BULL. AUSTRAL. MATH. SOC. VOL. 23 (1981), 181-190.

TREES AS COMMUTATIVE BCK-ALGEBRAS

WILLIAM H. CORNISH

A new method of constructing commutative BCK-algebras is given. It depends upon the notion of a valuation of a lower semilattice in a given commutative BCK-algebra. Any tree with the descending chain condition has a valuation in the natural numbers, considered as a commutative BCK-algebra; the valuation is the height-function. Thus, any tree of finite height possesses a uniquely determined commutative BCK-structure. The finite trees with at most one atom and height at most n are precisely the finitely generated subdirectly irreducible (simple) algebras in the subvariety of commutative BCK-algebras which satisfy the identity $(E_n) : xy^n = xy^{n+1}$. Due to congruence-distributivity, it is then possible to describe the associated lattice of subvarieties.

Introduction

The concept of a lower semilattice with a valuation in a commutative BCK-algebra is introduced, and it is shown that such a semilattice can be converted into a commutative BCK-algebra. Any tree, which satisfies the descending chain condition, provides an example; the valuation is the height-function. Thus, any tree of finite height possesses a uniquely determined commutative-BCK-algebra-structure. It is then possible to

Received 15 September 1980. The author would like to thank Professor Kiyoshi Iséki for his kindness and encouragement, Brian Davey for a preprint and reprint of his paper [6], and Henry Rose for lively discussions on congruence-distributive varieties.

completely describe the lattice of subvarieties of the variety of commutative BCK-algebras satisfying the identity $xy^n = xy^{n+1}$.

1. Valuations

Because of Yutani [15], a commutative BCK-algebra can be considered as a groupoid with a nullary operation 0, which satisfies the identities: xx = 0, x0 = x, x(xy) = y(yx), (xy)z = (xz)y. We will presume a familiarity with BCK-algebras and especially commutative BCK-algebras; good references are supplied by Iséki and Tanaka [9] and Traczyk [14], but see also [12], [3], [4] and [5].

Let $(A; \land, 0)$ be a lower semilattice with smallest element 0, and (C; 0) be a commutative BCK-algebra. Then, the semilattice A is said to have a *valuation*, v, in the commutative BCK-algebra C if v is a function mapping A into C such that

- (V1) $v(a \land b) = v(a) \land v(b)$ for any $a, b \in A$, which possess a common upper bound;
- (V2) for any $a \in A$, the restriction v_a of v to the interval [0, a] possesses an inverse

$$v_a^{-1}$$
 : [0, $v(a)$] + [0, a] ;

(V3) for any $a, b \in A$, with $a \le b$, and $x \in [0, v(a)]$ $v_a^{-1}(x) = v_b^{-1}(x)$.

Any commutative BCK-algebra is a lower semilattice, wherein the infimum is given as the derived operation $x \wedge y = x(xy) = y(yx)$. Thus, (V1)-(V3) make sense. Also, each interval [0, x] in a commutative BCK-algebra is a distributive lattice; *cf.* [3, Section 3], [14]. Due to (V1) and (V2), v_a and v_a^{-1} are then mutually inverse lattice-isomorphisms. Also v is isotone and v(0) = 0.

THEOREM 1.1. Let $(A; \land, 0)$ be a lower semilattice which possesses a valuation v in a commutative BCK-algebra (C; 0). Define a binary operation on A by

$$ab = v_a^{-1}(v(a)v(a \wedge b)) .$$

With respect to this operation, A is a commutative BCK-algebra and the original semilattice infimum is given by $a \wedge b = a(ab) = b(ba)$. Moreover, for each $a \in A$, v_a and v_a^{-1} are mutually inverse BCK-isomorphisms between the BCK-subalgebras ([0, a]; 0) and ([0, v(a)]; 0).

Proof. We must show that Yutani's identities hold. However, before doing this, we should note that (V1) and (V2) imply that $v(ab) = v(a)v(a \land b)$ and $ab \le a$ for any $a, b \in A$.

As
$$v_a^{-1}(0) = 0$$
,
 $aa = v_a^{-1}(v(a)v(a \land a)) = v_a^{-1}(v(a)v(a)) = v_a^{-1}(0) = 0$.
As $v(0) = 0$,
 $a0 = v_a^{-1}(v(a)v(a \land 0)) = v_a^{-1}(v(a)0) = v_a^{-1}(v(a)) = a$.
Due to (V3), $v_a^{-1}(v(a \land b)) = v_{a \land b}^{-1}(v(a \land b)) = a \land b$. Hence,
 $a(ab) = v_a^{-1}(v(a)v(a \land (ab))) = v_a^{-1}(v(a)v(ab)) = v_a^{-1}(v(a)(v(a)v(a \land b)))$
 $= v_a^{-1}(v(a) \land v(a \land b)) = v_a^{-1}(v(a \land b)) = v_a^{-1}(v(a \land b)) = a \land b$.

As $a \wedge b = b \wedge a$, a(ab) = b(ba).

Because $ab \leq a$, (V1) implies that

$$v((ab) \wedge c) = v((ab) \wedge (a \wedge c)) = v(ab) \wedge v(a \wedge c)$$

Hence,

$$\begin{aligned} (ab)c &= v_{ab} \Big(v(ab)v\big((ab) \land c\big) \Big) &= v_{ab} \Big(v(ab) \big(v(ab) \land v(a \land c) \big) \Big) \\ &= v_{ab} \big(v(ab)v(a \land c) \big) = v_{ab} \big(\big(v(a)v(a \land b) \big)v(a \land c) \big) \\ &= v_a \big(\big(v(a)v(a \land b) \big)v(a \land c) \big) = v_a \big(\big(v(a)v(a \land c) \big)v(a \land b) \big) \ . \end{aligned}$$

Because of the symmetric roles of b and c, we conclude that (ab)c = (ac)b. Thus A is a commutative BCK-algebra.

Finally suppose $b, c \in [0, a]$. Due to (V1) and (V3), $bc = v_b^{-1}(v(b)v(b \wedge c)) = v_b^{-1}(v(b)(v(b) \wedge v(c)))$

$$= v_b^{-1}(v(b)v(c)) = v_a^{-1}(v_a(b)v_a(c)) .$$

That is, $v_a(bc) = v_a(b)v_a(c)$, and so $v_a : [0, a] + [0, v(a)]$ is a BCK-isomorphism.

When (A; 0) is a commutative BCK-algebra and $(A; \land, 0)$ is its lower semilattice reduct, the identity function on A provides a valuation of $(A; \land, 0)$ in the BCK-algebra (A; 0). We now give less trivial examples.

EXAMPLE 1.2. Consider the unit interval [0, 1] of the real numbers as a commutative BCK-algebra, wherein $xy = \max(x-y, 0) = x - \min(x, y)$. Let $(A; \land, 0)$ be the tree with two distinct maximal chains $\{a(x) : x \in [0, 1]\}$, $\{b(x) : x \in [0, 1]\}$, each of which is orderisomorphic to [0, 1], and such that a(y) = b(y), when $y \in [0, \frac{1}{2}]$, while $a(z) \land b(w) = a(\frac{1}{2}) = b(\frac{1}{2})$ for all $z, w \in (\frac{1}{2}, 1]$. Then $v : A \neq [0, 1]$, defined by v(a(x)) = v(b(x)) = x for all $x \in [0, 1]$, is a valuation.

EXAMPLE 1.3. Let C be a commutative BCK-algebra and for each iin an index set I with at least two elements, let C_i be a copy of the underlying semilattice of C. Form the semilattice $(A; \land, 0)$ where $A = \bigcup\{C_i : i \in I\}$ and $C_i \cap C_j = \{0\}$ if $i \neq j$. Each C_i is orderisomorphic to C under v_i , say, and a and b are incomparable when $a \in C_i$, $b \in C_j$ and $i \neq j$. Then $v : A \neq C$, given by $v(a) = v_i(a)$ if $a \in C_i$, is a valuation. When C is taken as the 2-element BCKchain, the resulting BCK-algebra is the one given in Example 3 of |seki and Tanaka [8]. When C is the BCK-algebra which is the set of natural numbers $N = \{0, 1, 2, ...\}$ with BCK-product $ab = \max(a-b, 0)$, the resulting BCK-algebra is the one constructed in Example 4 of |seki and Tanaka [8].

By a *tree*, we mean a lower semilattice $(A; \land, 0)$ with a smallest element 0, in which any two elements have a common upper bound only if

they are comparable or equivalently, each initial interval [0, a] is a chain. When a tree $(A; \land, 0)$ satisfies the descending chain condition, each element $a \in A$ has finite height h(a); h(a) is the length of the chain [0, a]. A tree has *finite height* equal to n, if n is the maximum of the lengths of its subchains.

Let (N; 0) be the commutative BCK-algebra, wherein $N = \{0, 1, 2, ...\}$ is the set of natural numbers and the BCK-product on Nis given by $xy = \max(x-y, 0) = x - \min(x, y)$, for each $x, y \in N$. We are now ready to give the most important instance of Theorem 1.1; we formulate it as a theorem.

THEOREM 1.4. Let $(A; \land, 0)$ be a tree with the descending chain condition and let $v : A \neq N$ be given by v(a) = h(a) for each $a \in A$. Then v is a valuation of the tree $(A; \land, 0)$ in the commutative BCKalgebra (N; 0). Thus the tree A becomes a commutative BCK-algebra, wherein the BCK-product ab of $a, b \in A$ is the unique element of height $h(a) - h(a \land b)$ in the interval [0, a]. What is more, this is the only product which is definable on A so that the resulting structure is a commutative BCK-algebra, whose lower semilattice reduct coincides with the original semilattice $(A; \land, 0)$.

Proof. We only have to establish the uniqueness of the BCK-structure. Suppose (A; *, 0) is a commutative BCK-algebra such that the original infimum is given by $a \wedge b = a^*(a^*b) = b^*(b^*a)$, for any $a, b \in A$. Then the finite chain [0, a] is a subalgebra of (A; *, 0) and $a, a \wedge b \in [0, a]$. But Traczyk [14, Theorem 3.5] has shown that there is a unique way to turn a finite chain into a commutative BCK-algebra so that the original order and the induced BCK-order coincide. Hence $a^*(a \wedge b) = a(a \wedge b)$. But in (A; *, 0), $a^*(a \wedge b) = a^*b$ and, in (A; 0), $a(a \wedge b) = ab$. Hence a^*b is the unique element of height $h(a) - h(a \wedge b)$ in [0, a], as asserted.

Some examples of trees of finite height supporting a commutative BCKstructure have already been studied; see, for example, Iséki and Tanaka [8, Example 5] and Setó [13].

We now exploit Theorem 1.4 to study the lattice of subvarieties of a certain variety of commutative BCK-algebras.

2. Lattice of subvarieties

For $n \ge 0$, the polynomials xy^n are defined inductively by $xy^0 = x$, $xy^{k+1} = (xy^k)y$.

LEMMA 2.1. Let (A; 0) be a commutative BCK-algebra whose underlying semilattice is a tree with the descending chain condition. Let $a, b \in A$ and n be a natural number. Then

$$h(ab^n) = \max(h(a)-nh(a \wedge b), 0) .$$

Moreover, if $a \wedge b > 0$ then $ab^{h(a)} = 0$ and $h(a) \ge 1$.

Proof. The second assertion is an immediate consequence of the first assertion. We use induction to establish the first one.

It is evidently true for n = 0. Suppose $m \ge 0$ and

$$h(ab^{m}) = \max(h(a) - mh(a \wedge b), 0)$$
.

Then

 $h(ab^{m+1}) = h((ab^{m})b) = h(ab^{m}) - h((ab^{m}) \wedge b) = h(ab^{m}) - h((ab^{m}) \wedge (a \wedge b))$ = $h(ab^{m}) - \min(h(ab^{m}), h(a \wedge b)) = \max(h(ab^{m}) - h(a \wedge b), 0)$ = $\max(\max(h(a) - mh(a \wedge b), 0) - h(a \wedge b), 0)$ = $\max(\max(h(a) - (m+1)h(a \wedge b), -h(a \wedge b)), 0) = \max(h(a) - (m+1)h(a \wedge b), 0)$. The proof is now complete.

We now come to the important role played by trees.

THEOREM 2.2. Let $(A; \land, 0)$ be a lower semilattice with smallest element 0, which satisfies the descending chain condition. Then the following conditions are equivalent:

- (i) A is a reduct of a subdirectly irreducible commutative BCK-algebra;
- (ii) A is a reduct of a simple commutative BCK-algebra;
- (iii) A is a tree in which 0 is meet-irreducible.

Proof. Because of Theorem 1.4 and Lemma 2.1, *(iii)* implies *(i)*, in view of the correspondence between ideals and congruences in any variety of BCK-algebras. For this correspondence, see the remarks of [4] which

immediately precede Theorem 2.4, therein; the observation on simplicity is an immediate consequence, cf. the proof of [4, Corollary 3.2] and also |seki| [7, Proposition 4].

Of course, (ii) follows from (i). The implication $(i) \Rightarrow (iii)$ is the content of Lemmas 5.1 and 5.2 of Romanowska and Traczyk [12]. The fact that (i) implies that 0 is meet-irreducible is their Lemma 5.1; for a different explanation involving the notion of prime ideal, see [5, Theorem 4.3]. Why does (i) then imply that A is a tree? Well, for each $a \in A$, [0, a] is a lattice with the map $b \Rightarrow ab$ ($b \in [0, a]$) as an involution, due to the commutativity of A, and so a is then join-irreducible in [0, a]. Thus [0, a] is a chain, and the underlying semilattice is a tree. This argument is due to Romanowska and Traczyk [12, Lemma 5.2].

COROLLARY 2.3. A commutative BCK-algebra of finite height is subdirectly irreducible (simple) if and only if it is a tree with a unique atom, endowed with the BCK-structure of Theorem 1.4.

In [4], the author showed that the class of BCK-algebras, satisfying the identity $(E_n) : xy^n = xy^{n+1}$, is a congruence-distributive variety. He denoted this variety by \underline{E}_n , and the variety of commutative BCKalgebras by \underline{T} . The variety \underline{T} is also congruence-distributive, see [3, Section 3] for a list of proofs; in [4, Theorem 3.3], the author extended the proof of [4, Theorem 2.1] to show that any quasicommutative variety of BCK-algebras is, in fact, congruence-3-distributive. In order to conform with the notation of [4] and [5], the variety of commutative BCK-algebras, satisfying the identity (E_n) is denoted by $\underline{T} \cap \underline{E}_n$. The fundamental result on the subdirectly irreducible algebras in this variety has been proved by Komori [10, Theorem 3.13] and is discussed immediately before Lemma 3.4 in [4]. Using Theorems 1.4, 2.1, and Corollary 2.3, together with Theorem 2.4, we can state:

THEOREM 2.4. The subdirectly irreducible (simple) algebras in the variety $\underline{T} \cap \underline{E}_n$ are precisely those trees of height less than or equal to n, which possess a unique atom and whose BCK-structure is determined by Theorem 1.4.

Proof. Komori's [10, Theorem 3.13] says that a commutative BCK-chain,

which satisfies (E_n) , must have at most n elements.

Because of the isomorphism in Theorem 1.1, it is not hard to see that the set of maximal elements and the unique atom form a generating set of a subdirectly irreducible algebra having finite height. Sometimes, the unique atom can be omitted, but no maximal element can ever be eliminated.

Hence, we obtain:

THEOREM 2.5. Each finitely generated subdirectly irreducible algebra in the variety $\underline{T} \cap \underline{E}_n$ is both simple and finite. Consequently, the variety $\underline{T} \cap \underline{E}_n$ is locally finite, that is, each of its finitely generated subalgebras is finite.

Proof. There are only finitely many finite trees of height n .

The number of non-isomorphic finite trees having a given number of elements was determined by Cayley in 1857, according to Knuth [11, p. 405]. By adding a new smallest element to a finite tree, we produce a finite subdirectly irreducible algebra. Hence, Cayley's work applies to the variety $\underline{T} \cap \underline{E}_n$; details are given by Knuth [11, p. 386, pp. 395-396, Exercises 1-4].

As we mentioned after Corollary 2.3, the variety $\underline{T} \cap \underline{E}_n$ is congruence-distributive. This fact and Theorem 2.5 allow us to apply Theorem 3.3 of Davey [6]: the lattice of subvarieties of a locally finite congruence-distributive variety is isomorphic to the lattice of all hereditary subsets of the partially ordered set of isomorphism-classes of the finite subdirectly irreducible algebras; for two representative such algebras A and B, $A \leq B$ if and only if A is a homomorphic image of a subalgebra of B. Combining this with Theorem 2.4, we obtain:

THEOREM 2.6. Let P_n be the partially ordered set of isomorphismclasses of finite trees with a unique atom and height at most n; for two representative such trees A and B, $A \leq B$ if and only if A is isomorphic to a subtree of B under a semilattice-homomorphism which preserves smallest elements. Then the lattice of subvarieties of the variety $\underline{T} \cap \underline{E}_n$ is isomorphic to the lattice of hereditary subsets of P_n .

Moreover, each algebra in $\underline{T} \cap \underline{E}_n$ is isomorphic to a subalgebra of a direct power of the tree of height n having at most one atom and countable many elements covering each of its elements of height 1, ..., n-1, if $n \ge 2$, endowed with the BCK-structure of Theorem 1.4.

The variety $\underline{T} \cap \underline{E}_{1}$ is the variety of implicative BCK-algebras. Theorem 2.6 gives the well known result that this variety is equationally complete and generated by the 2-element algebra. For a history see [2]; another proof was given recently by Comer [1].

From Theorem 2.6 it also follows that the lattice of subvarieties of $\underline{\underline{T}} \cap \underline{\underline{E}}_2$ is a chain of type $\omega + 1$. This was established by the author in [5, Theorem 5.4], using a different approach. In [5, Theorem 5.3], an equational base was given for each subvariety of $\underline{\underline{T}} \cap \underline{\underline{E}}_2$: the variety generated by the tree of height 2 with one atom and $n \ge 1$ maximal elements has an equaltional base which consists of a base for $\underline{\underline{T}} \cap \underline{\underline{E}}_2$ together with the identity

$$(\mathbf{S}_{n}) : \bigwedge_{1 \leq i \leq n} (x_{i} x_{i+1}) \wedge x_{n+1} x_{1} = 0 .$$

It would be interesting to find an equaltional base for the variety generated by a finite (simple) tree.

References

- [1] Stephen D. Comer, "The representation of implicative BCK-algebras", Math. Japonica 25 (1980), 111-115.
- [2] William H. Cornish, "A multiplier approach to implicative BCKalgebras", Math. Sem. Notes Kobe Univ. 8 (1980), 157-169.
- [3] William H. Cornish, "3-permutability and quasicommutative BCKalgebras", Math. Japonica 25 (1980), 477-496.
- [4] William H. Cornish, "Varieties generated by finite BCK-algebras", Bull. Austral. Math. Soc. 22 (1980), 411-430.
- [5] William H. Cornish, "On Iséki's BCK-algebras", Proceedings of the Western Australian Algebra Conference, Perth, 1980 (to appear).

- [6] Brian A. Davey, "On the lattice of subvarieties", Houston J. Math. 5 (1979), 183-192.
- [7] Kiyoshi Iséki, "On finite BCK-algebras", Math. Japonica 25 (1980), 225-229.
- [8] Kiyoshi Iséki and Shotaro Tanaka, "Ideal theory of BCK-algebras", Math. Japonica 21 (1976), 351-366.
- [9] Kiyoshi Iséki and Shotaro Tanaka, "An introduction to the theory of BCK-algebras", Math. Japonica 23 (1978), 1-26.
- [10] Yuichi Komori, "Super-Zukasiewicz implicational logics", Nagoya Math. J. 72 (1978), 127-133.
- [11] Donald E. Knuth, The art of computer programming. Volume 1: Fundamental algorithms, 2nd edition (Addison-Wesley, Reading, Massachusetts; Menlo Park, California; London; 1973).
- [12] Anna Romanowska and Tadeusz Traczyk, "On commutative BCK-algebras", preprint.
- [13] Yasuo Setō, "Some examples of BCK-algebras", Math. Sem. Notes Kobe Univ. 5 (1977), 397-400.
- [14] Tadeusz Traczyk, "On the variety of bounded commutative BCK-algebras algebras", Math. Japonica 24 (1979), 283-292.
- [15] Hiroshi Yutani, "On a system of axioms of a commutative BCK-algebra", Math. Sem. Notes Kobe Univ. 5 (1977), 255-256.

School of Mathematical Sciences, Flinders University of South Australia, Bedford Park, South Australia 5042, Australia.