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Abstract

Suppose that the function f is analytic in the open unit disk ∆ in the complex plane. For each α > 0 a
function f [α] is defined as the Hadamard product of f with a certain power function. The function f [α]

compares with the fractional derivative of f of order α. Suppose that f [α] has a limit at some point z0 on
the boundary of ∆. Then w0 = limz→z0 f (z) exists. Suppose that Φ is analytic in f (∆) and at w0. We show
that if g = Φ( f ) then g[α] has a limit at z0.
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1. Introduction

Let ∆ = {z ∈ C : |z| < 1} and let α > 0. Suppose that the function f is analytic in ∆ and,
for |z| < 1,

f (z) =

∞∑
n=0

an zn.

We define f [α] by

f [α](z) =

∞∑
n=0

Γ(n + 1 + α)
Γ(n + 1)

anzn (1.1)

for |z| < 1, where Γ denotes the gamma function. For β > 0 and |z| < 1 let

1
(1 − z)β

=

∞∑
n=0

An(β) zn.

Then
An(β) =

Γ(n + β)
Γ(β)n!
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for each nonnegative integer n. Thus f [α] is the Hadamard product of f with the
function p where p(z) = Γ(α + 1)/(1 − z)α+1 for |z| < 1. In [4] the authors obtained an
integral formula for f [α] in terms of f when 0 < α < 1.

The function f [α] compares with the fractional derivative of f of order α. There are
a number of definitions of fractional derivatives. One that applies to the Taylor series
of a function analytic in ∆ was introduced by Hadamard. It is defined by

f (α)(z) = z−α
∞∑

n=0

Γ(n + 1)
Γ(n + 1 − α)

anzn (1.2)

for |z| < 1. When α is a positive integer, f (α) equals the usual derivative of f of order α.
In general, a branch cut is needed to define an analytic branch of f (α). The sequences{

Γ(n + 1 + α)
Γ(n + 1)

}
and

{
Γ(n + 1)

Γ(n + 1 − α)

}
have asymptotic expansions

nα
{
c0 +

c1

n
+

c2

n2 + · · ·

}
as n→∞ with c0 , 0. Hence certain facts about f [α] are equivalent to facts about f (α).

If Reα > 0 and n is a nonnegative integer then∫ 1

0
(1 − t)α−1tn dt =

Γ(α)n!
Γ(n + 1 + α)

.

This formula and (1.1) yield

f (z) =
1

Γ(α)

∫ 1

0
(1 − t)α−1 f [α](tz) dt. (1.3)

Also, if 0 < α < β and |z| < 1 then

f [α](z) =
1

Γ(β − α)

∫ 1

0
tα(1 − t)β−α−1 f [β](tz) dt. (1.4)

We are concerned with the limit of f [α] as z → z0 where |z| < 1 and |z0| = 1.
Equation (1.4) and the Lebesgue convergence theorem imply that if limz→z0 f [β](z)
exists and 0 < α < β then limz→z0 f [α](z) exists. A similar fact holds for fractional
derivatives defined by (1.2).

For each positive integer m we have

f [m](z) =
dm

dzm [zm f (z)] =

m∑
k=0

(m!)2

(k!)(m − k)!
zk f (k)(z). (1.5)

If n is a positive integer then by applying (1.5) successively for m = n, n − 1,
n − 2, . . . , 3, 2, 1, we see that zn f (n)(z) is a linear combination of the functions
f [n], f [n−1], . . . , f [1], and f . Therefore limz→z0 f [n](z) exists if and only if limz→z0 f (n)(z)
exists.
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In this paper, we prove a theorem about the existence of limz→z0 g[α](z) for the
composition g = Φ( f ) when limz→z0 f [α](z) exists and Φ is analytic. This generalizes a
classical result about limits of nth derivatives of compositions.

In [2] Hardy and Littlewood obtain a number of results about fractional derivatives
and fractional integrals of analytic functions. A survey of the history and development
of the general theory of fractional calculus is contained in [5, 6].

2. The main results

Theorem. Let f be analytic in the open unit disk ∆ and α > 0, and suppose that
limz→z0 f [α](z) exists for some z0 ∈ ∂∆. Let w0 = limz→z0 f (z). Let g(z) = Φ( f (z)) for
z ∈ ∆, where Φ is analytic in f (∆) and at w0. Then limz→z0 g[α](z) exists.

The proof of this theorem relies on three lemmas. We first state an important
corollary, which follows directly from the theorem and the following fact. If F is
defined in ∆ and limz→w F(z) exists for all w on the boundary of ∆ then F extends
continuously to the boundary.

Corollary. Suppose that f is analytic in ∆, α > 0, and Φ is analytic in a neighborhood
of f (∆). Let g(z) = Φ( f (z)) for |z| < 1. If f [α] extends continuously to ∆, then so
does g[α].

3. Three lemmas

Lemma 3.1. Let ϕ be analytic and univalent in ∆ and suppose that ϕ(∆) ⊆ ∆. Suppose
that ϕ(∆) is a Jordan domain whose boundary contains a closed arc Λ on ∂∆.
There is a closed arc Ψ on ∂∆ mapping onto Λ. If ζ0 is in the interior of Ψ then
(1 − |ϕ(ζ)|)/(1 − |ζ |) is bounded in N ∩ ∆ where N is some neighborhood of ζ0.

Proof. Since ϕ(∆) is a Jordan domain, ϕ extends continuously to ∆ and ϕ is univalent
in ∆. There is a closed arc Ψ on ∂∆ which is mapped bijectively onto Λ, and ϕ extends
analytically in a neighborhood of each point ζ in the interior of Ψ, with ϕ′ , 0 at every
such point. By [3, Theorem 1.1] we have

lim inf
ζ→ζ0

(1 − |ζ |2)
|ϕ′(ζ)|

1 − |ϕ(ζ)|2
> 0.

Therefore

lim
ζ→ζ0

1 − |ϕ(ζ)|2

1 − |ζ |2
·

1
|ϕ′(ζ)|

exists, and so limζ→ζ0 ((1 − |ϕ(ζ)|2)/(1 − |ζ |2)) exists. Hence there is a neighborhood N
of ζ0 such that (1 − |ϕ(ζ)|)/(1 − |ζ |) is bounded in N ∩ ∆. �

Lemma 3.1 relates to the Julia–Carathéodory theorem (see [1, pages 23–32] and
[7, pages 57–71]). Part of that theorem asserts that the nontangential derivative of ϕ
exists at ζ0 if and only if the nontangential limit of (1 − |ϕ(ζ)|)/(1 − |ζ |) exists as ζ→ ζ0,
for suitable functions ϕ.
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Lemma 3.2. Let 0 < α < β, |z0| = 1, and let N be a neighborhood of z0. Suppose that f
is analytic in ∆ and there is a constant A such that

| f [α](z)| ≤
A

(1 − |z|)β
(3.1)

for z ∈ N ∩ ∆. Then there exist a neighborhood M of z0 and a constant B such that

| f (z)| ≤
B

(1 − |z|)β−α
(3.2)

for z ∈ M ∩ ∆.

Proof. Suppose that −1 < γ < β − 1. If 0 ≤ r < 1 we have∫ 1

0
(1 − t)γ

1
(1 − rt)β

dt =

∫ 1

0
(1 − t)γ

∞∑
n=0

An(β)tnrn dt

=

∞∑
n=0

An(β)
∫ 1

0
(1 − t)γtn dtrn

=

∞∑
n=0

An(β)
Γ(γ + 1)Γ(n + 1)

Γ(n + 2 + γ)
rn

= Γ(γ + 1)
∞∑

n=0

An(β)
Γ(γ + 2)An(γ + 2)

rn.

There is a constant C such that An(β)/An(γ + 2) ≤ CAn(β − γ − 1) for every
nonnegative integer n. Therefore∫ 1

0

(1 − t)γ

(1 − rt)β
dt ≤

C
γ + 1

∞∑
n=0

An(β − γ − 1)rn =
C

(γ + 1)(1 − r)β−γ−1 . (3.3)

The continuity of f [α] and (3.1) imply that such an inequality also holds for z ∈ S =

{reiθ : 0 ≤ r < 1, |θ − θ0| < η}, where z0 = eiθ0 , η > 0 and η is sufficiently small. Suppose
that z ∈ S . Then tz ∈ S for 0 ≤ t ≤ 1. Hence (1.3) implies that

| f (z)| ≤
1

Γ(α)

∫ 1

0
(1 − t)α−1 A

(1 − tr)β
dt,

and (3.3) implies that (3.2) holds for z ∈ S . Hence there is a neighborhood M of z0

such that (3.2) holds for z ∈ M ∩ ∆. �

Lemma 3.3. Suppose that α > 0 and α is not an integer. Let p denote the greatest
integer in α and let q = p + 1. Suppose that f is analytic in ∆ and let |z0| = 1. Then
limz→z0

∫ 1
0 tα(1 − t)q−α−1 f (q)(tz) dt exists if and only if limz→z0 f [α](z) exists.

https://doi.org/10.1017/S1446788716000409 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788716000409


108 T. H. MacGregor and M. P. Sterner [5]

Proof. Equation (1.4) implies that

f [α](z) =
1

Γ(q − α)

∫ 1

0
tα(1 − t)q−α−1 f [q](tz) dt. (3.4)

Suppose that limz→z0 f [α](z) exists. Then limz→z0

∫ 1
0 tα(1 − t)q−α−1 f [q](tz) dt exists.

There are constants c0, c1, . . . cq−1 such that

zq f (q)(z) = f [q](z) +

q∑
k=1

cq−k f [q−k](z) (3.5)

for |z| < 1. Let Fk(z) =
∫ 1

0 tα(1 − t)q−α−1 f [q−k](tz) dt for |z| < 1 and k = 0, 1, . . . , q. To
show that

lim
z→z0

∫ 1

0
tα(1 − t)q−α−1 f (q)(tz) dt (3.6)

exists, it is sufficient to show that for each k = 0, 1, . . . , q − 1 the existence of
limz→z0 Fk(z) implies the existence of limz→z0 Fk+1(z). From Equation (1.4) with
α = q − k − 1 and β = q − k we obtain f [q−k−1](z) =

∫ 1
0 sq−k−1 f [q−k](sz) ds. This implies

Fk+1(z) =
∫ 1

0 sq−k−1Fk(sz) ds, which yields our conclusion.
Conversely, suppose that (3.6) holds. There are constants d0, d1, . . . , dq−1 such that

f [q](z) = zq f (q)(z) +

q∑
k=1

dq−kzq−k f (q−k)(z)

for |z| < 1. Let Gk(z) =
∫ 1

0 tα(1 − t)β f (q−k)(tz) dt for |z| < 1 and k = 0, 1, . . . , q,
where β = q − α − 1. To show that limz→z0 f [q](z) exists, it is sufficient to show that
for each k = 0, 1, . . . , q − 1 the existence of limz→z0 Gk(z) implies the existence of
limz→z0 Gk+1(z).

Let Hk(z) = f (q−k)(z). Integrating along the line segment from 0 to z yields
f (q−k−1)(z) = f (q−k−1)(0) + z

∫ 1
0 Hk(sz) ds. Hence there is a constant b such that

Gk+1(z) = b + z
∫ 1

0
Ik(sz) ds (3.7)

where Ik(z) =
∫ 1

0 tα+1(1 − t)βHk(tz) dt. We claim that

Ik(z) = Gk(z) + c
∫ 1

0
uα+β+1Gk(uz) du (3.8)

where |z| < 1 and c is a constant. Let

Gk(z) =

∞∑
n=0

Anzn, Ik(z) =

∞∑
n=0

Bnzn,
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and Hk(z) =
∑∞

n=0 Cnzn for |z| < 1. Using the formula∫ 1

0
tz−1(1 − t)w−1 dt =

Γ(z)Γ(w)
Γ(z + w)

for z and w in the right half-plane we find that

An =
Γ(α + n + 1)Γ(β + 1)

Γ(α + n + β + 2)
Cn and Bn =

Γ(α + n + 2)Γ(β + 1)
Γ(α + n + β + 3)

Cn

for every nonnegative integer n. This implies that

Bn =
n + α + 1

n + α + β + 2
An.

Setting c = (α + β + 2)/(α + 1), we see that

n + α + 1
n + α + β + 2

= 1 + c
1

n + α + β + 2

and obtain

Ik(z) =

∞∑
n=0

Anzn + c
∞∑

n=0

1
n + α + β + 2

Anzn,

which yields (3.8).
Suppose that limz→z0 Gk(z) exists. Then (3.8) implies that limz→z0 Ik(z) exists. Hence

(3.7) implies that limz→z0 Gk+1(z) exists. �

4. Proof of the main theorem

Case I. Suppose that α = n is a positive integer. Faà di Bruno’s formula for the nth
derivative of a composition is

g(n) = n!
n∑

m=1

Φ(m)
{∑ n∏

k=1

1
jk!

[ f (k)

k!

] jk}
(4.1)

where the sum inside the braces is over all combinations of nonnegative integers
j1, j2, . . . , jn such that

n∑
k=1

k jk = n and
n∑

k=1

jk = m.

Suppose that limz→z0 f [n](z) exists. Then limz→z0 f (k)(z) exists for k = 1,2, . . . ,n. Hence
the analyticity of Φ and (4.1) imply that limz→z0 g(n)(z) exists. Therefore limz→z0 g[n](z)
exists.

Suppose that α > 0 and limz→z0 f [α](z) exists. Let w0, Φ, and g be defined as in the
theorem. For z ∈ ∆ let

h(z) = f [α](z).
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There is a neighborhood N of z0 such that h is bounded in N ∩ ∆. Let ϕ be a
conformal mapping of ∆ onto N ∩ ∆ and let Ψ denote the closed arc on ∂∆ such that
ϕ(Ψ) = ∂N ∩ ∂∆. For |ζ | < 1 let

k(ζ) = h(ϕ(ζ)). (4.2)

Then k is analytic and bounded in ∆. By the Schwarz–Pick lemma there is a constant
C such that

|k′(ζ)| ≤
C

1 − |ζ |
(4.3)

for |ζ | < 1. Henceforth we use C to denote a generic constant, and it is not the same
constant each time. From (4.2) we obtain

k′(ζ) = h′(ϕ(ζ))ϕ′(ζ). (4.4)

Let |ζ0| = 1 such that ϕ(ζ0) = z0. Since ϕ extends analytically to a neighborhood of ζ0
and is univalent there, it follows that there exist a neighborhood M of ζ0 and a positive
constant σ such that

|ϕ′(ζ)| ≥ σ (4.5)

for ζ ∈ M ∩ ∆. Hence (4.3)–(4.5) imply that

|h′(z)| ≤
C

1 − |ζ |
(4.6)

where z = ϕ(ζ) and ζ ∈ M ∩ ∆. Lemma 3.1 and (4.6) imply that

|h′(z)| ≤
C

1 − |z|
(4.7)

for z ∈ P ∩ ∆ where P is some neighborhood of z0. Let z0 = eiθ0 . Then (4.7) implies
that such an inequality holds for some constant where z ∈ S and S = {z = reiθ :
0 ≤ r < 1, |θ − θ0| < δ} for some δ > 0.

For z ∈ ∆ let F(z) = ( f ′)[α](z) =
∑∞

n=0 bnzn and G(z) = ( f [α])′(z) =
∑∞

n=0 cnzn. Then
bn = ((n + 1)/(n + 1 + α))cn for each nonnegative integer n. Since (n + 1)/(n + 1 + α)
= 1 − α/(n + 1 + α) this implies that

F(z) = G(z) − α
∫ 1

0
tαG(tz) dt. (4.8)

From (4.7) and (4.8) we conclude that

|( f ′)[α](z)| ≤
C

1 − |z|
(4.9)

where z ∈ S . Such an inequality also holds for z ∈ P∩ ∆ where P is some neighborhood
of z0.

Case II. Suppose that 0 < α < 1. Then (4.9) and Lemma 3.2 imply that

| f ′(z)| ≤
C

(1 − |z|)1−α (4.10)

for z ∈ Q ∩ ∆ where Q is some neighborhood of z0. Hence such an inequality also
holds for z ∈ T where T = {z = reiθ : 0 ≤ r < 1, |θ − θ0| < ε} for some ε > 0.
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Suppose that z ∈ T and 0 ≤ t < 1. Then tz ∈ T and f (z) − f (tz) =
∫

L f ′(w) dw where
L is the line segment from tz to z. Since L is given by w = (1 − s)tz + sz for 0 ≤ s ≤ 1,
we obtain, using (4.10),

| f (z) − f (tz)| ≤ (1 − t)
∫ 1

0
| f ′[(1 − s)tz + sz]| ds

≤C(1 − t)
∫ 1

0

1
[1 − {(1 − s)t + s}]1−α ds

= C(1 − t)α
∫ 1

0

1
(1 − s)1−α ds.

Since 0 < α < 1 the last integral exists, and so

| f (z) − f (tz)| ≤ C(1 − t)α (4.11)

for z ∈ T and 0 ≤ t ≤ 1.
There is a number ρ > 0 such that Φ is analytic in a neighborhood of {w : |w − w0|

≤ ρ}. If |w − w0| < ρ then

Φ(w) =
ρ

2π

∫ 2π

0

Φ(ζ)eiθ

ζ − w
dθ (4.12)

where ζ = w0 + ρeiθ. Let 0 < η < ρ. Then there exist a neighborhood N of z0 and a
number τ such that 0 < τ < 1 and

| f (tz) − w0| ≤ η (4.13)

for z ∈ N ∩ ∆ and τ ≤ t ≤ 1. If z ∈ N ∩ ∆ then (4.12) gives

g(z) =
ρ

2π

∫ 2π

0

Φ(ζ)eiθ

ζ − f (z)
dθ (4.14)

and hence

g′(z) =
ρ

2π

∫ 2π

0

Φ(ζ)eiθ

(ζ − f (z))2 f ′(z) dθ. (4.15)

Let H(z) =
∫ 1
τ

tα(1 − t)−αg′(tz) dt for z ∈ ∆. Then (4.15) yields

H(z) =

∫ 1

τ

tα(1 − t)−α
ρ

2π

∫ 2π

0

Φ(ζ)eiθ

(ζ − f (tz))2 f ′(tz) dθ dt.

By writing

1
(ζ − f (tz))2 =

{ 1
(ζ − f (tz))2 −

1
(ζ − f (z))2

}
+

1
(ζ − f (z))2

we have H(z) = I(z) + J(z) where I(z) = (ρ/2π)
∫ 1
τ

∫ 2π
0 I(θ, t, z) dθ dt,

I(θ, t, z) =
Φ(ζ)eiθtα(1 − t)−α[ f (tz) − f (z)][2ζ − f (z) − f (tz)] f ′(tz)

[ζ − f (tz)]2[ζ − f (z)]2 ,
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112 T. H. MacGregor and M. P. Sterner [9]

and

J(z) =
ρ

2π

∫ 2π

0

Φ(ζ)eiθ

(ζ − f (z))2 dθ
∫ 1

τ

tα(1 − t)−α f ′(tz) dt for z ∈ ∆.

From (4.10), (4.11), and (4.13) we conclude that

|I(θ, t, z)| ≤
C

(1 − t)1−α (4.16)

for 0 ≤ θ ≤ 2π, τ ≤ t < 1, and z ∈ N ∩ ∆. Since 0 < α < 1 the integral
∫ 1

0 (1/(1 − t)1−α) dt
exists. By considering I(z) as a double integral we find that the conditions hold for
applying the Lebesgue convergence theorem. We conclude that limz→z0 I(z) exists.
Also, limz→z0 J(z) exists because J(z) is the product of two integrals, each of which
has a limit. The second integral has a limit as a consequence of Lemma 3.3. We have
shown that limz→z0 H(z) exists. Lemma 3.3 implies that limz→z0 g[α](z) exists. This
completes the proof of the Theorem when 0 < α < 1.

Case III. Suppose that α > 1 and α is not an integer. Let p denote the greatest integer
in α and let q = p + 1. Since k is analytic and bounded in ∆, we have, for each positive
integer j,

|k( j)(ζ)| ≤
C

(1 − |ζ |) j (4.17)

for |ζ | < 1. Since k(ζ) = h(ϕ(ζ)) for |ζ | < 1 and ζ near ζ0, Faà di Bruno’s formula gives

k( j)(ζ) = K j(ζ) + h( j)(ϕ(ζ))[ϕ′(ζ)] j (4.18)

where K j(ζ) is the sum of the first j − 1 terms in that formula. Because ϕ is analytic in
a neighborhood of ζ0 and |ϕ′(ζ)| ≥ σ > 0 there, (4.18) and (4.17) provide an inductive
step for concluding that for each integer n > 0,

|h(n)(ϕ(ζ))| ≤
C

(1 − |ζ |)n (4.19)

for |ζ | < 1 and ζ near ζ0. In particular,

|h(q)(ϕ(ζ))| ≤
C

(1 − |ζ |)q

for |ζ | < 1 and ζ near ζ0. With z = ϕ(ζ), Lemma 3.1 yields

|h(q)(z)| ≤
C

(1 − |z|)q (4.20)

for |z| < 1 and z near z0.
For z ∈ ∆ let F(z) = ( f (q))[α](z) =

∑∞
n=0 bnzn and G(z) = ( f [α])(q)(z) =

∑∞
n=0 cnzn. Then

bn =
(n + 1)(n + 2) · · · (n + q)

(n + q + α)(n + q − 1 + α) · · · (n + 1 + α)
cn (4.21)
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for each nonnegative integer n. There are constants d1, d2, . . . , dq such that

(n + 1)(n + 2) · · · (n + q)
(n + q + α)(n + q − 1 + α) · · · (n + 1 + α)

= 1 +
d1

n + q + α
+

d2

n + q − 1 + α

+ · · · +
dq

n + 1 + α
.

Hence

F(z) = G(z) +

q∑
j=1

d j

∫ 1

0
tq− j+αG(tz) dt.

Therefore (4.20) implies that

|( f (q))[α](z)| ≤
C

(1 − |z|)q

for z ∈ ∆ and z near z0. Lemma 3.2 implies that

| f (q)(z)| ≤
C

(1 − |z|)q−α (4.22)

for z ∈ ∆ and z near z0. Since q − α < 1, this implies that f ( j)(z) is bounded for each
j = 1, 2, . . . , q − 1 and z ∈ N ∩ ∆, where N is a neighborhood of z0. In particular, the
boundedness of f ′ yields

| f (z) − f (tz)| ≤ C(1 − t) (4.23)

for z ∈ T and 0 ≤ t ≤ 1 as shown previously.
Let ζ = w0 + ρeiθ. There is a neighborhood M of z0 such that (4.13) holds and f ( j)(z)

is bounded in M ∩ ∆ for j = 1, 2, . . . , q − 1. We have

d
dz

(ζ − f (z))−1 =
f ′(z)

(ζ − f (z))2 ,

d2

dz2 (ζ − f (z))−1 =
f ′′(z)

(ζ − f (z))2 +
2( f ′(z))2

(ζ − f (z))3 ,

and in general (dn/dzn)(ζ − f (z))−1 is given by Faà di Bruno’s formula for each positive
integer n. For n = q this gives

dq

dzq (ζ − f (z))−1 =
f (q)(z)

(ζ − f (z))2 + Rq(z, ζ) (4.24)

where Rq(z, ζ) denotes the sum of the remaining q − 1 terms in that formula. Because
f ( j)(z) is bounded for z ∈ M ∩ ∆ and j = 1,2, . . . ,q − 1 and | f (z) −w0| ≤ η, we conclude
that

|Rq(z, ζ)| ≤ C

for 0 ≤ θ ≤ 2π and z ∈ M ∩ ∆. By replacing M by a smaller neighborhood of z0 we
also have

|Rq(tz, ζ)| ≤ C (4.25)
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for τ ≤ t ≤ 1. From (4.14) and (4.24) we obtain

g(q)(z) =
ρ

2π

∫ 2π

0
Φ(ζ)eiθ

{ f (q)(z)
(ζ − f (z))2 + Rq(z, ζ)

}
dθ (4.26)

for z ∈ M ∩ ∆.
Let H(z) =

∫ 1
τ

tα(1 − t)q−α−1g(q)(tz) dt for z ∈ ∆. Then (4.26) yields

H(z) =

∫ 1

τ

tα(1 − t)q−α−1 ρ

2π

∫ 2π

0
Φ(ζ)eiθ

{ f (q)(tz)
(ζ − f (tz))2 + Rq(tz, ζ)

}
dθ dt.

By writing

1
(ζ − f (tz))2 =

{ 1
(ζ − f (tz))2 −

1
(ζ − f (z))2

}
+

1
(ζ − f (z))2

we obtain H(z) = I(z) + J(z) + K(z) where I(z) = (ρ/2π)
∫ 1
τ

∫ 2π
0 I(θ, t, z) dθ dt,

I(θ, t, z) =
Φ(ζ)eiθtα(1 − t)q−α−1[ f (tz) − f (z)][2ζ − f (z) − f (tz)] f (q)(tz)

[ζ − f (tz)]2[ζ − f (z)]2 ,

J(z) =
ρ

2π

∫ 2π

0

Φ(ζ)eiθ

(ζ − f (z))2 dθ
∫ 1

τ

tα(1 − t)q−α−1 f (q)(tz) dt,

and

K(z) =
ρ

2π

∫ 1

τ

tα(1 − t)q−α−1
∫ 2π

0
Φ(ζ)eiθRq(tz, ζ) dθ dt for z ∈ ∆.

From (4.23), (4.22), and (4.13) we conclude that I(θ, t, z) is bounded for 0 ≤ θ ≤ 2π,
τ ≤ t < 1, and z ∈ M ∩ ∆. Considering I(z) as a double integral, we see that we can
apply the Lebesgue convergence theorem to conclude that limz→z0 I(z) exists. Also,
J(z) is the product of two integrals each of which has a limit. The second integral has
a limit as a consequence of Lemma 3.3. Hence limz→z0 J(z) exists. From (4.25) and
the existence of

∫ 1
τ

(1 − t)q−α−1 dt we also conclude that limz→z0 K(z) exists. We have
shown that limz→z0 H(z) exists. Lemma 3.3 implies that limz→z0 g[α](z) exists.
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