we write F|, for the stalk at s.

For an open subset u : U C S, the open subsets of U are amongst the open
subsets of S, and the maps u*, u' : sh(S) — sh(U) agree and are given by
w*F)(0) = F(O0). In particular, for s € U, there is a canonical isomorphism
u*F|, = F|,. The restriction u* = u' has the left adjoint u, and the right adjoint
uy, both of which are fully faithful. The functor u, is the ‘extension by zero’: one
has

e o
0 otherwise.
In fact, the same holds for the inclusion of any locally closed subset.

For a closed subset v : V C S, the functors vy, v, : sh(V) — sh(S) agree
and thus, in particular on stalks, behave as dictated by the above formula. These
functors are fully faithful.

Consider a decomposition of S into an open set U and its closed complement
V. For any F € sh(S), there is an exact triangle

wi'F — F — v F 4 )

The first two maps arise from the adjunctions (u,, u') and (v*, v,). The fact
that the sequence determines an exact triangle is easily checked on stalks after
rewriting the sequence as

[1]
umu*F — F — vy F — .

Indeed, it is clear from Equation (1) that for stalks over U, the first map is
an isomorphism and the second is zero, and for stalks over V, the reverse is
true. This sequence is a sheaf-theoretic version of the long exact sequence in
cohomology.

Note additionally that

Homsh(S) WG, v.H) = Homxh(U)(v*u!g7 H) = Homxh(U) O, H)=0
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for any G € sh(U) and H € sh(V). In short, identifying sh(U) with its
image under u, and, likewise, sh(V) with its image under v, = v, there is
a semiorthogonal decomposition

sh(S) = (sh(V), sh(U)).

This decomposition has been exploited to a great effect in algebraic geometry
and geometric representation theory since [BBD].

By definition, a sheaf on § is constant if it is isomorphic to the pullback of
some sheaf on a point. A sheaf is locally constant if this holds on some cover
of S. We write loc(S) for the category of locally constant sheaves on S or, in
other words, what would classically have been termed complexes of sheaves
with locally constant cohomology.

We turn now to the notion of microsupport [KS, Ch. 5]. To a sheaf F on M,
there is a closed conical locus ss(F) C T*M—the directions along which the
sections of the sheaf fail to propagate. To a closed subset A C T*M, we associate
the category sh (M) whose objects have microsupport contained in A. It is, by
definition, a full subcategory of the (derived) category of sheaves on M.

We write T°M = T*M \ M for the complement of the zero section. When
we consider conical loci containing the entire zero section, we often specify
them by naming only their intersection T°M or, equivalently, their images in
T°M/R., = S*M. By abuse of notation, for a closed subset A C S*M, we
write sh,(M) = ShCr)ne(A)UTA’:,M(M)~

A sheaf K on M x M’ can be used as an ‘integral kernel’ to define a functor

Kx:sh(M) — sh(M')
Fl—> ﬂM/g(K®ﬂ;4f).

Here, 7, and 7, are the projections to the factors of M x M’. We denote
analogously by 77+) and w7+, the projections of 7*(M x M') = T*M x T*M’
to its factors.

Assuming ss(K) — T*M’ is proper, the microsupport of the integral
transform is contained in the set-theoretic integral transform of the
microsupports [KS, Proposition 7.1.2]:

ssUC x F) C wpep (55 () N gty (s5(F))). 3)

Of particular interest is the case when ss(C) N T°M x T°M is a graph of
a (conic) symplectomorphism 7°M — T°M; equivalently, the symplectization
of a contactomorphism $*M — S$*M. Kernels with such microsupport induce
equivalences [KS, Theorem 7.2.1].

In fact, there is a canonical way to associate such a kernel to any contact
isotopy.
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THEOREM 3 [GKS]. Let ¢, : S*M — S*M be a compactly supported contact
isotopy, for t € 1. Then there is a unique kernel @ € sh(M x M x I) such that
$S(D@,)|ropxrem 1S the graph of ¢, and D is the constant sheaf on the diagonal.
The resulting integral transformation @, is an equivalence of categories for
allt.

Moreover, if m € M\ Supp(¢,), then in some neighborhood U,, > m, the sheaf
@ |y, xmx1 IS the constant sheaf on the diagonal.

Let us sketch a proof. Any contact isotopy is induced by a (time-varying)
contact Hamiltonian. It is easy to see that one can use a composite of an
isotopy induced by a positive Hamiltonian with the one induced by a negative
Hamiltonian, so it suffices to prove the result for positive contact isotopies. By
composition, it suffices to prove the result for arbitrarily small positive isotopies.
The graph of such an isotopy is the inward conormal to a small neighborhood of
the diagonal in M x M. The only sheaf with this conormal which is isotopic to
the diagonal (through sheaves with such conormals) is the star pushforward of
the constant sheaf on the interior of this neighborhood.

Recall that if (M, g) is a Riemannian manifold, then the Reeb flow associated
with the natural Liouville contact form on the cosphere bundle is identified with
the geodesic flow by the metric. For this particular flow, the sheaf quantization
is easily described.

COROLLARY 4. Let (M, g) be a Riemannian manifold. Then for T smaller than
the injectivity radius of g, the integral kernel for the sheaf quantization of the
Reeb flow for time T is given by the constant sheaf on the locus

{e, M Ix =yl < T}

Proof. Consider the constant sheaf on the locus {(x, y, 1) | |x — y| < t}in M x
M x [0, T]. Att = 0, this is precisely the constant sheaf on the diagonal, and a
direct computation shows that it has the correct microsupport. By the uniqueness
in Theorem 3, its slices give the correct kernels. O

COROLLARY 5. In the setting of the previous corollary, let @1 be the sheaf
quantization of the time T Reeb flow. Let N C M be a submanifold with no self-

geodesics of length smaller than T. Let Nbdr(N) denote the (closed) locus of
points at distance at most T from N. Then

Q)TZN = ZNbdr(N) @TZM\N = ZM\Nde(N)-
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3. Recovering the fundamental group

We apply Theorem 3 as follows. For a submanifold ¥ C X, let Ty C S*X
denote the unit conormal bundle.

COROLLARY 6. Let N, N' be compact submanifolds of M. A Legendrian
isotopy of conormal tori Ty ~» Ty induces an equivalence of categories
Sh’JI‘N (M) = ShTN, (M)

That is, the category shr, (M) depends only on the Legendrian isotopy type
of T N-

In Theorem 3, it is essential to work with the derived category of sheaves
(or a dg enhancement), rather than the abelian category, where the theorem
would simply be false. However, derived categories tend to have many
autoequivalences, making them slippery invariants. When M is noncompact, the
situation is more rigid.

THEOREM 7. Let N, N’ be compact submanifolds of a noncompact manifold
M. The sheaf quantization shr,(M) = shrt (M) of a Legendrian isotopy of
conormals satisfies the following:

e loc(N) is carried to loc(N');

e loc(M \ N) is carried to loc(M \ N');

e the latter isomorphism preserves abelian categories of local systems.
Moreover, there is an isomorphism of integral group rings Z[m;(M \ N)] =

L[ (M \ N')).

Proof. We begin with the isomorphism from the corollary, shr,(M)
shr,, (M). Note that by [KS, Proposition 8.4.1], the category shr,(M) is
just the category of sheaves constructible with respect to the stratification

M=M\N)UN.

That is, F € shrt, (M) if and only if F|yy and F|y are (cohomologically)
locally constant.

Leti : N<—> M <> M\ N : j be the closed and open inclusions. As we
recalled in the previous section, the functors i, = i, and j, give a semiorthogonal
decomposition sh(M) = (sh(M \ N),sh(N))). Imposing the microsupport
condition, we have

shry, (M) = (loc(N), loc(M \ N)).
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In particular, loc(M \ N) is characterized as the left orthogonal complement
to loc(N) in shr, (M), that is, the objects with no homs to any object of loc(V).
Likewise, loc(N) is characterized as being the right orthogonal complement to
loc(M \ N).

Fix a compactly supported contact isotopy inducing the Legendrian isotopy
and choose m € M of the complement of the projection of this compact set (in
particular, in the complement of N, N’). Denote by @ the [GKS] equivalence
induced by the isotopy. As m is outside the support of ¢, the kernel of @ is the
constant sheaf on the diagonal above a neighborhood of m; hence, @ commutes
with the (derived) functor of taking stalk at m.

As per the discussion around the semiorthogonal decomposition, the full
subcategory loc(N) of shr, (M) is characterized as the kernel of the restriction
j* = j'. As sheaves in shr, (M) are locally constant in M \ N, this restriction
is zero iff the stalk at m € M \ N is zero. That is, loc(/N) is characterized as
the full subcategory of shr, (M) with acyclic stalk at m. The same holds for
loc(N’) C shy, (M).

Since @ commutes with taking the stalk at m, it preserves this property and,
hence, carries loc(N) to loc(N’). Hence, @ carries also the left orthogonal
complement of one of these to the left orthogonal complement of the other, that
is, carries loc(M \ N) to loc(M \ N’). Noting again that ¢ commutes with
taking stalk at m, we see that @ carries the subcategory of loc(M \ N) with
stalk cohomology concentrated in degree zero to the corresponding subcategory
of loc(M \ N').

Any (complex of) sheaf whose stalks have cohomology concentrated in degree
zero is quasi-isomorphic to its zeroeth cohomology sheaf (here, sheaf can be
taken in the nonderived sense). Consequently, the subcategory of loc(M \ N)
whose stalks have cohomology in degree zero is the category of local systems
on M \ N in the nonderived sense, that is, the abelian category of modules over
Zlm (M \ N)]. (If one is thinking of s/ as a dg rather than merely triangulated
category, one should take the homotopy category of this subcategory.)

Note that the identification of local systems with modules depends on the
choice of a point, here m, and taking the stalk at m corresponds the forgetful
functor Z[m;(M \ N)]-mod — Z-mod.

Thus, we have an equivalence Z[m(M \ N)]-mod = Z[m (M \ N’)]-mod,
commuting with the forgetful functor to Z-mod. But any ring A can be recovered
as the endomorphisms of the forgetful functor A-mod — Z-mod: this functor is
co-represented by the left A-module A, whose endomorphisms are A acting by
right multiplication. O

REMARK 2. Note that we have not assumed even dim N = dim N'.
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REMARK 3. This argument requires the use of infinite Z-rank local systems,
specifically the local system with fiber Z[m(M \ N)].

REMARK 4. By not passing to the abelian category, one would learn that, in
fact, the (homotopy) rings of chains on the based loop space are isomorphic:
C.(2(M\N),Z) = C,(2(M \ N'), Z). One could still learn more by working
over the sphere spectrum rather than Z; it is known to experts that the microlocal
sheaf theory works here, although the details have not appeared in the literature.

It is not generally true that Z[G] determines G; there are counterexamples
even amongst finite groups [Her]. The most basic difficulty, studied by Higman
in his thesis [Hig], is that Z[G] can have nontrivial units, that is, those which
are not £g for g € G. He conjectured (and it remains open) that a torsion-free
group has no nontrivial units; he also observed that imposing the much stronger
condition of left-orderability ensures that there are no nontrivial units. Note that
such a group can be recovered from Z[G] as the quotient of the units by the
torsion units, since as G is torsion-free and there are no nontrivial units, the only
torsion units are £1.

REMARK 5. In light of the previous remark, it is natural to ask whether
Hertling’s counterexample still works for the sphere-spectrum group ring.

Fortunately, it is known that the fundamental group of a nonsplit link
complement is locally indicable and, hence, left-orderable [HS]. We conclude
the following.

THEOREM 8. If L, L' C R? are links with Legendrian isotopic conormal tori,
then their complements have isomorphic fundamental groups.

REMARK 6. One might want to try and deduce an isomorphism of knot groups
instead by showing that the equivalence of categories preserved the monoidal
structure. However, this does not follow from the [GKS] construction: the
isomorphism is constructed as a convolution, and convolution does not generally
respect the tensor product. Moreover, along the isotopy, the Legendrian is not
generally a conormal, and in this case, the category sh 4 (R?) is not closed under
tensor product.

From this, it already follows that the conormal torus distinguishes amongst

prime knots by the work of Waldhausen [Wal] and Gordon and Luecke [GL,
Corollary 2.1].
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4. Recollections on uHom

In what follows, we will use the microlocalization functor introduced in [KS,
Section 4.4].

uHom : sh(X)® x sh(X) — sh(T*X).

It restricts to the usual Hom sheaf along the zero section: uHom(F,
O\x = Hom(F, G) [KS, Theorems 4.3.2.iv, 4.4.2.1]. It is supported along the
intersection of microsupports of the original sheaves: supp(uHom(F, G)) C
ss(F) Nss(G) [KS, Corollary 5.4.10].

A crucial property of this functor is that microlocalization commutes with
sheaf quantization. More precisely, from [KS, Equation 7.2.5], we see that given
a contactomorphism ¢ : $*X — $*X and its sheaf quantization @ : sh(X) —
sh(X),

PupuHom(F, G)|s:x = uHom(PF, G)|s-x. 4

We require only the following two elementary calculations of uHom:

LEMMA 9. Let X be a manifold.

(1) Leti : Y C X be the inclusion of a closed submanifold without boundary
and let L, M be local systems on Y. Then ss(L) = Ty X = ss(M); and if
7w : Ty X — X is the projection, uHom (i, L, i, M) = 7*Hom (L, M).

(2) Let j : U — X be the inclusion of an open submanifold whose closure
is a manifold with boundary, and let L, M be local systems on U. Then
ss(L) = T X = ss(M), where + means we take the outward conormal
vectors along the boundary. Moreover, if T : T;f X — X is the projection,

uHom (i, L, i, M) =ma*Hom(L, M).

Proof. The assertions regarding the microsupport are [KS, Propositions 5.3.2
and 5.3.3]. As the uHom is supported on the microsupport and its restriction to
the zero section is the usual sheaf Hom, it suffices to show that in these cases,
the wHom is locally constant on its support. This is a local calculation; hence,
we may take M, L to be the constant sheaf. The required calculation in the first
case follows from [KS, Proposition 4.4.3], together with the observation that
the Fourier transform of the constant sheaf on the zero section of some bundle
is the constant sheaf supported everywhere on the dual bundle. The second
case reduces to (a product of a trivial factor with) the sheaf Z o, on R. This
remaining one-dimensional calculation is a pleasant exercise. O
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5. Longitudes and meridians

To establish our main result, we should show that the isomorphism established
in Theorem 7 respects the ‘peripheral subgroups’, that is, the images of the
fundamental groups of the boundary tori of R® \ L and of R* \ L’. Note that
once we have done so, we need only appeal to [Wal] and not additionally to
[GL]. Our main tool will be the microlocal hom functor recalled in the previous
section.

For the most part, we work in the general setting of Theorem 7: M is a
noncompact manifold, N, N’ are compact submanifolds, ¢, : S*M — S*M is
a contact isotopy with ¢(Ty) = Ty, and m € M is a point away from the
projection of the isotopy. Let @, : sh(M) — sh(M) be the sheaf quantization of
the isotopy.

LEMMA 10. @, acts trivially on loc(M).

Proof. This has nothing to do with noncompactness of M. Fix some F € loc(M).
We apply the kernel for the whole family &, to obtain a sheaf on M x [0, 1]. By
the compatibility of microsupports with contact transformation (Equation (3)),
this sheaf is locally constant. Let w : M x[0, 1] — M be the projection. We claim
that any locally constant sheaf G on M x [0, 1] is isomorphic to the pullback
of a locally constant sheaf on M. Indeed, there is a natural map 7*7,.G — G,
which is obviously an isomorphism locally on M, hence, an isomorphism. Thus,
F= (150]:: ¢1F|M><0 = (pz]:|M><1 =P F. O

LEMMA 11. &,(Zy) = Zn.

Proof. We know that @,(Zy) is (the pushforward of) a local system £ on N’'.
Using Equation (4),

uHom(P\ Ly, @1ZLy)|sx = GruaptHom(Zy, Zy)|s-u = Z'JTN/

we deduce that £ has rank one and is concentrated in some (yet undetermined)
cohomological degree. We compute (as always, above we write Hom for the
derived functor; the final equality below would more precisely be written as
a quasi-isomorphism between the complex on the left and a chain complex
computing cohomology, though for the present purposes it is enough to know
just the isomorphism at the level of cohomology groups):

Homy/ (Zy:, £) = Homy (Zy, @1 Zy)
= Homy ((®1)™'Zu, Zy)
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= Homy (Zy, Zy)
= H*(N).

As L is in a single cohomological degree, the cohomological amplitude of
Homy (Zy:, L) is at most dim N'. Thus, we conclude dim N’ < dim N; reversing
the argument shows that this is in fact an equality. Now it follows, since the
cohomological amplitude of Homy/(Zy', £) is exactly dim N" and contains a
nonzero term in degree zero, that £ must be in degree zero. Being a rank one,
degree zero local system with a section, £ is trivial. O

COROLLARY 12. There is an isomorphism of rings H*(N,7Z) = H*(N', Z).

Proof. H*(N,7Z) = Homy(Z,7Z) = Homy(Zy,Zy) = Homy (P Zy,
¢1ZN) = HOII]M(ZN/, ZN/) = HOIHN/(Z, Z) = H*(N/, Z) L]

REMARK 7. Note we used essentially that @, carries loc(N) — loc(N’), which
in turn used essentially that M was noncompact. Indeed, the above corollary
is false otherwise: if M is a projective space, then light shined from the
origin N recollects along the hyperplane at infinity N’. Famously, this kind of
counterexample is very special [Bot], perhaps suggesting that while the compact
case is more complicated, it may not be much more complicated.

COROLLARY 13. The map ®; : loc(N) — loc(N’) respects the standard
t-structure.

Proof. For a local system L € loc(N), the sheaf uHom(Zy, L) is locally
constant with the same stalks as £. By Equation (4) and Lemma 11, we have

G Hom(ZLy, L) sy = pHom (P Zy, P1L)|s+m
= uHom Ly, P1L)|su-

But the left-hand side is the image under a diffeomorphism of a pullback of £
and the right-hand side is a pullback of @, L. O

REMARK 8. Thus, @, : shr, (M) — shr,,(M) respects any perverse ¢-structure.
Compare [BEY].

COROLLARY 14. @(Zy\n) = Zpp\n'-

Proof. Apply @, to the triangle Zy\y — Zy — Zy m) ]
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COROLLARY 15. The following diagram commutes.
loc(M \ N) —25 loc(M \ N')

MH”m(ZM\Nv]‘!'N'[[‘Kl l/tHUm(ZM\Nuj'r')\TK,

loc(Ty) —2%  loc(Ty)

Proof. This follows from Equation (4), using Corollary 14 to trade @Zy for
ZM\N’ . O

Let us conjugate ¢, by the geodesic flow. Note that geometrically this flow
carries Ty and Ty to inward conormals to closed tubular neighborhoods
Nbd(N) and Nbd(N’). As we noted in Corollary 5, the sheaf quantization
of these small isotopies, respectively, carry Zyyy — Zppnpavy and Zppyr —
Zm\Nbd (N N N

Let us denote the conjugated isotopy by ¢; and its sheaf quantization by @;.
Likewise, we denote the Legendrians formed by inward conormals to Nbd(N)
and Nbd(N') as Ty and Ty.

Conjugating everything in sight, we find 5IZM\Nbd(N) = Zmnvavy and the
following commuting diagram:

loc(M \ Nbd(N)) —2 Toc(M \ Nbd(N'"))

MHUWI(ZM\NI71[(N)s_i!‘)|’]~[‘K l l”"HO’"(ZM\NM(N’)'j/!')lfN/

loc(ﬁ‘N) ELLEN loc('ﬁ‘N/)

Now recall from Lemma 9 that wHom(Zy\npacn), L) is supported on
the Ty ypav)M, that is, the union of M \ Nbd(N) with the conormals
which point into Nbd(N) and that, in addition, on this locus, it pulled
back from Hom(Znnpacn), jiL£) under the projection to the zero section.
A standard calculation shows that Hom (Zynnpacny» ji£) = j.L£. The conormals
in TA}“\NM(N)M serve as a collar for M \ Nbd(N), so in all we have a canonical
identiﬁgation wHom(Zypnoany» o5, = JLlnpan)-

As @, is the sheaf quantization of an isotopy which is constant over some
locus in M (recall N is compact and M is not), it preserves the stalks over this
locus and, hence, carries local systems in the nonderived sense (that is, with
cohomology sheaves only in degree zero) on M \ Nbd(N) to the objects of
the same kind on M \ Nbd(N’). Now choose a point on Ty, a path s ~» m in
M \ Nbd(N) and a path ¢;(s) ~> m in M \ Nbd(N'), where we have identified
Ty with dNbd (N) and, likewise, for N'. These paths give commuting forgetful
functors to Z-modules; taking endomorphisms, we conclude the following:
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THEOREM 16. The isomorphism Z[m;(M \ Nbd(N))] = Z[m,(M \ Nbd(N'"))]
extends to a commutative diagram

ZIwti(M \ Nbd(N))] —— Z[m (M \ Nbd(N"))]

I I

ZIm (ANbd(N))] ——  Z[m(ONbd(N))]

Here, the top horizontal arrow is induced by 51, the bottom horizontal arrow is
induced by ¢, and the vertical arrows are induced by the topological inclusions.

REMARK 9. One can make this argument without first perturbing by the Reeb
flow; however, in this case, the interpretation of the conormals as a collar
would be less transparent, and, moreover, one would have to contemplate the
microlocalization along a locus of codimension greater than one, for which the
relevant Fourier transform is slightly harder to compute.

To finish the proof of Theorem 1, note that by hypothesis, ¢ carries meridians
to meridians and longitudes to longitudes. Thus, we conclude by the above result
and [Wal]. |

We turn to the proof of Theorem 2. What we need to show is that, even without
assuming that the isotopy is parameterized, the longitude and meridian of T are
carried up to signs to the longitude and meridian of T. In fact, we will show
this for a possibly multiple-component link, but we can only conclude the stated
result regarding being equivalent or mirror in the case of knots, as the signs may
be different for each component of the link.

Let K be a component of L, and K’ the corresponding component of L’. Since
@7Zyx = Zg and @ carries loc(K) to loc(K'), it must be that @ carries nontrivial
local systems on K to nontrivial local systems on K'. Let £ and @ L = L be
such local systems. The meridian of Tk can be characterized, up to sign, as the
primitive class in 7;(Tg) for which the holonomy of wHom(Zg, L) is trivial.
Note ¢, uHom(Zg, L) = uHom(®Zy, PL) = nHom(Zg:, L). We conclude
that ¢ carries the meridian of K to the meridian of K’ up to sign. Having found
the meridians, the longitude of K can be characterized up to sign as the primitive
class in 7 (Tx) which goes to zero in the quotient of H,(R* \ L,Z) by all
meridians other than the meridian of K. ]
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