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CONSTRUCTION OF SCHAUDER DECOMPOSITION ON
BANACH SPACES OF PERIODIC FUNCTIONS
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This paper deals with Schauder decompositions of Banach spaces Xu of 2n-periodic functions by projection
operators Pk onto the subspaces Vk, k = 0,1 which form a multiresolution of Xy,. The results unify the
study of wavelet decompositions by orthogonal projections in the Hilbert space Z,J, on one hand and by
interpolatory projections in the Banach space C^ on the other. The approach, using "orthogonal splines", is
constructive and leads to the construction of a Schauder decomposition of X,, and a biorthogonal system
for X2, and its dual X\,. Decomposition and reconstruction algorithms are derived from the construction.

1991 Mathematics subject classification: 41A65, 42C15, 46B15, 47A58.

1. Introduction

For 1 < p < 00, let L£, be the Banach space of all complex-valued 27i-periodic
measurable functions / defined on R such that ||/||,, = (•%/* \f{x)\rdx)x" < 00, C^ be
the space of all continuous complex-valued 27i-periodic functions on R and X^ denote
either L^ or C2n. More generally, let B c L^, be a homogeneous Banach space on
T = [0,27t] (see [8, pp. 14-15]), i.e., let B be a linear subspace of Ll

2n with a norm || • ||B
such that

Bl (B, || • ||B) is a Banach space and || • ||fl > || • ||,,

B2 if / e B and t e T, then /(• - t) e B and ||/(- - t)\\B = \\f\\B,

B3 for all / e B and all t e T, Iim^0||/(. - t) -f\\B = 0.

Suppose that for k = 0 , 1 , . . . , there is a function <j)k e B with the following properties:

MR1 Jr
k:={Tt

k<l>k:l = 0,l,...,2k-l} is linearly independent, where

MR2 Vk c Vk+l, k = 0, 1, . . . , where Vk :=

MR3 Ut>0Vi = B, where the closure is taken with respect to the norm || • ||B on B.

If MR1-MR3 are satisfied, we shall call {^}fe0 a multiresolution of B. We shall also
say that <pk, k > 0, generate a multiresolution of B. The functions <pk will be called
scaling functions.
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Multiresolutions and wavelets in Hilbert spaces, for instance, L2(R) and L2
U, are

associated with orthogonal projections onto the multiresolution subspaces Vk (see [3, 6,
9, 10, 13, 14]). For each k, the orthogonal projection Pkf of a function / in the Hilbert
space is the least squares approximant of/. The orthogonal projection operator Pk also
gives rise to the orthogonal decomposition VM = Vk ®L Wk where Vk _L Wk. One of the
main problems in the study of wavelets is the construction of orthonormal bases for
the orthogonal subspaces Wk. The entire collection of the orthonormal wavelet bases
for Wk, k = 0 , 1 , . . . , then forms a wavelet basis for the Hilbert space.

Whereas the least squares approximation is a convenient and efficient way of
approximating functions, interpolation is very often more desirable in practice.
Interpolation operators are projection operators. For a multiresolution of the space
CU(R) of bounded uniformly continuous functions on R, an interpolation operator
Ik : CB(R) -> Vk decomposes Vk+i into an algebraic direct sum Vk+1 = Vk © Wk where
Vk n Wk = {0}. In this case the interpolating wavelet bases for the algebraic
complements Wk have been studied by Micchelli [12], Donoho [7] and Chui and Li
[2].

The natural setting for the study of multiresolutions and wavelet bases on Banach
spaces appears to be the decomposition of the multiresolution subspaces by projection
operators. A bounded linear operator P on a Banach space X is a projection if P2 = P.
Associated with P is the direct sum decomposition X = V © W, where

V := PX and W := Ker(P),

and VnW = {0).
Let {Vk)ki0 be a multiresolution of X^. For it = 0 , 1 , . . . , let Pk: X2n -> Vk be a

projection onto Vk and let

Wk :=

Then

vM = vk®wk, vknwk = {0}. (l.i)

The main object of this paper is the characterization of projections Pk, k > 0, so that
Wk have wavelet bases and constitute a Schauder decomposition of Xln. It unifies the
study of wavelet decompositions by orthogonal projections in the Hilbert space L^, on
one hand and by interpolatory projections in the Banach space C2n on the other. The
approach is constructive and leads to the construction of a Schauder decomposition of
X^ and a biorthogonal system for X^ and its dual X^. We begin in Section 2 by
studying the shift-invariant subspaces Vk in the more general setting of a homogeneous
Banach space B on T. It is shown that U*>ol^ is dense in B if and only if
[neZ: 4>k(n) = 0,k>0} = {neZ:enf!B}, where en{x) = e!**. Section 3 gives a brief
description of the construction of scaling functions <f>k and the corresponding basis
{vkJ:j = 0,l 2k-l}foTVk.
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The projection Pk is represented by a sequence of bounded linear functionals
€ ^ , 7 = 0,1 2*-l, viz.

7=0

where [vkJ, v*kJ : j = 0 , 1 , . . . , 2* - 1} is a biorthogonal system, i.e.

fay. »fc> = « w . J . * = 0 , l 2 * - l .

Under the assumption that

^ = TkPk, (1.2)

the functionals ujj,; = 0 , 1 , . . . . 2* — 1, and the adjoint shift operators, 7J* = Tk~
l, enjoy

the same properties as vkj and Tk. These are studied in Section 4 where it is also shown
that if {Pk}k>o is uniformly bounded and satisfies

PkPM=Pk,k = 0.l...., (1.3)

then {Vo, Wk}kiP is a Schauder decomposition of X2n. In Section 5 it is shown that a
necessary and sufficient condition for Wk to have a basis consisting of ^-shifts of a
function \//k is that

J, vlj)vkJ. (1.4)

The dual subspaces

V; := span{vlj :j = 0 , 1 , . . . . 2* - l}, k = 0,1,...,

and the associated adjoint projections P*k are studied in Section 6. It is shown that if
{pk)k>o is uniformly bounded and satisfies (1.2), (1.3) and (1.4), then {Vk*}k>0 is a
multiresolution of Uk^Vk*. Further, if X2n = Li, for 1 < p < oo, then Ut>07t* = Lq

u

where l/p+l/q = l. A judicious approach in the construction of the wavelets {iM*>o
and {^}t>0 from the multiresolutions {Vk}k>0 and {P£h>0 respectively, gives a
biorthogonal system

{{0o. T?**>. {^. ^iVn : fe = 0,1. • • •, I = 0,1 2* - 1}.

The Schauder decomposition of XlK and the bases for Vk and Wk lead to
decomposition and reconstruction algorithms. They are derived in Section 7. The paper
concludes with two examples, one is on multiresolutions of L^ in which the Schauder
decomposition is accomplished by the least squares approximation operators, and the
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other is on multiresolutions of C& in which the decomposition is achieved by the
interpolatory projections.

2. Shift-invariant subspaces in B

Let B be a homogeneous Banach space on T. Let S be a finite-dimensional linear
subspace of B and suppose that there is a function 4> e B such that

1 1 2'-'

where <S(N) denotes the class of all complex-valued periodic sequences of period N
equipped with the norm

• - ( %

IWI := I >J«U)f ) . <*eS(N).

Because of the equivalent representations

where

S can be expressed in the alternative form

S = ( / 6 B : / ( n ) = i ( # ) , a e5(2*)}. (2.1)

The following result gives some equivalent conditions for MRl.

Proposition 2.1. Let (j> € Ll
2rt, and

1 2'-1

£ r t a 7 = 0.1.....2*-1.

the following are equivalent:
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CONSTRUCTION OF SCHAUDER DECOMPOSITION 65

(i) {1̂ <f>: I = 0,1 2* - 1} is linearly independent.

(ii) [VJ :j = 0 , 1 , . . . , 2* — 1} is linearly independent.

(iii) v, ? 0for j = 0,1 2 * - l .

(iv) For each) = 0,1 2* - 1,

00 + 2^)^0, (2.2)

for some p € Z.

Proof. The equivalence of (i) and (ii), and the implication (ii) =• (iii), are obvious.
The equivalence of (iii) and (iv) follows from the observation that for
; = 0,l 2 * - l ,

vj(x) ~

where the notation ~ means that the expression on the right-hand side is the Fourier
series of the function on the left-hand side.

Suppose that (iv) holds, and let

/ : =

be 0. By (2.1),

a(n)4>(n) =/(n) = 0, for all n e Z.

For each ; = 0, 1 2* - 1, since (j>(j + 2kp) ̂  0 for some p e Z, a(f) = a(j + 2kp) = 0.
Therefore u(j) = 0 for; = 0 , 1 , . . . , 2* - 1, and (i) holds. •

We now consider a sequence {K)t>o °f closed linear subspaces of B and give a
necessary and sufficient condition for {Kh>o to satisfy the multiresolution condition
MR3 if it satisfies MR2. For n 6 Z, let eB(x) = einx.

Theorem 2.1. Let <f>k e B, k = 0 , 1 , . . . , and Vk = span{T^k: t = 0 , 1 , . . . , 2* - 1}. / /
{̂ }i>o satisfies the condition MR2, then U ^ Q ^ is dense in B if and only if the set
{n 6 Z : 4>k{n) = 0, for all k>0) equals {n e z": en # B).

Corollary 2.1. Let <j>k e Xu, k = 0 , 1 , . . . , and Vk = span{T^t : I = 0,1 2k - 1}.
If {Vk}ki0 satisfies the condition MR2, then Ukif)Vk is dense in Xu if and only if the set
{n e Z : 4>k(ti) = 0, for all k > 0} is empty.
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In order to prove the theorem, we first establish some auxiliary results. A subset S
of B is translation invariant if/ e S ==• TJ :=/(• - t) e S for all t e [0,2n). We remark
that Tt, t € [0,2n), is a strongly continuous periodic semi-group of operators on B and
that for each / € B, the map R -*• B such that t -*• TJ is continuous.

Lemma 2.1. Lef K6e a subset of B. If V satisfies the condition

-^\eV, forallk = 0,\,..., (2.3)

then its closure V is translation invariant.

Proof. Suppose that V satisfies (2.3). For any positive integer n, let

where a, e {0,1}. Then

Therefore,/ e V = • 7]B/ e K.
Now for any t e [0,2n), there is a sequence {£„} with terms of the form (2.4)

converging to t. It follows that f e V = » T,f e V. If/ e V and {/,} is a sequence in F
converging to / , then Ttfn e V for all n, and since Tt is a bounded linear operator on
B, it follows that TJeV. •

For a subset S of B, let Z(S) = Ci/eS{n e Z :/(n) = 0}. The next lemma is a known
result in harmonic analysis ([8, p. 17, Exercise 14]). For the sake of completeness, we
include here a sketch of its proof.

Lemma 2.2. Let H be a closed translation invariant linear subspace of B. Then

Z(H) = {neZ:en?H], (2.5)

and

H = span {en: n # Z(H)}. (2.6)

Proof. We first remark that if / e H and g € L^, then the usual convolution / * g
off and g as L1 -functions is an element of H. The proof of this fact follows from a
slight modification of an argument in [15, p. 128], and will be omitted here.

If n 4 Z(H), then/(n) ^ 0 for some/ in H. Since f(n)en =f * en, by the above remark,
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en € H. Conversely, if en e H, then since cB(«) = 1, we have n & Z(H). Therefore (2.5)
holds.

Let / € H. For n = 1,2,..., let

If/(;0 ?* 0, then ; £ Z(//). Hence *„(/) e span{e,: j *T Z(tf)}. Since \\on(f) -f\\B - • 0 as
n -> oo (see [8, p. 15]), / € spanfe,:; £ Z(/f)}, and one direction of the inclusion in
(2.6) is proved. By (2.5), the reverse inclusion in (2.6) is obvious. •

Lemma 2.3. Let V be a linear subspace of B satisfying (2.3). Then V is dense in B if
and only if

= {neZ:en?B). (2.7)

Proof. By Lemma 2.1, V is translation invariant. Applying Lemma 2.2 to V and
B, V = B if and only if Z( V) = Z(B), which is equivalent to (2.7). •

Proof of Theorem 2.1. Let V := Uki0Vk. Then V satisfies (2.3), and by Lemma 2.3,
it suffices to note that

f][n e Z :/(n) = 0} = {n e Z : $k(n) = 0, for all k > 0},

which follows from the representation

Vk = {f e B :/(n) = fi(n)^(n),« € 5(2*)}, k = 0,1 (2.8)

•

3. Construction of scaling functions

The idea in the construction of scaling functions which generate a multiresolution
of Xfr is the same as that in [9]. We shall omit these details which can be found
there.

Our starting point is a family of periodic sequences hk € 5(2*), k > 1, satisfying the
following conditions:

1 - hk(n) = O(fc-'-*) as k -+ oo, (3.1)

for some e> 0 and for all n e Z, and
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\hM(J)\ + \hMU + 2*)| < 1, j = 0 , 1 , . . . , 2" - 1. (3.2)

Let

oo

^ /--\ . FT I /--\ - ^ i /-a i\
u^nj .= I i nt{ji), n t £J. \^-^)

Condition (3.1) implies that if ht(n)^0 for l>k+l, then the infinite product in
(3.3) converges to a nonzero number. In fact, for a fixed n, ht(n) > 0 for all sufficiently
large I. Hence ak(n) > 0 for all sufficiently large k. Because of this, it is reasonable to
further assume that for k > 0,

ht(n) > 0 for all I > k + 1, and for all |n| < 2*"'. (3.4)

This implies that

ak(n) > 0 for all |n| < 2*~'. (3.5)

Theorem 3.1. IfhM satisfy (3.1), (3.2) and (3.4) for k > 0, then for n e Z,

flt(w) -*• 1. k ->• oo, (3.6)

a*(«) = W n K - n W . ^ > 0, (3.7)

and for j = 0,1 2* - 1,

^ ' | l . (3.8)

Proof. Condition (3.1) implies that for each n e Z, there is an integer m such that
am(«) ^ 0. Writing

= ( fl
V=m+1

and taking limit as k -*• oo leads to (3.6). The relation (3.7) follows directly from
(3.3).

The left inequality in (3.8) follows from (3.4) and (3.5). The inequality on the right
of (3.8) follows by a similar argument as in [9]. Q
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Corollary 3.1. For k > 0, let hM e <S(2*+1) satisfy (3.1), (3.2) and (3.4), and suppose
that ak are defined in (3.3). Define <f>k e X^ such that 4>k(ri) := ak(n), n e Z. 77ie/i
0k 6 £'(Z),

0t(x) := y ^ < t̂(n)e"", uniformly in R, (3.9)
neZ

^ , fe > 0, generate a multiresolution ofXln.

4. Multiresolution and projections on X^

Let X be a Banach space and X* denote its dual. Associated with a projection
operator P : X -*• X is the direct sum decomposition A" = V © W, where

V := PX, W := Ker(P).

We shall also call P a projection on V. If V is a finite-dimensional subspace of X
and {»,, v2,..., vn] is a basis for V, then P can be expressed as

where vj : X -*• C, j = \,2,..., n, are bounded linear functionals satisfying

{vl,v*l)=5j<t, j , e = l , 2 , . . . , n ,
{g, v]) = 0 for all g € Ker(P).

Here, (, > denotes the dual action of the functionals, i.e.

(/. tf) •= g'if) or (/, g') := J(f)(g'X fex.g'e x*.

where J : X -*• X" is the natural embedding of X into X**.
Suppose that {J»}t>0 is a multiresolution of X^ generated by <f>k, k > 0. Condition

MR2 gives the scaling relation

_ Wi (4-1)

which is equivalent to
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where

n=0

and

, 2 * ' - I

The sequence hM is the finite Fourier transform of hM.
For k = 0 , 1 , . . . , and j = 0, 1 , . . . , 2* - 1, as in Proposition 2.1, we define

Then

_ , . 1 * "

and

<»;'V (4-5)

Remark 1. Proposition 2.1 shows that [vkj :j = 0 , 1 , . . . , 2* — 1} is linearly
independent.

It follows from (4.3) that for k = 0, 1 and; = 0 , 1 , . . . . 2* - 1,

vkJ(x) ~V¥J2 kU + 2kp)eV^*. (4.6)

Equating Fourier coefficients, (4.6) and (4.2) lead to

, fi u (4.7)

More generally if/ e Vk+U then
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and its Fourier coefficients/(n) satisfy

/(n) = a(r#*+1(«), n e Z,

where a e <S(2*+I). As before, if we define

4
then

J5(x) ~ V2* ^ J / ( ; + 2 ' p ) ^ ™ (4.10)

and

JJ = - L o O > w j + ^ « ( 7 + 2*K+u+2*. (4.11)

for; = 0,1 2* - 1.

Proposition 4.1. The following are equivalent:

(i) {T[f : I = 0, 1 2* - 1} w linearly independent.

(ii) {/j: j = 0 , 1 , . . . , 2* - 1} is linearly independent.

(Hi) For; = 0,1 2* - 1,

k)l * 0. (4.12)

Proof. This follows from Proposition 2.1, (4.11) and the linear independence of
the set [vMJ,j = 0,1 2M - 1}. •

For k = 0,1,..., let Pk: AT̂  -*• 7k be a projection onto Vk. The multiresolution
condition MR2 is equivalent to PmPk = Pk for all k < m. For k = 0,1

https://doi.org/10.1017/S001309150001943X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001943X


72 SAY SONG GOH, S. L. LEE, ZUOWEI SHEN AND W. S. TANG

We note that for a given sequence of projections Pk,k = 0 , 1 , . . . , there are
vlj € XI,, k = 0,1 j = 0, 1 , . . . . 2* - 1, satisfying

<»*.«. "I.,) = fa J,* = 0.l 2* - 1, (4.13)

and

</,»Jj>=0, for all / eKer(P t ) , (4.14)

such that

PJ = £ < / , v'kJ)vkJ. (4.15)

On the other hand, given v*kj e X\n, j = 0 , 1 , . . . . 2k — 1, satisfying (4.13), the mapping

;=0

is a projection from X^ onto P̂  with Ker(Pt) = n^'Ker(uJ;).
Let T*k : X*ln -*• X*2n denote the adjoint of the shift operator Tk, and let

Note that T'k = Tk
l : X*ln - • X'^.

Proposition 4.2. For j , I = 0,1 2* - 1,

k V (4.17)

(Tj0tl Ti^> = Sht. (4.18)

Further, if

(4.19)
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Ttol

Y.°>?lTttl (4-21)

and

v* (n) = I "^4>k(~J + 2*p). n = —j + 2kp, p e Z , (4.22)
10 otherwise.

Proof. The equation (4.17) follows from (4.7) and (4.13). The relations (4.4) and
(4.13) imply that for t, m = 0,1 2* - 1,

};t». (4.23)

Then (4.23) and the definition (4.16) give

1 2'"'

(Ti<f>k, 4>\)=Tk2>;* = « w .
z ;=o

which is equivalent to (4.18).
To prove (4.20), observe that (4.19) is equivalent to

which together with (4.16) leads to (4.20). The relation (4.21) is the inverse finite
Fourier transform of (4.20), and (4.22) follows from (4.21) by evaluating the Fourier
coefficients. •

Proposition 4.3. The following are equivalent:

(i)PkPM = Pk, k = 0 , l , . . . .

(ii) PkPm = Pkfork<m.

(iii) Ker(PJ c Ker(Pt)/or k < m.

(»V) Vl) = E ("*+!.«• t>'k.))»Ul.f
1=0
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Proof. Obviously, (ii) implies (i). Conversely, if (i) holds, then for k < m,

Pk^m = PkPk+lPm = ••• = Pk^k+l ' ' ' Pm-\Pm = PkPk+l * * - Pm-\ = ' ' " = Pk-

Now Ker(Pt) is the image of the projection / — Pk. Hence (iii) holds if and only if
(/ - Pk)(I -Pm) = I- Pm, which is equivalent to (ii).

Finally, the relation (i) is equivalent to

+,/. v'kJ)vkJ = J2(f, v:.j)vkJ, feX2n,
]=0 /=0

which is equivalent to (iv) since

1=0 .

•
For each k = Q,l,..., Pk\Vk+i is also a projection on Vk. Let

Wk := Ker(PJH+1) = VM n Ker(Pt).

Then
K = K © W f c = 0 1 (4 24)

If (K)k>o is a multiresolution of L\n and Pt are orthogonal projections, then

The corresponding decomposition for Xu is not true in general. If every / e X& has
a representation of the form

00

(4-25)
t=o

where /J, e t^, gft e W ,̂ fc = 0, 1, . . . , and the series converges in the norm of X2n, then
we shall express this by writing

X2n = V0 + W0 + Wl + --- . (4.26)

Further, if every / e X^ has a unique representation of the form (4.25), then
{Vo, Wk)k>0 will be called a Schauder decomposition of X^. In this case we shall write

X^ = Vo © Wo © Wt ® •• • . (4.27)
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The following result may be deduced from the theory of bases in Banach spaces
(see [11]), but we shall give a direct proof for completeness.

Proposition 4.4. Let {Vk)kift be a multiresolution of X^ and Pk: X^ -*• Vk,
k = 0, 1 be a sequence of projection operators on Vk. If

{Pkf]k>oIS a bounded sequence in Xlnfor eachf e X^ (4.28)

and

PkPM = PkM all k = 0,1 (4.29)

then (4.27) holds, i.e. {Vo, Wk}k>0 is a Schauder decomposition ofX2n.

Proof. Suppose that (4.28) and (4.29) hold. By the Uniform Boundedness Principle,
(4.28) entails that {Pk)ki0 is uniformly bounded. Suppose that \\Pk\\ < M for all k > 0.
L e t / e Xfr. Then for any e > 0, there exists a function/ e Uki0Vk satisfying

11/-/ll
Af+1

It follows that there is a positive integer N such that f e Vk for all k> N. Hence for
k>N,

\\Pkf - / l l < \\PJ ~ Pj\\ + \\Pkf-f\\

< (HAH + 011/ - / « < « •

Hence the sequence [Pkf] converges t o / , and

f = Pof + '

For k = 0,l let

Qk = PM - A - (4.31)

It follows from (4.29) and Proposition 4.3 that Qk is a projection,

QkQj = O, k^j, (4.32)

AQm = 6n,A = 0, m > k, (4.33)

and

https://doi.org/10.1017/S001309150001943X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001943X


76 SAY SONG GOH, S. L. LEE, ZUOWEI SHEN AND W. S. TANG

&(*2n) = Wk. (4.34)

Therefore (4.26) holds.
To prove (4.27) it suffices to show that if

*=o

where / 0 € Vo and gk € Wk, k = 0, 1 , . . . , then f0 = gk = 0 for all k = 0 , 1 , . . . . Indeed,
by (4.32)-(4.34)) applying the operators Po and Qk to the functions in (4.35) gives f0 = 0
and ^ = 0 , * = 0,1 •

5. Characterization of projections for a wavelet basis

Suppose that {T̂ }̂ >0 is a multiresolution of X-& generated by scaling functions <pk. Let
Pk : X& —• Vk, k = 0 , 1 , . . . , be a sequence of projections on Vk and Wk := VM D Ker(Pk),
so that

VM = Vk(BWk, k = 0,\,....

We shall characterize the projections Pk, k = 0 , 1 , . . . . for which each Wk has a basis
generated by |pshifts o f a function. The approach is constructive and leads to the
construction of such a basis. Note that in the construction we do not assume Pk satisfy
(4.19), (4.28) and (4.29).

Let \fik 6 Kt+1.Then

>U + 2k+lp) = *pk(j + 2Mp), (5.1)

for all p e Z, j = 0 , 1 , . . . , 2*+l - 1, for some gk+l e 5(2*+1). For ; = 0,1 2* - 1, let

j j t T ^ k . (5.2)

Then by (4.9), (4.10) and (4.11),

1 *-'fo £>% = 0 , l , . . . , 2 * - l , (5.3)

ukJ(x) ~V2>Yl kU + 2kp)e^^, (5.4)
peZ

https://doi.org/10.1017/S001309150001943X Published online by Cambridge University Press

https://doi.org/10.1017/S001309150001943X


CONSTRUCTION OF SCHAUDER DECOMPOSITION 77

and

3 j^ (5.5)

for; = 0, 1 2 * - l .

Proposition 5.1. The functions utj e Wk.j = 0,\,...,2k— 1, if and only if

9MU)(VMJ. »W> + 9M(J + 2k)tok»j+*. <i) = 0, i,j = 0,l 2* - 1. (5.6)

Further, {Tt
k^ik: £ = 0 , 1 , . . . . 2* - 1} is a basis for Wk if and only if (5.6) holds and

\9M(J)\ + \9MU + 2*)l 96 0. ; = 0, 1 2* - 1. (5.7)

Proof. Since uk) e K+i,,it follows that ukJ e Wk if and only if ukj e Ker(Pk)<=>
("kj« v'k.t) = 0 for £ = 0 , 1 , . . . . 2* - 1, which is equivalent to (5.6).

The second assertion follows from Proposition 4.1. •

Theorem 5.1. Suppose that v*kJ e X*^ are the associated bounded linear functionals
of the projection operators Pk. The following are equivalent:

(i) There exists a function \\ik e VM such that {Tl
kij/k: I = 0 , 1 , . . . , 2* - 1} is a basis

for Wk.

(ii) For j,£ = 0,1 2 * - l ,

< « W <i) = <»wjf*• «W = °. } * * • • (5-8)

(iii) Forj = 0,1 2*+l - 1,

J, v'kJ)vkJ, (5.9)

where vkj and v*kj are assumed to be periodic with respect to the second index j ,
with period 2*.

Proof. For convenience we let

, , * k . t ) , j = o,\,...,2M-i,e = o,i 2*-i. (5.10)

Suppose that (i) holds. Then there exists gk+l G 5 ( 2 I + I ) such that \jik satisfies (5.1)
and gk+l satisfies (5.6) and (5.7), by Proposition 5.1. Hence at least one of gk+i(f)
and gk+l(j + 2k) is nonzero. If (5.8) is false, then there exists ; ^ t such that at least
one of Pk

t and /j£.2*.< is nonzero. For these values of;, I, (4.17) gives
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kMfti + hMU + 2*)#+2*.< = 0. (5.11)

In addition (4.17) implies that

V , ( ; ) # , + ^ , 0 " + ?)&*,, = >/2. (5.12)

Equations (5.11) and (5.12) form a linear system in (hk+\(f)< hk+\(j + 2*)) whose matrix
is

! ) . (5.13)

The matrix A is nonsingular. Otherwise,

for some c ^ 0, but (5.11), (5.12) and (5.14) imply that c = 0.
Now for these values of j , £, they-th and £-th equations in (5.6) can be written as

Hence gk+l(f) = gM(j + 2*) = 0, which is a contradiction.
If (ii) holds, then (4.17) and (5.6) are equivalent to

J2, (5-15)

= 0, (5.16)

for ; = 0,1 2* - 1. Given hk+l, pk
}j and fa^jj = 0 , 1 , . . . . 2* - 1, satisfying (5.15),

we shall construct a periodic sequence gk+l e S(2k+t) satisfying (5.16) so that the | r
shifts of the function \pk whose Fourier sequence satisfies (5.1), form a basis for Wk.
The construction proceeds as follows. For j = 0, 1, . . . , 2* — 1,

(a) if 01 j ^ 0, we let gk+i(j + 2k) be an arbitrary nonzero number and set

(5.17)

(b) if /3yj = 0, we let §t+i(j) be an arbitrary nonzero number and set gk+i(j + 2k) := 0.

In either case, gk+l satisfies (5.6) and (5.7), which implies (i) by Proposition 5.1.
The equivalence of (ii) and (iii) follows directly from the representation (4.15). •
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Remark 2. If (ii) holds, steps (a) and (b) above give a construction of the sequence
gk+l and hence the wavelet $k.

6. Dual multiresolution and adjoint projections

Suppose that {Vk}kif) is a multiresolution of X^ generated by the scaling functions
<t>k and let Pk: X^ -*• Vk, k = 0 , 1 , . . . , be a sequence of projection operators on Vk.
Henceforward, we shall assume that Pk,k>0, satisfy (4.19), (4.28), (4.29) and (5.9).
Because of (5.8) we define h*M e <S(2t+1), by

l, (6.1)

with the usual assumption that v*kj is periodic in 7 of period 2 \ In terms of fik
jt,

Let

be the bases for Wk constructed in Section 5, where the function \J/k is defined via its
Fourier coefficients by

) = UJ + 2MP), (6.3)

for all p e Z, j = 0,1 2k+l - 1,

equivalently,

1 2 '- '
' Y,(0?luV t = 0*h...,2k-l, (6.5)

j=o

(6a) if h*M(j) ^ 0, then gk+1(j + 2k) is an arbitrary nonzero number and
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(6b) if hl+i(J) = 0, then gM(j) is an arbitrary nonzero number and gk+i(j + 2k) := 0.

Proposition 6.1. Suppose that Pk, k = 0 , 1 , . . . , satisfy (4.28) and (4.29). Then

Ker(Pt) = Wk © WM © • • • . (6.7)

Proof. By Proposition 4.4,

x^ = vk © wk © wk+l © • • • .

We also have another direct sum decomposition

By Proposition 4.3, Wm c Ker(Pt) for all m > k, and so

(6.8)

This inclusion and the uniqueness of the above two decompositions of Xln give the
equality (6.7). •

For fc = 0, 1 let

Then (iv) of Proposition 4.3 implies that

^ C ^ + . , ^ = 0,1 (6.9)

Further, (5.8) and (iv) of Proposition 4.3 give

JkUWU+^tU + 2*K (6.10)

which is the dual of the relation (4.7):

fc0>+ k

It is also convenient to write the equations (5.15) and (5.16) in the following forms
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which show the duality:

j + 2k)h'M(J + 2k) = 2, (6.11)

O + 2k)K+lU + 2*) = 0, (6.12)

for; = 0,l 2 k - l .
Note that the projection operator P*k: XW -*• V^ corresponding to the bounded linear

functional vkj € X£, j = 0 , 1 , . . . , 2k — 1, defined by

j * K / . 9 ' e ^ , , (6-13)

is the adjoint of Pk. Indeed, if/ e X%, and g* e X^, then

, 9*) = Y,(f, v:.,)(vkJ, g') = (f, Ptf).

Proposition 6.2. Suppose that {^}t > 0 is a multiresolution of X^, and Pk: X2x -*• Vk,
k = 0,1,..., is a sequence of projection operators satisfying (4.19), (4.28), (4.29) and
(5.9). Then {l?}/k>o is a multiresolution of

:= U *?• (614>
*>o

Further, ifX^ = L'2n, 1 < p < oo, fAe/j

1^ = LL (6.15)

wAere l /p+ \/q = 1.

Proof. Let

By (4.20),
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By (4.13), {vljj = 0,1 2 * - l } is linearly independent. Hence {Tift : £ =
0 , 1 , . . . ,2* — 1} is a basis for Vf. Therefore MR1 is satisfied. The condition MR2
follows from (6.9), and MR3 for Y£, follows from the definition (6.14).

To prove (6.15), take any / e Lp
2n. Then (4.28), (4.29) and the MR3 condition for

{Vk}kiP imply that ||(J - Pk)f\\ - • 0 as k -+ oo. If g' e l £ ,

l(/. (/• - W > l = | ( ( J - Pk)f, g')\ < ||(7 - Pk)f\\ \\g'\\ -+ 0 as k -+ oo.

Thus P*kg* converges to g* weakly. Hence Ut>0J£ is weakly dense in L\n. Since Ut>0V7
is convex, it follows that it is also strongly dense in L^. •

If {PJt>0 satisfies (4.19), (4.28) and (4.29), then

KTk = TkPl,

{Pi)k>o is uniformly bounded and

i.e. {Pl}k>o also satisfies (4.19), (4.28) and (4.29). Let

Then

is a Schauder decomposition of 1£. Further, for; = 0,1 2* — 1, (4.7) gives

f
= =J,

which shows that the functionals vkj e Y£ corresponding to the projection P*k satisfy
the condition (5.8) of Theorem 5.1.

The construction in the proof of Theorem 5.1 gives sequences g*M e <S(2*+1) such that
for; = 0,1 2 * - l .

(6c) if hk+}(j) ^ 0, then g*k+1(j 4- 2*) is an arbitrary nonzero number and

n- r,v

(6d) if )ik+i(./) = 0, then gk+i(j) is an arbitrary nonzero number and g*M(j + 2*) := 0.
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The relation (6.11) is self-dual, while the dual of (6.12) is

9UiU)hMU) + g'UJ + 2k)hM(J + 2*) = 0, (6.18)

for j = 0, 1, . . . , 2* — 1, which follows from the above construction.
For k = 0, 1, . . . , let \ji*k e Y£, be defined via its Fourier coefficients:

$*(_,- + 2k+lp) := &+,(;)<&+,(-/ + 2*+lp), (6.19)

for all p e Z , ; = 0 , 1 , . . . , 2*+1 - 1. Define

u'kj:=-l='ycok-
itTiil/l 7 = 0,1 2 * - l , (6.20)

equivalently,

J=o

The functions tj/k and i//*k which generate wavelet bases for Wk and Wk* are obtained
from the sequences gk+l and g*k+l which satisfy the general conditions (6a), (6b) and
(6c), (6d) respectively. We shall show that a judicious choice of gk+l and g*k+l produces
functions ipk and ip'k which generate a biorthogonal system.

Lemma 6.1. For j = 0,1 2k - 1, let

QnU) •= -h'MU + 2*), gMU + 2k) := h'M(J), (6.22)

and

g'M(J) •= ~hMU + 2'), g'UJ + 2*) := hMUr (6-23)

Then gk+1 satisfies (6a) and (6b), and g*k+l satisfies (6c) and (6d). Further, for
7 = 0,1 2 * - l .

gM(M+iU) + gUJ + 2*)fo.,O" + 2k) = 2. (6.24)

Proof. It is straightforward to verify that gk+l and gl+l defined by (6.22) and
(6.23) satisfy (6a), (6b) and (6c), (6d) respectively. The relation (6.24) follows from
(6.22), (6.23) and (6.11). •
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Theorem 6.1. Suppose that {Vk}k20 is a multiresolution of X^, Pk: X& -*• Vk,
k = 0,\,..., is a sequence of projection operators satisfying (4.19), (4.28), (4.29) and
(5.9), and gM and g'k+l satisfy (6.22) and (6.23). Then

{K.o. «iy}, Ko, <,) • k = 0,1 ; = 0,1 2k - 1}

is a biorthogonal system.

Proof. The relation (5.5) and its dual,

<j = ^9'M{M+iJ + ^=g:+l(J + 2k)v'M,j+2u (6.25)

give

<«*j. «w> = 0 for j ± t

and

KJ, <J) = \ (9k+l(J)9MU) + 9MU + 2*)&+,(; + 2*)) = 1,

by (6.24). Hence

(ukJ,ult) = 5lt, j , t = 0,\,...,2k-l. (6.26)

Similarly, (5.5), (6.10) and (6.12) lead to

<«*j.«k>=0, j,t = O,l 2 * - l , (6.27)

while (4.7), (6.25) and (6.18) give

fou.«M>=0. J>* = 0'1 2 * - l . (6.28)

Now if k < m, then Vk+l c Vm. Hence Wk c Vm, and (6.28) implies that

(Ukj,<t)=O. 7 = 0,1 2 * - l , € = 0,1 2 m - l . (6.29)

Similarly, if k > m, (6.27) implies (6.29). The result follows from (6.26) and (6.29). •

Corollary 6.1. If the conditions of Theorem 6.1 are satisfied, then

{l<t>0,T'kil,k},{<K,nyk):k = 0 , l , . . . , l = 0 , h . . . , 2 k - l }

is a biorthogonal system.
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Proof. The result follows from Theorem 6.1, (5.3) and (6.21). •

7. Projections and decompositions and reconstniction algorithms

Suppose that {Vi)t>o is a multiresolution of X^, Pk: X^ -*• Vk, k — 0,1,..., a
sequence of projections on Vk satisfying (4.19), (4.28), (4.29) and (5.9), and
Qk '•= Pk+i ~ Pk- Then Qk is a projection on Wk, k = 0 , 1 , . . . , and

vM = vk®wk, * = o , i , . : . .

where

Wk = Ker(mn+1) = VM f | Ker(J\) = &(**).

The space Wk has a basis generated by Tl
ki//k, i = 0,1 2* - 1. Also,

where {ukj :j = 0,1 2k - 1} is the rotation of {Tl
k^k: t = 0,1 2k - 1} by the

Fourier matrix with a suitable normalization. Therefore Qk can be expressed as

.«uKv. / e X * . (7.1)

where {w^ : ; = 0, 1 , . . . . 2* - 1} is the biorthogonal basis for Wk.
For; = 0 , 1 , . . . . 2*+1 - 1,1 = 0,1 2* - 1, define

*& = < « W « M > - (7-2)

Then (4.7) and (5.5) lead to

V,(JK< + W ; + 2 ' ) ^ . , = 0, (7.3)

SUM* + U / + 2X*^ = ^ ^ J. * = 0. 1..... 2* - 1. (7.4)

Note that (7.3) and (7.4) are analogous to (5.16) and (5.15) where the roles of hk+l

and gk+x are interchanged, and fit := {vk+uj, v*kt) is replaced by n*t.
Since vkj ^ 0,

This implies, as before, that
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f*w = <2M = 0. J.* = 0.1 2*-land7#/. (7.5)

Thus (7.3) and (7.4) become

hM(Mj + hMU + 2X#j = °. 0-6)

9M UHJ + 9M U + 2>l+2Kj = ^ y = 0, 1..... 2* - 1. (7.7)

Lemma 7.1. 77ie /inear system (7.6) anrf (7.7) w nonsingular for each j = 0 , 1 , . . . ,
2 * - l .

Proof. Since

and

each of the rows of the matrix of coefficients is nonzero. If the linear system is
singular, then there exists a nonzero constant c such that

(Vi(j). hMU + 2*)) = c(gk+l(j), gk+lU + 2*)).

Thus (7.6) becomes

cQMU)rf.i + 9MU + 2*K+2».;) = 0.

which implies that c = 0, a contradiction. •

Solving the linear system (7.6) and (7.7) gives

u* - x / 2 V , Q + 2»)
U

 lU + 2*) - hU + 2k)U)'

If 9k+i a n d gl+i satisfy (6.22) and (6.23), then using (6.11), the expressions in (7.8)
and (7.9) simplify to give
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(7.10)

Suppose that for k = 0 , 1 , . . . ,fk+l e Vi+1, and that

fM=ft + dk, fkeVk,dkeWk,

where

and sk, tk € 5(2*). Then a familiar argument leads to the following frequency-based
reconstruction and decomposition algorithms (see [9]):

^ ^ l j = o,\,...,2M -1, (7.11)

hU) = ̂ h'M(J)'sM(J) + ^ , 0 + 2k)sMU + 2"), (7.12)

Uf) = ^SIHWMU) + ^SUXU + 2k)sMU + 2"), (7.13)

for; = 0 , l , . . . , 2 * - l .

8. Examples

8.1. Orthogonal projections and multiresolutions in L2
2n. Let {̂ }*>o be a multiresolu-

tion of L|, generated by (j>k,k > 0, constructed as in Corollary 3.1. Let Pk: L|, -*• Li,
be the orthogonal projection on Vk for k > 0. Then

which satisfies (4.19), (4.28), (4.29) and (5.9) with ||PJ| < 1. A straightforward
computation gives
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V2KJ2 '

v^lk.,112

for ; = 0,1 2* - 1. By our construction,

(al) if PJJ ^ 0, equivalently hk+t(f) ^ 0 , we let gk+i(j + 2k) be an arbitrary nonzero
number and set

9k+iU) •= - :
hM(j)\\vMJ\\

2

(bl) if PJJ = O, equivalently hk+l(j) — O, we let gk+i(j) be an arbitrary nonzero
number and set gk+l(j + 2k) := 0.

The corresponding wavelets \jik are obtained from gk+i using (5.1). Note that the
sequences gk+l and hence the corresponding wavelets constructed in [9] are special cases
of (al) and (bl) above.

8.2 Interpolatory projections and multiresolutions in C2x. Let ^ be a refinable,
continuous and compactly supported function on R satisfying the following
conditions:

<t>{n)elnx ± 0 for all x e R , (8.3)

r<Kx)dx?0, (8.4)
- 0 0

and

${u) = Odur1"*) as \u\ ^- oo, (8.5)

for some c > 0. Define a function L by

2>,rtx-v), (8.6)

where co,, v e Z, are the coefficients of the Laurent series
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For k > 0, periodize the functions <j> and L by

(8.8)
neZ

and

f^ ) (8.9)
eZ V " /

Then it follows from Proposition 2.1, Corollary 2.1 and the Poisson's summation
formula that <f>k, k>0, generate a multiresolution {^}t>0 of C^ with vk](0) ^ 0 for all
j = 0,1 2* - 1, and k > 0. Let P t : Cto -»• Cj,, be the interpolatory projection on Vk

for fe > 0. Then Pk is given by (4.15), where

( / . B j A ^ ^ — y ^ / f ^ ) ^ , ; = o,l 2*-l. (8.10)

The projection Pt can be expressed by

" =2_«- ' l"Tr) *l T T / ' (°-ll)

which satisfies (4.28) with

(x-i i) | . (8.12)

Further, (4.15) and (8.10) yield (4.19), (4.29) and (5.9) with

M°) '

for j = 0 , 1 , . . . , 2* — 1. The values ^ and ^+2»j are both nonzero. By our construction,
we let gk+t(j + 2*) be an arbitrary nonzero number and set
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Then the corresponding wavelets ij/k are obtained from gk+1 using (5.1). This is the
periodic analogue of the interpolating wavelets studied in [2], [7] and [12].

Remark 3. After the completion of our paper, it was brought to our attention the
existence of [1], [4] and [5] where the abstract theory of multiscale projections, which
overlaps with part of our paper, was treated in more generality. Our approach makes
use of orthogonal bases of "orthogonal splines" which simplifies the analysis in the
periodic case.

Acknowledgement. The authors would like to thank the anonymous referee for his
helpful suggestions, which improve the results of this paper.
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