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Abstract

An estimate for q2\a — p/q\ is obtained by considering the relation between the continued fractions
for o and/)/?. This leads to an extension of the standard result "q2\a — p/q\ < 1 implies that for
some n,p/q = (iptt + pa-1)/(iqn + ?„_,) where i = 0, 1 or aB+1 - 1".

1980 Mathematics subject classification (Amer. Math. Soc.): 10 F 05.

1. Introduction

We shall take a to be a positive real irrational number and p/q to be a rational
approximation to a, written in reduced form (so that/? and q are relatively prime
positive integers). We write both a &ndp/q as simple continued fractions

a = [a0, a1( . ..,an,an + 1,. . . ],

p/q=[ao,av...,an,bl,...,br],

where, without loss of generality, br > 2. We assume p/q is not a convergent
Pm/im t o a> s o w e m a v require 6, =£ an+l and r > 1.

There are a number of results on \a — p/q\. For example there are two
classical results (see Lang (1966)):

CR1. If q2\a — p/'q\ < ~ thenp/q is a convergent to a.
CR2. If q2\a - p/q\ < 1 then, for some n,p/q = (ipn + />„_,)/(/?„ + ?„_,)

where / = 0, 1 or an+l — 1.
More recently I had need to know what could be said if q2\a — p/q\ < 2. In

Worley (1977) it was shown that in this case p/q = (ipH + Pn-\)/(iqn + qn-i)
where either / is an integer, 0 < i < an + x — 1, or i is a rational number of the
formy + \ where 0 < j < an+ j — 1 andy is integral.
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The purpose of this paper is to strengthen and generalize this last result. To do
so we make use of the following results.

LEMMA 1 (Niven and Zuckerman (1972), Theorem 7.3). For any positive real
number x,

[flo, «„ . . . , an, x] = (xpn + />„_,)/ (xqn + qn_x).

LEMMA 2 (Niven and Zuckerman (1972), Theorem 7.5).
\Pn1n-l ~ Pn-\1n\ = *•

LEMMA 3 (Worley (1973), Lemma 1). Let

Pm/Qm = [0» °m + 2> flm + 3> • • • • am + *]>

where the continued fraction is to be interpreted as 0 / 1 / / k = 1. Then

°m + k = 4mQm{[am+\' •••> am + k] + Qn-\

In the notation introduced earlier, Lemma 3 shows that

q = qnd{[bl,...,br]+qn_l/qn),

where d is the denominator of \bx, . . . , br\.
By combining the previous three lemmas we obtain

LEMMA 4. Ifp/q is not a convergent to a, then

where fi = [bu . . . , br] and y = [an + l, an+2, • • . ] using the notation introduced

earlier.

PROOF. By Lemmas 1 and 2

yPn + Pn-i PP» + />„
*•* ft « n — i r r r n r n —

Qn-\ Pin + an~\
\a - p/q\

Using the comment after the statement of Lemma 3 this gives

q2\a - p/q\ = —

Since (fi + x)/(y + x) is, for 0 < x < 1, an increasing function of x if fi < y
and a decreasing function if (i > y the lemma follows.
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2. The main results

By close analysis of the bounds given in Lemma 4, we obtain the following
theorem, which includes the classical results CRl and CR2 as the special cases
k =5 and k = 1.

THEOREM I. If a is irrational, k > \, andp/q is a rational approximation to a
(in reduced form) for which

q2\a-p/q\<k

then either p/ q is a convergent pn/ qn to a or p/q has one of the following forms:

(i) £,«?•• + * - ' , ab<2k,
q aqn + bqn_x

P__apn-bp
q aqq aqn + bqn_x

P aPn+l ~*~ bPn-1

where a and b are positive integers.

To obtain the symmetry of this result, there has been a slight sacrifice of
detail. Some applications may require the slightly stronger version:

THEOREM 2. If a is irrational, k > \, and p/q is a rational approximation to a
(in reduced form) for which

q2\a - p/q\ <k

then either p/q is a convergent pn/qn to a or p/q has one of the following forms:

apn + bpn_l a > b and ab < 2k, or
aan + ban-i a < b and ab < k + a2/an+l,

apn — bpn_l a < b and ab < 2k, or

(0'

(ii)' p/q = aqn - bqn_l a > b and ab(\ - b/2a) < k,

where a and b are positive integers.

Theorem 1 follows from Theorem 2 on writing pn + i = pn +/>„_,, qn+\ = qn

+ qn-i if p/q has the form (i)' where a < b and an+1 = 1. In all other cases of
(i)' and (ii)' we have ab < 2k.

PROOF OF THEOREM 2. We suppose q2\a — p/q\ < k and p/q is not a
convergent to a. We write a and p/q in the form described in Section 1 and
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compare k with the bounds given by Lemma 4. We also make use of the fact
that the graph of fy(x) = x — x2/y is a parabola with maximum at x = \y
and axis of symmetry the line x =\y. From this it follows that if m <
min(/?, y — /J) then

(1) /i-p2/y>m(l-m/y).

It is convenient to break the proof into separate cases.
Case 1. r = 1, /? = bx < y. In this case we have d = 1, and setting m =

mm(bu an+x — bx) we obtain from (1) and Lemma 4 that

k > q2\a - p/q\ > p - 02/y > m{\ - m/y).

Since y ><*„+! > 2m we conclude that m < 2k. On observing that if /? = Z>, =
w then

+ Pn-

and if y8 = Z), = an + i — w then

The proof of Theorem 2 is complete in this case.
Case 2. r > 1, ft < y. To use (1) we write ]3asm + p/</ if f} < ̂ an +! and as

an+i ~ m ~ P/d if P >lan+i> where we take 1 < p < d — 1. Using (1) and
Lemma 4 we obtain

k>q2\a-p/q\>d2(/3- f32/y)

> d\m + p/d){\ -(m + p/d)/y)

= </(rfm + p)(l - (m + p/d)/y).

If w > 1 we observe that, because y > <an + 1 > 2(w + p/d), it follows that
</(*//n + p) < 2&. However if m = 0 we use the fact that y > an+l > bx > 1, so
y > 2. This yields dp{\ — p/2d) < k. Theorem 2 now follows in this case, on
observing that if (1 = m + p/d then

p/q = (apn + bpn_i)/ (aqn + bqn_l),

where a = dm + p and b = d, and if ($ = an+, — m — p/d then

p/q = (apn + x - bpn)/ (aqn + l - bqn),

where a = d and b = dm + p.
Case 3. r = 1, /? = bx > y. In this case d — 1 and

A: > <72|« - p/q\ >(p-y)(P+l)/(y+l)>fi-y.

We observe that y <an+x + l/an+2, so we have b{ — an+1 — \/an+2 < k.
Writing 6, = an+i + b we have

where b < k + l/an+2- Thusp/q has the form specified in (i).
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Case 4. r > 1, (i > y. In this case we write /? = &,+ p/d where 1 < p <
d - 1. We have

* > q2\a - p/q\ > d2(/3 - «)(/? + 1)/ (y + 1)

> </(<#>, + p - dan + 1 - d/an+2).

Writing m = bx — an+x this gives d{dm + p) < k + d2/an+2. Since

p/q = (̂ Pfl + i "I" (rfw + p)Pn)/ \dqn+i ~^~ \dm + p)qn)

the proof of Theorem 2 is now complete.

Since the particular case & = 2 arose earlier, and the result has a nice form in
this case, we conclude with it.

COROLLARY. If q2\a — p/q\ < 2 then either p/q is a convergent pn/qn to a or
p/q has one of the following two forms

0)" P/Q = {0Pn + Pn-\)/ (aQn + Qn-l)

a = 1, 2, 3, an+x - 3, an+x - 2,an+x - 1,

(ii)" p/q = (aPn + 2pn_x)/ (aqa + 2qn_x) a = 1 or 2an+x - 1.

PROOF. The possibilities given by Theorem 2 for form (i)' are (a, b) = (1, 1),
(2, 1), (3, 1), (1, 2) which correspond to the first three possibilities given for (i)"
and the first for (ii)". The possibilities given by Theorem 2 for form (ii)' are
(a, b) = (1, 1), (1, 2), (1, 3), (2, 1) and correspond to the other possibilities given
for (i)" and (ii)".
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