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1. It is known that an induced matrix of an induced matrix is
expressible as the direct sum of invariant matrices, or more generally
that an invariant matrix of an invariant matrix can be expressed as
a direct sum1 of invariant matrices. The spurs of the irreducible
invariant matrices of a given matrix A = [«„], are the S-iunctions2

of the latent roots of A.
If A ^ — A i x " K - No denotes the invariant matrix with spur

{Xu A2, . . . . . Xp}, then
[A^W^ZK^AM, (1)

where 2 stands for the direct sum.

2. From (1) D. E. Littlewood defines a new type of multiplica-
tion3 for (S-functions, namely

W ^ { / i } = M v M . (2)

He has also shown that a problem involving the concomitants of
polynomials may be solved by expressing the induced matrix of an
induced matrix as the direct sum of invariant matrices. Hence the
multiplication in (2) has especial importance when {X} and {/n,} are the
aleph symmetric functions, hr's, and we therefore proceed to obtain a
multiplication table for all cases when the weight of {i>} is ^ 12, with
the help of the tables of characters of the symmetric group.

2.1. Let a, b, c, . . . . be the latent roots of A, and hr and s,. be
their aleph and power-sum symmetric functions. The spur of A is
clearly h1.

If the matrix is in canonical form, the diagonal elements will be
«, b, c, .. .., the spur of the rath induced matrix is hm = 'Larbsc1....

1 Schur, "Ueber eine Klasse von Matrizen," Diis. Berlin (1901).
2 See D. E. Littlewood and Richardson, Phil. Trans. Roy. Soc. (A) 233 (1934),

107-115 for definition, and also Schur, loe. cit.
3 D. E. Littlewood, Journal London Math. Soc. 11 (1936), 49-54. I am indebted

to Mr Littlewood for suggesting the problem.
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Hence the canonical form contains elements arb'c1.... in the leading
diagonal1.

If Hr and Zr are the aleph and the power-sum symmetric
functions of the latent roots of this matrix, then HT is the spur of
the rth induced matrix, and hence we may write

3. The problem now reduces to the expression of Hr as the sum
of S-iunctions of a, b, c. . . .

Now8

where hp denotes the order of the class p and sp = sf s% .. .., the class p
having p cycles on 1 symbol, q cycles on 2 and so on, and

' Z2 = S a 2 ' 6 2 « . . . . = S (a2)' (62)s . . . . ;

hence Z2 can be obtained from Z1 by replacing sm b}' s2m. Similarly
Zr can be obtained from Z1 by replacing sm by srm.

Hr is expressible as a function of Zr'&, which are known as
functions of sr's, and so Hr is known in terms of s/s.

To express Hr as a linear function of ^-functions, we read down
the columns in the tables of characters to obtain the coefficients.
Thus the multiplication {m} (g) {r} is obtained and the table con-
structed.

As a check for the calculations we use

i • V V Ay)
r r \ — •*" -"-mrv AO •

The check may be derived as follows. Pu t t ing S i = l , s 2 = s 3 = . . . . = 0 ,
we have

ZY = —., Z2 = Z 8 = . . . . = 0 ,
m!

HT = —,Z\ = . } ,. • • (3)
r! f! (7w!)r

Also from3 w! {A} = 2 Ap xp
x) 5p,

we g e t {A} = —j Xo •

1 Schur, op. dt., pp. 10, 11.
2 D. E. Littlewood and A. R. Richardson, op. dt., p. 109.
* Litfclewood and Richardson, PhU. Trans. Roy. Soc. (A) 233 (1934), 109.
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Since Hr is expressible as a sum of S-functions, therefore

r ~ (mr)\ 2 J A"""X<>

which combined with (3) gives the check.

4. The actual working will be shown by obtaining {2} (g {3}.

Zl = Hx = h2 = | (si + s2)
Z2 = $ (4 + s4)

= $ (Z? + 3Z1Z2 + 2Z3).
s? s + 9sl s\= sf 6s?

From the table of degree 6, H3 turns out to be

{6} + {42} + {23}.

Therefore {2} (g) {3} = {6} + {42} + {23}.

5. With the help of the tables1 of the group characters the
following multiplication table is constructed.

{2} ® {2} = {4} + {2%
{2} ® {3} = {6} + {42} + {23}.
{2} (g) {4} = {8} + {62} + {42} + {422} + {24}.
{2} <g) {5} = {10} + {82} + {64} + {622} + {25} + {42 2} + { 4 2 3 } .

{2} <g> {6} = {12} + {10, 2} + {84} + {822} + {62}
+ {642} + {623} + {43} + {42 22} + {424} + {26}_

{3} ® {2} = {6} + {42}.
{3} 0 {3} = {9} + {72} + {63} + {522} + {42 1}.
{3} <g) {4}= {12} + {10, 2} + {93} + {84} + {822} + {741} + {732}

+ {62} + {642} + {623} + { 5 4 2 1 } + { 4 3 } .

{4} ® {2}= {8} + {62} + {42}.

{4} (g) {3}= {12} + {10, 2} + {93} + {84} + {822} + {741}
+ {62} + {642} + {43}.

{5} (g) {2}= {10}+ {82}+{64}.
{6} <g {2}= {12} + {10, 2} + {84} + {62}.

1 Tables as far as 10th degree will be found in D. E. Lifctlewood's paper, Proc.
London Math. Soc. (2) 39 (1935), 177-183. The 12th degree table is to appear in Proc.
London Math. Soc.

https://doi.org/10.1017/S0013091500008269 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500008269

