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NONTRIVIAL SOLUTIONS OF A SEMILINEAR
ELLIPTIC PROBLEM VIA VARIATIONAL METHODS

ZHI-QING HAN

Using variations! methods, we investigate the existence of nontrivial solutions of a
nonlinear elliptic boundary value problem at resonance under generalised Ahmad-
Lazer-Paul conditions. Some new results are obtained and some results in the litera-
ture are improved.

1. INTRODUCTION

In this paper we consider the existence of nontrivial solutions of the following problem
on a bounded domain ft c K" with smooth boundary

\Au + \ku + g{x,u) = 0 a; eft,

1 u = 0, x e dQ,

where g{x,t) is a Caratheodory function such that g(x,0) = 0 for almost everhwhere

x € fi and \k is the k — th (k ^ 2) eigenvalue for the elliptic linear operator - A with

zero Dirichlet boundary condition.

It is well-known that the operator —A with zero Dirichlet boundary condition has

discrete eigenvalues (0 <)AX < A2 < • • • < Xk < h+i < ••• and each eigenspace, is

finite dimensional. Denote the eigenspace corresponding to Aj by Et and suppose that

Ek =spa,n{<f>1,(l>2,...,4>m}-

We impose the following conditions.

(gl) \g(x,t)\^C\t\° + b{x),

where b{x) € L« with q = {2N/N + 2) for N ^ 3, q = 1 for TV = 1,2 and C > 0, 0 ̂  a < 1
are constants;

/
(G±) J2JL >±ooas | |a | |=( i ;a?) -> oo

llall

||a||=(i;a?)
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where a = ( o , ^ , . . . ,am) 6 Km and G[x,t) = /„'g{x,s) ds.

The conditions (G ± ) with a — 0 are proposed by Ahmad-Lazer-Paul ([1]) and are

in some sense coercivity conditions on the function G(x, t).

Much work has been done on the existence of solutions or multiple solutions to the
problem (1.1) since the work in [12], either by topological or by variational methods;
for example see [6, 10, 14, 15 , 16] and the references therein. To obtain (nontrivial)
solutions, one of the difficulties is that (g(x, t) + Xkt)/t may approach some Aj as t —i oo
(resonant at infinity) or as t —> 0 (resonant at 0), since when resonance at infinity
occurs, it is difficult to obtain the priori estimates needed by the topological methods
or obtain the Palais-Smale condition required by the variational methods. The Ahmad-
Lazer-Paul conditions have been widely used in the literature to overcome the difficulty.
For the strong resonance case, that is, g{x,t) —• 0 as t —> oo, where Ahmad-Lazer-Paul
conditions fail, [3, 4, 5] develop some variational techniques to investigate the nontrivial
solutions of (1.1). For the nonresonant or incompletely resonant case, there is also a lot
of work in this respect; for example see [2, 1 1 , 14]. But it seems that there is not too
much work to deal with the middle case where g(x,t) satisfies conditions like (gl). For
some related results see [13]. In [9], we proposed conditions (G±) to investigate the
existence of solutions and proved the following theorem.

THEOREM 1 . 1 . Suppose that condition pair (gl), (G+) or (gl), (G-) holds. Then
equation (1.1), where we do not assume that g(x,0) = 0 for almost everywhere x € f2,
has at least one solution in HQ(Q).

The above theorem with a — 0 was proved in [1]; see also [15]. In this paper, we
aim to investigate the nontrivial solutions to (1.1) under the conditions (gl) and (G+) or
(G_) and obtain the following results.

THEOREM 1 . 2 Suppose that conditions (gl) and (G+) hold. If there exists m ^ k

such that

(1.2) l i m s u p ^ ^ < A m - A t

t-»o t

and

(1.3) inf^^A^-A*

uniformly for almost everywhere x £ Q, then equation (1.1) has at least one nontrivial

solution in HQ(Q,).

THEOREM 1 . 3 . Suppose that conditions (gl) and (G-) hold. If there exists m^-k

such that

(1.4) ^ ^
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and

(1-5) sup^<Am+1-A,

uniformly for almost everywhere x e fi, then equation (1.1) has at ieast one nontrivial

solution in HQ(Q).

It is natural to investigate the case m > A; in Theorem 1.2 and the case m < fc in

Theorem 1.3. The corresponding results are interesting, since the coercivity condition

(G+) or condition (G-) is not indispensable. In particular, Theorem 1.5 contains one of

the main results in [14, Theorem 1] as a special case.

THEOREM 1 . 4 . Suppose that condition (gl) and the Palais-Smale condition for

J at any level c < 0 hold. If there exists m > k such that (1.4) and (1.5) hold, then

equation (1.1) has at least one nontrivial solution in HQ(Q).

THEOREM 1 . 5 . Suppose that condition (gl) and the Palais-Smale condition for

J at any level c > 0 hold. If there exists m < k such that such that (1.2) and (1.3) hold,

then equation (1.1) has at least one nontrivial solution in

2. P R O O F S OF THE THEOREMS

In the following, the notations || • || and (•) denote the norm in HQ(Q) and the pairing

between H~l(Q) and HQ(Q). C denotes a universal constant. For u € H^(£l) and p > 0,

denote
( T \ V P

IMIP — ( / lur dx)
and decompose uasu = u + u° + u, where u € ̂  Eit u° E Ek and u € ^2Et.

It is well-known that (weak) solutions of (1.1) in Hg(Q.) correspond to the critical

points of the C1 functional in HQ (fi)

J{u) = \ f | Vu|2 dx - \\k f \u\2 dx- f G(x, u) dx
2 Jn 2 Jn Jn

and

'(u), v) = / (VuVw - Xkuv - g(x, u)v) dx
Jn

foru,veHl(n) (see [15]).
If we want to get classical solutions, we need to impose more regularity assumptions

on g(x,t), for example that g is locally Lipschitz in Q x R; see [8] for more details.

LEMMA 2 . 1 . Under the condition pair (gl), (G+) or (gl), (G-), the functional J

defined above satisfies the Palais-Smale condition.

PROOF: We only prove the case where (gl) and (G+) hold. The other case can be

similarly proved.
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Suppose that {un} C HQ(Q.) satisfies

J'(un) - • 0 in H~l{Q), as n - > o o ;

(2.1) \J{un)\^C.

Hence

(J'(un), -un)

= (-\Vun\
2 + \k\u\2+g{x,un)un)dx

Jn

> (Afc - Afc_0 / \un\
2 dx- f \un\ (C\un + u°n + un\

a + b) dx
Jn Jn

> (Afc - Afc_0 / \un\
2 dx- f \un\ bdx -3aC f \un\ (|un|a + \u°n\

a + \un\
a) dx

Jn Jn Jn
> (Afc - Afc_! - e) f \un\

2dx -C f \un\\u°n\
adx -C f \un\ \u\a dx - C(e)

Jn Jn Jn
> (At - Afc_! - 2e) f \un\

2 dx - C(e) [ \u°n\
2a dx - C(e) f \un\

2a dx - C(e)
Jn Jn Jn

where C(e) > 0 is a universal constant dependent on the arbitrary e > 0. Fixing e > 0
sufficiently small and noting that all norms in Yl &i a r e equivalent, we have

(2.2) ll"n||2^c|K||2«

By a similar argument we can prove that

(J'(un),un) > ( l - - ^ - 2 e ) [ \Vun\
2dx-C(e) [ \un\

2adx-C{e) f \u°n\
2adx-C(e).v Afc+i / Jn Jn Jn

Hence we have the inequality

(2.3) IKII2^c|Ki|^ + c||nn||^ + a

Combining (2.2) and (2.3), we have

\\un\\
2^C\\u0

n\\
2a

a+C\\un\\
2a + C

(2.4) < C\\u°n\\?a + C\\u°n\\%
2 + CM2? + C

By the Holder inequality and the Sobolev inequality, in view of 2a2 < 2a < 2, it follows

immediately from (2.4) that

Consequently,

(2.5)
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By a similar argument to that in the proof (2.5), we obtain

(2-6) lfoH2^C|tt + C.

Now we estimate Jn(G(x,un) - G(x,u°)) dx.

f (G(x, un) - G{x, u°n)) dx= f dx f g(x, u°n + s(un + un)) (un + un) ds
Jn Ja Jo

f dx f (\un\
Ja Jo

^ C f (\un\ \u°n\
a + \un\

1+a + \un\ \un\
a + b\un\) dx

Jn '

+ / ( K | K | Q + K\ \un\° + \Hn\
l+a + b\un\) dx.

Jn

By (2.5) and (2.6) and a simple calculation, we can obtain

(2.7) / (G(x, un) - G(x, u°n)) dx ^ C|K||£ + C.
Jn

Obviously, by (2.1) and the definition of J,

-C ^ \ f \Vun\
2 dx - f (G(x, un) - G(x, u°n)) dx- f G(x, u°n) dx.

z Jn Jn Jn

Moreover, by (2.3) and (2.7), we have

-C<C\\x£\\% + C- I G(x,u°n)dx.
Jn

Write u° = 52 a"0i- The above inequality is converted to

J2«)2 + C - / G(x, Y,<

Hence < £ ( a " ) 2 > is bounded by the condition (G+)- Furthermore, {un} is bounded in

HQ(Q) by (2.5) and (2.6). A standard argument implies that J satisfies the Palais-Smale

condition in H%(Q) (see [15]). D

P R O O F O F T H E O R E M 1.2: We only need to prove the existence of nontrivial solu-

tions of J in H^(Q). Write H^(Q) = £ Et ® £ ££. In order to use [15, Theorem 5.3],
i<m i^m

in view of Lemma 2.1, we need to verify the following conditions:

(i) there are p,d > 0 such that J ^ d on \u € ^2 Et\ \\u\\ = p \ \
1 i^m '
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(ii) there are e € Y, Ei with ||e|| = l,R > p, and e < d such that if Q

= iu e Y Ei | ||u|| ^ R\ © {te : 0 < t < R}, then J ^ e on dQ, where
*• i < m '

dQ denotes the boundary of Q in Y Ei®Re.

By (gl) and (1.2), the condition (i) can be proved by the argument in the proof of
[14, Theorem 1]. By (1.3), it is obvious that J ^ 0 on Y E{. Hence, in order to obtain

i^m-l
(ii), we only need to prove

(2.8) lim J(u) = - co ,

since then e can be taken as any element in Em with ||e|| = 1, R any number sufficiently
large and e < d any number sufficiently small.

In fact, for u € Y Eit we have u — u + u°, since m ^ k. Suppose that m — k. Then

J(u) = \ [ (|Vu|2 - \k\u\2) dx - f (G(x, u) - G(x, u0)) dx - [ G{x, u°) dx2 Jn Jn Jn

^ hXk-i-^k) f \u\2dx- f dx I g(x,u° + su)uds - f G(x,u°)dx2 Jn Jn Jo Jn

^J(Afc-i-Afc) f \u\2dx + C f \u\(\u°\a + \u\a + b) dx - f G(x,u°)dx2 Jn Jn Jn

^ i(At_! -Xk + e) f \u\2 dx + C f \u\ \u°\a dx - [ G(x, u°) dx + C(e) (Ve > 0)2 ^n Jn Jn

i(A*_i - Xk + 2e) f \u\2 dx + C(e) f \u°\2a dx - f G(x, u°) dx + C(e).
* Jn Jn Jn

Choosing 0 < e < (Xk — Xk-\)/2 and using the condition (G+), we obtain (2.8).

If m < k, then u = u. The proof of (2.8) is much easier. The theorem is proved. D

PROOF OF THEOREM 1.3: Under the conditions of the theorem, we can prove

(i) there are p, d > 0 such that J < —d on \ u € J2 ^« I INI = P f 5

(ii) J ^ O o n Y. Ei\

(iii) J(u) —> +oo as u € Yl &i an(^ llull ~* °°-

Then, for / = - J, we use [15, Theorem 5.29] and obtain a positive(nonzero) critical
value for /. This completes the proof. D

PROOFS OF THEOREMS 1.4-1.5: Under the conditions of Theorem 1.4, we obtain
a negative critical value for J by obtaining (i)—(iii) in the proof of Theorem 1.3, where in
the proof of (iii) we notice m> k and use a similar (and simpler) argument to the proof
of (2.9). The proof of Theorem 1.5 can be given as that of Theorem 1.2. D

LEMMA 2 . 2 . Suppose that g{x,t) satisfies (gl) and there exist a{x) e ^(Q)
a(x) ^ 0 with fna(x) dx > 0 and b(x) 6 L'(Q) such that
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(g2) a(

uniformly for almost everywhere x € fl. Then the condition (G+) holds.

PROOF: It is easy to get an e > 0 such that

/ a(i)|?;(a;)| +<*dx ^ e I \v(x)\ +°dx
Jn Jn

for all v € Ek, v ^ 0. For this e > 0, 3T > 0 such that g{x,t)t ^ (a(x) - e) \t\l+a for
\t\ > T. Hence

G(x,t) - G{x,0) = f g(x,ts)tds
Jo

= / -g(x,ts)tsds + / -g(x,ts)tsds
J\ts\>T s J\ts\^T s

>[ -(a{x)-e)\ts\l+ads-\t\ f he{x)ds
J\ts\>T s J\ts\^T

(2.10) ^ _ i _ ( a ( a . ) _ e ) | t | i + « _ / l e ( a ; ) | t |

for some he € L"(Q,).

For any sequence {un} e Ek with ||un|| —>• oo, set un = un/||wn||- Without loss of
generality, we assume that vn —>• v in C(f2) and |wn(^)| ^ C for almost everywhere x € fi
and n ^ 1, where v ^ 6. Therefore, by Fatou lemma and the inequality (2.10),

liminf||un|r
(Q+1) f G(x,un)dx

n->oo Jn

> liminf K||-(Q+1> [(-L-(a(x)-e)\un\1+a ~ he(x)\un\) dx

^—^— f(o(x) - e)\v{x)\l+a dx > 0.
a + 1 Jn

Consequently, by a + 1 > 2a, we have

lim | | u j r 2 a / G(x,un) dx = +oo.
n»oo J

|
n-»oo

This completes the proof. D

LEMMA 2 . 3 Suppose that g(x,t) satisfies (gl) and tnere exist a(x) e Z-^fi) and

b{x) G Z-^fi), 6(x) ^ 0 with fnb(x)dx < 0 such that

(g3) a(x) ^ lim inf ^ ^ lim sup ̂  ^ 6(«)

uniformly for almost everywhere x 6 fi. Tnen the condition (G-) holds.

P R O O F : The proof is similar to that of Lemma 2.2. D
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COROLLARY 2 . 1 Suppose that the assumptions in Theorem 1.2 hold with (G+)
replaced by (g2). Then (1.1) has at least one nontrivial solution in HQ(Q).

REMARK 2.1. The above corollary is essentially proved in [16, Theorem 1]. Existence of
nontrivial solutions of (1.1) under (g2) and some other conditions is also investigated in
[13] by Morse theory where more regularity conditions on g(x,-t) and different conditions
near t = 0 are needed.

The condition (1.2) is a one-sided nonresonant condition at the origin with respect
to the eigenvalue Am. Using the ideas in [7, 14], we can relax it. First, we make some
preparations.

A measurable subset E of E is said to have positive density at +0(—0) if

meas(£'n[0,r]) / meas(.En [r, 01)
liminf v , r

 l ' u > 0 (liminf V „ L ' " >
r->+o meas([0,r]) V r-+-o meas([r,0])

We say that a measurable subset A of a measurable set B is a full subset of B if B\A
has measurable zero. For A C f2 and r > 0, write

xeA

Now we present the following improvement of Theorem 1.2. Other theorems in this
paper can be similarly improved.

THEOREM 2 . 1 . Suppose that conditions (gl) and (G+) hold. Assume there exists
m ^ k such that

lim sup ——— ^ Am — Ajt
t-»o t

and
• e9(x,t)
mi ^ Am_! — A*
ty^O t

uniformly for almost everywhere x € ft. If there exists a full subset ft' of SI and r) > 0
such that E(Q,', Am — A* - 77) has positive density at +0 or (-0), then equation (1.1) has
at ieast one nontrivial solution in HQ(Q).

P R O O F : The proof can be given combining the arguments in the proof of Theorem
1.2 in this paper and those in the proof of [14, Theorem 2]. D

REMARK 2.2: Finally, we point out that since there are no coercive conditions on g(x, t)

in Theorems 1.4 and 1.5, by weakening the Palais-Smale condition to the (C) condition
(for example see [3]), these theorems may be applied to investigate the strong resonance
case for the problem (1.1). Further research may appear elsewhere.
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