LIMITS OF FRACTIONAL DERIVATIVES AND COMPOSITIONS OF ANALYTIC FUNCTIONS

THOMAS H. MACGREGOR and MICHAEL P. STERNER ${ }^{\boxtimes}$

(Received 6 July 2015; accepted 18 May 2016; first published online 28 September 2016)

Communicated by F. Larusson

Abstract

Suppose that the function f is analytic in the open unit disk Δ in the complex plane. For each $\alpha>0$ a function $f^{[\alpha]}$ is defined as the Hadamard product of f with a certain power function. The function $f^{[\alpha]}$ compares with the fractional derivative of f of order α. Suppose that $f^{[\alpha]}$ has a limit at some point z_{0} on the boundary of Δ. Then $w_{0}=\lim _{z \rightarrow z_{0}} f(z)$ exists. Suppose that Φ is analytic in $f(\Delta)$ and at w_{0}. We show that if $g=\Phi(f)$ then $g^{[\alpha]}$ has a limit at z_{0}.

2010 Mathematics subject classification: primary 30B99; secondary 30E99.
Keywords and phrases: analytic functions, boundary limits, compositions, fractional derivatives.

1. Introduction

Let $\Delta=\{z \in \mathbb{C}:|z|<1\}$ and let $\alpha>0$. Suppose that the function f is analytic in Δ and, for $|z|<1$,

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} .
$$

We define $f^{[\alpha]}$ by

$$
\begin{equation*}
f^{[\alpha]}(z)=\sum_{n=0}^{\infty} \frac{\Gamma(n+1+\alpha)}{\Gamma(n+1)} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

for $|z|<1$, where Γ denotes the gamma function. For $\beta>0$ and $|z|<1$ let

$$
\frac{1}{(1-z)^{\beta}}=\sum_{n=0}^{\infty} A_{n}(\beta) z^{n}
$$

Then

$$
A_{n}(\beta)=\frac{\Gamma(n+\beta)}{\Gamma(\beta) n!}
$$

[^0]for each nonnegative integer n. Thus $f^{[\alpha]}$ is the Hadamard product of f with the function p where $p(z)=\Gamma(\alpha+1) /(1-z)^{\alpha+1}$ for $|z|<1$. In [4] the authors obtained an integral formula for $f^{[\alpha]}$ in terms of f when $0<\alpha<1$.

The function $f^{[\alpha]}$ compares with the fractional derivative of f of order α. There are a number of definitions of fractional derivatives. One that applies to the Taylor series of a function analytic in Δ was introduced by Hadamard. It is defined by

$$
\begin{equation*}
f^{(\alpha)}(z)=z^{-\alpha} \sum_{n=0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+1-\alpha)} a_{n} z^{n} \tag{1.2}
\end{equation*}
$$

for $|z|<1$. When α is a positive integer, $f^{(\alpha)}$ equals the usual derivative of f of order α. In general, a branch cut is needed to define an analytic branch of $f^{(\alpha)}$. The sequences

$$
\left\{\frac{\Gamma(n+1+\alpha)}{\Gamma(n+1)}\right\} \quad \text { and } \quad\left\{\frac{\Gamma(n+1)}{\Gamma(n+1-\alpha)}\right\}
$$

have asymptotic expansions

$$
n^{\alpha}\left\{c_{0}+\frac{c_{1}}{n}+\frac{c_{2}}{n^{2}}+\cdots\right\}
$$

as $n \rightarrow \infty$ with $c_{0} \neq 0$. Hence certain facts about $f^{[\alpha]}$ are equivalent to facts about $f^{(\alpha)}$.
If $\operatorname{Re} \alpha>0$ and n is a nonnegative integer then

$$
\int_{0}^{1}(1-t)^{\alpha-1} t^{n} d t=\frac{\Gamma(\alpha) n!}{\Gamma(n+1+\alpha)}
$$

This formula and (1.1) yield

$$
\begin{equation*}
f(z)=\frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-t)^{\alpha-1} f^{[\alpha]}(t z) d t \tag{1.3}
\end{equation*}
$$

Also, if $0<\alpha<\beta$ and $|z|<1$ then

$$
\begin{equation*}
f^{[\alpha]}(z)=\frac{1}{\Gamma(\beta-\alpha)} \int_{0}^{1} t^{\alpha}(1-t)^{\beta-\alpha-1} f^{[\beta]}(t z) d t \tag{1.4}
\end{equation*}
$$

We are concerned with the limit of $f^{[\alpha]}$ as $z \rightarrow z_{0}$ where $|z|<1$ and $\left|z_{0}\right|=1$. Equation (1.4) and the Lebesgue convergence theorem imply that if $\lim _{z \rightarrow z_{0}} f^{[\beta]}(z)$ exists and $0<\alpha<\beta$ then $\lim _{z \rightarrow z_{0}} f^{[\alpha]}(z)$ exists. A similar fact holds for fractional derivatives defined by (1.2).

For each positive integer m we have

$$
\begin{equation*}
f^{[m]}(z)=\frac{d^{m}}{d z^{m}}\left[z^{m} f(z)\right]=\sum_{k=0}^{m} \frac{(m!)^{2}}{(k!)(m-k)!} z^{k} f^{(k)}(z) . \tag{1.5}
\end{equation*}
$$

If n is a positive integer then by applying (1.5) successively for $m=n, n-1$, $n-2, \ldots, 3,2,1$, we see that $z^{n} f^{(n)}(z)$ is a linear combination of the functions $f^{[n]}, f^{[n-1]}, \ldots, f^{[1]}$, and f. Therefore $\lim _{z \rightarrow z_{0}} f^{[n]}(z)$ exists if and only if $\lim _{z \rightarrow z_{0}} f^{(n)}(z)$ exists.

In this paper, we prove a theorem about the existence of $\lim _{z \rightarrow z_{0}} g^{[\alpha]}(z)$ for the composition $g=\Phi(f)$ when $\lim _{z \rightarrow z_{0}} f^{[\alpha]}(z)$ exists and Φ is analytic. This generalizes a classical result about limits of nth derivatives of compositions.

In [2] Hardy and Littlewood obtain a number of results about fractional derivatives and fractional integrals of analytic functions. A survey of the history and development of the general theory of fractional calculus is contained in $[5,6]$.

2. The main results

Theorem. Let f be analytic in the open unit disk Δ and $\alpha>0$, and suppose that $\lim _{z \rightarrow z_{0}} f^{[\alpha]}(z)$ exists for some $z_{0} \in \partial \Delta$. Let $w_{0}=\lim _{z \rightarrow z_{0}} f(z)$. Let $g(z)=\Phi(f(z))$ for $z \in \Delta$, where Φ is analytic in $f(\Delta)$ and at w_{0}. Then $\lim _{z \rightarrow z_{0}} g^{[\alpha]}(z)$ exists.

The proof of this theorem relies on three lemmas. We first state an important corollary, which follows directly from the theorem and the following fact. If F is defined in Δ and $\lim _{z \rightarrow w} F(z)$ exists for all w on the boundary of Δ then F extends continuously to the boundary.

Corollary. Suppose that f is analytic in $\Delta, \alpha>0$, and Φ is analytic in a neighborhood of $\overline{f(\Delta)}$. Let $g(z)=\Phi(f(z))$ for $|z|<1$. If $f^{[\alpha]}$ extends continuously to $\bar{\Delta}$, then so does $g^{[\alpha]}$.

3. Three lemmas

Lemma 3.1. Let φ be analytic and univalent in Δ and suppose that $\varphi(\Delta) \subseteq \Delta$. Suppose that $\varphi(\Delta)$ is a Jordan domain whose boundary contains a closed arc Λ on $\partial \Delta$. There is a closed arc Ψ on $\partial \Delta$ mapping onto Λ. If ζ_{0} is in the interior of Ψ then $(1-|\varphi(\zeta)|) /(1-|\zeta|)$ is bounded in $N \cap \Delta$ where N is some neighborhood of ζ_{0}.
Proof. Since $\varphi(\Delta)$ is a Jordan domain, φ extends continuously to $\bar{\Delta}$ and φ is univalent in $\bar{\Delta}$. There is a closed $\operatorname{arc} \Psi$ on $\partial \Delta$ which is mapped bijectively onto Λ, and φ extends analytically in a neighborhood of each point ζ in the interior of Ψ, with $\varphi^{\prime} \neq 0$ at every such point. By [3, Theorem 1.1] we have

$$
\liminf _{\zeta \rightarrow \zeta_{0}}\left(1-|\zeta|^{2}\right) \frac{\left|\varphi^{\prime}(\zeta)\right|}{1-|\varphi(\zeta)|^{2}}>0
$$

Therefore

$$
\lim _{\zeta \rightarrow \zeta_{0}} \frac{1-|\varphi(\zeta)|^{2}}{1-|\zeta|^{2}} \cdot \frac{1}{\left|\varphi^{\prime}(\zeta)\right|}
$$

exists, and so $\lim _{\zeta \rightarrow \zeta_{0}}\left(\left(1-|\varphi(\zeta)|^{2}\right) /\left(1-|\zeta|^{2}\right)\right)$ exists. Hence there is a neighborhood N of ζ_{0} such that $(1-|\varphi(\zeta)|) /(1-|\zeta|)$ is bounded in $N \cap \Delta$.

Lemma 3.1 relates to the Julia-Carathéodory theorem (see [1, pages 23-32] and [7, pages 57-71]). Part of that theorem asserts that the nontangential derivative of φ exists at ζ_{0} if and only if the nontangential limit of $(1-|\varphi(\zeta)|) /(1-|\zeta|)$ exists as $\zeta \rightarrow \zeta_{0}$, for suitable functions φ.

Lemma 3.2. Let $0<\alpha<\beta,\left|z_{0}\right|=1$, and let N be a neighborhood of z_{0}. Suppose that f is analytic in Δ and there is a constant A such that

$$
\begin{equation*}
\left|f^{[\alpha]}(z)\right| \leq \frac{A}{(1-|z|)^{\beta}} \tag{3.1}
\end{equation*}
$$

for $z \in N \cap \Delta$. Then there exist a neighborhood M of z_{0} and a constant B such that

$$
\begin{equation*}
|f(z)| \leq \frac{B}{(1-|z|)^{\beta-\alpha}} \tag{3.2}
\end{equation*}
$$

for $z \in M \cap \Delta$.
Proof. Suppose that $-1<\gamma<\beta-1$. If $0 \leq r<1$ we have

$$
\begin{aligned}
\int_{0}^{1}(1-t)^{\gamma} \frac{1}{(1-r t)^{\beta}} d t & =\int_{0}^{1}(1-t)^{\gamma} \sum_{n=0}^{\infty} A_{n}(\beta) t^{n} r^{n} d t \\
& =\sum_{n=0}^{\infty} A_{n}(\beta) \int_{0}^{1}(1-t)^{\gamma} t^{n} d t r^{n} \\
& =\sum_{n=0}^{\infty} A_{n}(\beta) \frac{\Gamma(\gamma+1) \Gamma(n+1)}{\Gamma(n+2+\gamma)} r^{n} \\
& =\Gamma(\gamma+1) \sum_{n=0}^{\infty} \frac{A_{n}(\beta)}{\Gamma(\gamma+2) A_{n}(\gamma+2)} r^{n} .
\end{aligned}
$$

There is a constant C such that $A_{n}(\beta) / A_{n}(\gamma+2) \leq C A_{n}(\beta-\gamma-1)$ for every nonnegative integer n. Therefore

$$
\begin{equation*}
\int_{0}^{1} \frac{(1-t)^{\gamma}}{(1-r t)^{\beta}} d t \leq \frac{C}{\gamma+1} \sum_{n=0}^{\infty} A_{n}(\beta-\gamma-1) r^{n}=\frac{C}{(\gamma+1)(1-r)^{\beta-\gamma-1}} \tag{3.3}
\end{equation*}
$$

The continuity of $f^{[\alpha]}$ and (3.1) imply that such an inequality also holds for $z \in S=$ $\left\{r e^{i \theta}: 0 \leq r<1,\left|\theta-\theta_{0}\right|<\eta\right\}$, where $z_{0}=e^{i \theta_{0}}, \eta>0$ and η is sufficiently small. Suppose that $z \in S$. Then $t z \in S$ for $0 \leq t \leq 1$. Hence (1.3) implies that

$$
|f(z)| \leq \frac{1}{\Gamma(\alpha)} \int_{0}^{1}(1-t)^{\alpha-1} \frac{A}{(1-t r)^{\beta}} d t
$$

and (3.3) implies that (3.2) holds for $z \in S$. Hence there is a neighborhood M of z_{0} such that (3.2) holds for $z \in M \cap \Delta$.

Lemma 3.3. Suppose that $\alpha>0$ and α is not an integer. Let p denote the greatest integer in α and let $q=p+1$. Suppose that f is analytic in Δ and let $\left|z_{0}\right|=1$. Then $\lim _{z \rightarrow z_{0}} \int_{0}^{1} t^{\alpha}(1-t)^{q-\alpha-1} f^{(q)}(t z) d t$ exists if and only if $\lim _{z \rightarrow z_{0}} f^{[\alpha]}(z)$ exists.

Proof. Equation (1.4) implies that

$$
\begin{equation*}
f^{[\alpha]}(z)=\frac{1}{\Gamma(q-\alpha)} \int_{0}^{1} t^{\alpha}(1-t)^{q-\alpha-1} f^{[q]}(t z) d t \tag{3.4}
\end{equation*}
$$

Suppose that $\lim _{z \rightarrow z_{0}} f^{[\alpha]}(z)$ exists. Then $\lim _{z \rightarrow z_{0}} \int_{0}^{1} t^{\alpha}(1-t)^{q-\alpha-1} f^{[q]}(t z) d t$ exists. There are constants $c_{0}, c_{1}, \ldots c_{q-1}$ such that

$$
\begin{equation*}
z^{q} f^{(q)}(z)=f^{[q]}(z)+\sum_{k=1}^{q} c_{q-k} f^{[q-k]}(z) \tag{3.5}
\end{equation*}
$$

for $|z|<1$. Let $F_{k}(z)=\int_{0}^{1} t^{\alpha}(1-t)^{q-\alpha-1} f^{[q-k]}(t z) d t$ for $|z|<1$ and $k=0,1, \ldots, q$. To show that

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}} \int_{0}^{1} t^{\alpha}(1-t)^{q-\alpha-1} f^{(q)}(t z) d t \tag{3.6}
\end{equation*}
$$

exists, it is sufficient to show that for each $k=0,1, \ldots, q-1$ the existence of $\lim _{z \rightarrow z_{0}} F_{k}(z)$ implies the existence of $\lim _{z \rightarrow z_{0}} F_{k+1}(z)$. From Equation (1.4) with $\alpha=q-k-1$ and $\beta=q-k$ we obtain $f^{[q-k-1]}(z)=\int_{0}^{1} s^{q-k-1} f^{[q-k]}(s z) d s$. This implies $F_{k+1}(z)=\int_{0}^{1} s^{q-k-1} F_{k}(s z) d s$, which yields our conclusion.

Conversely, suppose that (3.6) holds. There are constants $d_{0}, d_{1}, \ldots, d_{q-1}$ such that

$$
f^{[q]}(z)=z^{q} f^{(q)}(z)+\sum_{k=1}^{q} d_{q-k} z^{q-k} f^{(q-k)}(z)
$$

for $|z|<1$. Let $G_{k}(z)=\int_{0}^{1} t^{\alpha}(1-t)^{\beta} f^{(q-k)}(t z) d t$ for $|z|<1$ and $k=0,1, \ldots, q$, where $\beta=q-\alpha-1$. To show that $\lim _{z \rightarrow z_{0}} f^{[q]}(z)$ exists, it is sufficient to show that for each $k=0,1, \ldots, q-1$ the existence of $\lim _{z \rightarrow z_{0}} G_{k}(z)$ implies the existence of $\lim _{z \rightarrow z_{0}} G_{k+1}(z)$.

Let $H_{k}(z)=f^{(q-k)}(z)$. Integrating along the line segment from 0 to z yields $f^{(q-k-1)}(z)=f^{(q-k-1)}(0)+z \int_{0}^{1} H_{k}(s z) d s$. Hence there is a constant b such that

$$
\begin{equation*}
G_{k+1}(z)=b+z \int_{0}^{1} I_{k}(s z) d s \tag{3.7}
\end{equation*}
$$

where $I_{k}(z)=\int_{0}^{1} t^{\alpha+1}(1-t)^{\beta} H_{k}(t z) d t$. We claim that

$$
\begin{equation*}
I_{k}(z)=G_{k}(z)+c \int_{0}^{1} u^{\alpha+\beta+1} G_{k}(u z) d u \tag{3.8}
\end{equation*}
$$

where $|z|<1$ and c is a constant. Let

$$
G_{k}(z)=\sum_{n=0}^{\infty} A_{n} z^{n}, \quad I_{k}(z)=\sum_{n=0}^{\infty} B_{n} z^{n},
$$

and $H_{k}(z)=\sum_{n=0}^{\infty} C_{n} z^{n}$ for $|z|<1$. Using the formula

$$
\int_{0}^{1} t^{z-1}(1-t)^{w-1} d t=\frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)}
$$

for z and w in the right half-plane we find that

$$
A_{n}=\frac{\Gamma(\alpha+n+1) \Gamma(\beta+1)}{\Gamma(\alpha+n+\beta+2)} C_{n} \quad \text { and } \quad B_{n}=\frac{\Gamma(\alpha+n+2) \Gamma(\beta+1)}{\Gamma(\alpha+n+\beta+3)} C_{n}
$$

for every nonnegative integer n. This implies that

$$
B_{n}=\frac{n+\alpha+1}{n+\alpha+\beta+2} A_{n} .
$$

Setting $c=(\alpha+\beta+2) /(\alpha+1)$, we see that

$$
\frac{n+\alpha+1}{n+\alpha+\beta+2}=1+c \frac{1}{n+\alpha+\beta+2}
$$

and obtain

$$
I_{k}(z)=\sum_{n=0}^{\infty} A_{n} z^{n}+c \sum_{n=0}^{\infty} \frac{1}{n+\alpha+\beta+2} A_{n} z^{n}
$$

which yields (3.8).
Suppose that $\lim _{z \rightarrow z_{0}} G_{k}(z)$ exists. Then (3.8) implies that $\lim _{z \rightarrow z_{0}} I_{k}(z)$ exists. Hence (3.7) implies that $\lim _{z \rightarrow z_{0}} G_{k+1}(z)$ exists.

4. Proof of the main theorem

Case I. Suppose that $\alpha=n$ is a positive integer. Faà di Bruno's formula for the nth derivative of a composition is

$$
\begin{equation*}
g^{(n)}=n!\sum_{m=1}^{n} \Phi^{(m)}\left\{\sum \prod_{k=1}^{n} \frac{1}{j_{k}!}\left[\frac{f^{(k)}}{k!}\right]^{j_{k}}\right\} \tag{4.1}
\end{equation*}
$$

where the sum inside the braces is over all combinations of nonnegative integers $j_{1}, j_{2}, \ldots, j_{n}$ such that

$$
\sum_{k=1}^{n} k j_{k}=n \quad \text { and } \quad \sum_{k=1}^{n} j_{k}=m
$$

Suppose that $\lim _{z \rightarrow z_{0}} f^{[n]}(z)$ exists. Then $\lim _{z \rightarrow z_{0}} f^{(k)}(z)$ exists for $k=1,2, \ldots, n$. Hence the analyticity of Φ and (4.1) imply that $\lim _{z \rightarrow z_{0}} g^{(n)}(z)$ exists. Therefore $\lim _{z \rightarrow z_{0}} g^{[n]}(z)$ exists.

Suppose that $\alpha>0$ and $\lim _{z \rightarrow z_{0}} f^{[\alpha]}(z)$ exists. Let w_{0}, Φ, and g be defined as in the theorem. For $z \in \Delta$ let

$$
h(z)=f^{[\alpha]}(z)
$$

There is a neighborhood N of z_{0} such that h is bounded in $N \cap \Delta$. Let φ be a conformal mapping of Δ onto $N \cap \Delta$ and let Ψ denote the closed arc on $\partial \Delta$ such that $\varphi(\Psi)=\partial N \cap \partial \Delta$. For $|\zeta|<1$ let

$$
\begin{equation*}
k(\zeta)=h(\varphi(\zeta)) \tag{4.2}
\end{equation*}
$$

Then k is analytic and bounded in Δ. By the Schwarz-Pick lemma there is a constant C such that

$$
\begin{equation*}
\left|k^{\prime}(\zeta)\right| \leq \frac{C}{1-|\zeta|} \tag{4.3}
\end{equation*}
$$

for $|\zeta|<1$. Henceforth we use C to denote a generic constant, and it is not the same constant each time. From (4.2) we obtain

$$
\begin{equation*}
k^{\prime}(\zeta)=h^{\prime}(\varphi(\zeta)) \varphi^{\prime}(\zeta) \tag{4.4}
\end{equation*}
$$

Let $\left|\zeta_{0}\right|=1$ such that $\varphi\left(\zeta_{0}\right)=z_{0}$. Since φ extends analytically to a neighborhood of ζ_{0} and is univalent there, it follows that there exist a neighborhood M of ζ_{0} and a positive constant σ such that

$$
\begin{equation*}
\left|\varphi^{\prime}(\zeta)\right| \geq \sigma \tag{4.5}
\end{equation*}
$$

for $\zeta \in M \cap \Delta$. Hence (4.3)-(4.5) imply that

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leq \frac{C}{1-|\zeta|} \tag{4.6}
\end{equation*}
$$

where $z=\varphi(\zeta)$ and $\zeta \in M \cap \Delta$. Lemma 3.1 and (4.6) imply that

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leq \frac{C}{1-|z|} \tag{4.7}
\end{equation*}
$$

for $z \in P \cap \Delta$ where P is some neighborhood of z_{0}. Let $z_{0}=e^{i \theta_{0}}$. Then (4.7) implies that such an inequality holds for some constant where $z \in S$ and $S=\left\{z=r e^{i \theta}\right.$: $\left.0 \leq r<1,\left|\theta-\theta_{0}\right|<\delta\right\}$ for some $\delta>0$.

For $z \in \Delta$ let $F(z)=\left(f^{\prime}\right)^{[\alpha]}(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ and $G(z)=\left(f^{[\alpha]}\right)^{\prime}(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$. Then $b_{n}=((n+1) /(n+1+\alpha)) c_{n}$ for each nonnegative integer n. Since $(n+1) /(n+1+\alpha)$ $=1-\alpha /(n+1+\alpha)$ this implies that

$$
\begin{equation*}
F(z)=G(z)-\alpha \int_{0}^{1} t^{\alpha} G(t z) d t \tag{4.8}
\end{equation*}
$$

From (4.7) and (4.8) we conclude that

$$
\begin{equation*}
\left|\left(f^{\prime}\right)^{[\alpha]}(z)\right| \leq \frac{C}{1-|z|} \tag{4.9}
\end{equation*}
$$

where $z \in S$. Such an inequality also holds for $z \in P \cap \Delta$ where P is some neighborhood of z_{0}.
Case II. Suppose that $0<\alpha<1$. Then (4.9) and Lemma 3.2 imply that

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq \frac{C}{(1-|z|)^{1-\alpha}} \tag{4.10}
\end{equation*}
$$

for $z \in Q \cap \Delta$ where Q is some neighborhood of z_{0}. Hence such an inequality also holds for $z \in T$ where $T=\left\{z=r e^{i \theta}: 0 \leq r<1,\left|\theta-\theta_{0}\right|<\epsilon\right\}$ for some $\epsilon>0$.

Suppose that $z \in T$ and $0 \leq t<1$. Then $t z \in T$ and $f(z)-f(t z)=\int_{L} f^{\prime}(w) d w$ where L is the line segment from $t z$ to z. Since L is given by $w=(1-s) t z+s z$ for $0 \leq s \leq 1$, we obtain, using (4.10),

$$
\begin{aligned}
|f(z)-f(t z)| & \leq(1-t) \int_{0}^{1}\left|f^{\prime}[(1-s) t z+s z]\right| d s \\
& \leq C(1-t) \int_{0}^{1} \frac{1}{[1-\{(1-s) t+s\}]^{1-\alpha}} d s \\
& =C(1-t)^{\alpha} \int_{0}^{1} \frac{1}{(1-s)^{1-\alpha}} d s .
\end{aligned}
$$

Since $0<\alpha<1$ the last integral exists, and so

$$
\begin{equation*}
|f(z)-f(t z)| \leq C(1-t)^{\alpha} \tag{4.11}
\end{equation*}
$$

for $z \in T$ and $0 \leq t \leq 1$.
There is a number $\rho>0$ such that Φ is analytic in a neighborhood of $\left\{w:\left|w-w_{0}\right|\right.$ $\leq \rho\}$. If $\left|w-w_{0}\right|<\rho$ then

$$
\begin{equation*}
\Phi(w)=\frac{\rho}{2 \pi} \int_{0}^{2 \pi} \frac{\Phi(\zeta) e^{i \theta}}{\zeta-w} d \theta \tag{4.12}
\end{equation*}
$$

where $\zeta=w_{0}+\rho e^{i \theta}$. Let $0<\eta<\rho$. Then there exist a neighborhood N of z_{0} and a number τ such that $0<\tau<1$ and

$$
\begin{equation*}
\left|f(t z)-w_{0}\right| \leq \eta \tag{4.13}
\end{equation*}
$$

for $z \in N \cap \Delta$ and $\tau \leq t \leq 1$. If $z \in N \cap \Delta$ then (4.12) gives

$$
\begin{equation*}
g(z)=\frac{\rho}{2 \pi} \int_{0}^{2 \pi} \frac{\Phi(\zeta) e^{i \theta}}{\zeta-f(z)} d \theta \tag{4.14}
\end{equation*}
$$

and hence

$$
\begin{equation*}
g^{\prime}(z)=\frac{\rho}{2 \pi} \int_{0}^{2 \pi} \frac{\Phi(\zeta) e^{i \theta}}{(\zeta-f(z))^{2}} f^{\prime}(z) d \theta \tag{4.15}
\end{equation*}
$$

Let $H(z)=\int_{\tau}^{1} t^{\alpha}(1-t)^{-\alpha} g^{\prime}(t z) d t$ for $z \in \Delta$. Then (4.15) yields

$$
H(z)=\int_{\tau}^{1} t^{\alpha}(1-t)^{-\alpha} \frac{\rho}{2 \pi} \int_{0}^{2 \pi} \frac{\Phi(\zeta) e^{i \theta}}{(\zeta-f(t z))^{2}} f^{\prime}(t z) d \theta d t
$$

By writing

$$
\frac{1}{(\zeta-f(t z))^{2}}=\left\{\frac{1}{(\zeta-f(t z))^{2}}-\frac{1}{(\zeta-f(z))^{2}}\right\}+\frac{1}{(\zeta-f(z))^{2}}
$$

we have $H(z)=I(z)+J(z)$ where $I(z)=(\rho / 2 \pi) \int_{\tau}^{1} \int_{0}^{2 \pi} I(\theta, t, z) d \theta d t$,

$$
I(\theta, t, z)=\frac{\Phi(\zeta) e^{i \theta} t^{\alpha}(1-t)^{-\alpha}[f(t z)-f(z)][2 \zeta-f(z)-f(t z)] f^{\prime}(t z)}{[\zeta-f(t z)]^{2}[\zeta-f(z)]^{2}}
$$

and

$$
J(z)=\frac{\rho}{2 \pi} \int_{0}^{2 \pi} \frac{\Phi(\zeta) e^{i \theta}}{(\zeta-f(z))^{2}} d \theta \int_{\tau}^{1} t^{\alpha}(1-t)^{-\alpha} f^{\prime}(t z) d t \quad \text { for } z \in \Delta
$$

From (4.10), (4.11), and (4.13) we conclude that

$$
\begin{equation*}
|I(\theta, t, z)| \leq \frac{C}{(1-t)^{1-\alpha}} \tag{4.16}
\end{equation*}
$$

for $0 \leq \theta \leq 2 \pi, \tau \leq t<1$, and $z \in N \cap \Delta$. Since $0<\alpha<1$ the integral $\int_{0}^{1}\left(1 /(1-t)^{1-\alpha}\right) d t$ exists. By considering $I(z)$ as a double integral we find that the conditions hold for applying the Lebesgue convergence theorem. We conclude that $\lim _{z \rightarrow z_{0}} I(z)$ exists. Also, $\lim _{z \rightarrow z_{0}} J(z)$ exists because $J(z)$ is the product of two integrals, each of which has a limit. The second integral has a limit as a consequence of Lemma 3.3. We have shown that $\lim _{z \rightarrow z_{0}} H(z)$ exists. Lemma 3.3 implies that $\lim _{z \rightarrow z_{0}} g^{[\alpha]}(z)$ exists. This completes the proof of the Theorem when $0<\alpha<1$.

Case III. Suppose that $\alpha>1$ and α is not an integer. Let p denote the greatest integer in α and let $q=p+1$. Since k is analytic and bounded in Δ, we have, for each positive integer j,

$$
\begin{equation*}
\left|k^{(j)}(\zeta)\right| \leq \frac{C}{(1-|\zeta|)^{j}} \tag{4.17}
\end{equation*}
$$

for $|\zeta|<1$. Since $k(\zeta)=h(\varphi(\zeta))$ for $|\zeta|<1$ and ζ near ζ_{0}, Faà di Bruno's formula gives

$$
\begin{equation*}
k^{(j)}(\zeta)=K_{j}(\zeta)+h^{(j)}(\varphi(\zeta))\left[\varphi^{\prime}(\zeta)\right]^{j} \tag{4.18}
\end{equation*}
$$

where $K_{j}(\zeta)$ is the sum of the first $j-1$ terms in that formula. Because φ is analytic in a neighborhood of ζ_{0} and $\left|\varphi^{\prime}(\zeta)\right| \geq \sigma>0$ there, (4.18) and (4.17) provide an inductive step for concluding that for each integer $n>0$,

$$
\begin{equation*}
\left|h^{(n)}(\varphi(\zeta))\right| \leq \frac{C}{(1-|\zeta|)^{n}} \tag{4.19}
\end{equation*}
$$

for $|\zeta|<1$ and ζ near ζ_{0}. In particular,

$$
\left|h^{(q)}(\varphi(\zeta))\right| \leq \frac{C}{(1-|\zeta|)^{q}}
$$

for $|\zeta|<1$ and ζ near ζ_{0}. With $z=\varphi(\zeta)$, Lemma 3.1 yields

$$
\begin{equation*}
\left|h^{(q)}(z)\right| \leq \frac{C}{(1-|z|)^{q}} \tag{4.20}
\end{equation*}
$$

for $|z|<1$ and z near z_{0}.
For $z \in \Delta$ let $F(z)=\left(f^{(q)}\right)^{[\alpha]}(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ and $G(z)=\left(f^{[\alpha]}\right)^{(q)}(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$. Then

$$
\begin{equation*}
b_{n}=\frac{(n+1)(n+2) \cdots(n+q)}{(n+q+\alpha)(n+q-1+\alpha) \cdots(n+1+\alpha)} c_{n} \tag{4.21}
\end{equation*}
$$

for each nonnegative integer n. There are constants $d_{1}, d_{2}, \ldots, d_{q}$ such that

$$
\begin{aligned}
\frac{(n+1)(n+2) \cdots(n+q)}{(n+q+\alpha)(n+q-1+\alpha) \cdots(n+1+\alpha)}= & 1+\frac{d_{1}}{n+q+\alpha}+\frac{d_{2}}{n+q-1+\alpha} \\
& +\cdots+\frac{d_{q}}{n+1+\alpha} .
\end{aligned}
$$

Hence

$$
F(z)=G(z)+\sum_{j=1}^{q} d_{j} \int_{0}^{1} t^{q-j+\alpha} G(t z) d t
$$

Therefore (4.20) implies that

$$
\left|\left(f^{(q)}\right)^{[\alpha]}(z)\right| \leq \frac{C}{(1-|z|)^{q}}
$$

for $z \in \Delta$ and z near z_{0}. Lemma 3.2 implies that

$$
\begin{equation*}
\left|f^{(q)}(z)\right| \leq \frac{C}{(1-|z|)^{q-\alpha}} \tag{4.22}
\end{equation*}
$$

for $z \in \Delta$ and z near z_{0}. Since $q-\alpha<1$, this implies that $f^{(j)}(z)$ is bounded for each $j=1,2, \ldots, q-1$ and $z \in N \cap \Delta$, where N is a neighborhood of z_{0}. In particular, the boundedness of f^{\prime} yields

$$
\begin{equation*}
|f(z)-f(t z)| \leq C(1-t) \tag{4.23}
\end{equation*}
$$

for $z \in T$ and $0 \leq t \leq 1$ as shown previously.
Let $\zeta=w_{0}+\rho e^{i \theta}$. There is a neighborhood M of z_{0} such that (4.13) holds and $f^{(j)}(z)$ is bounded in $M \cap \Delta$ for $j=1,2, \ldots, q-1$. We have

$$
\begin{aligned}
\frac{d}{d z}(\zeta-f(z))^{-1} & =\frac{f^{\prime}(z)}{(\zeta-f(z))^{2}} \\
\frac{d^{2}}{d z^{2}}(\zeta-f(z))^{-1} & =\frac{f^{\prime \prime}(z)}{(\zeta-f(z))^{2}}+\frac{2\left(f^{\prime}(z)\right)^{2}}{(\zeta-f(z))^{3}}
\end{aligned}
$$

and in general $\left(d^{n} / d z^{n}\right)(\zeta-f(z))^{-1}$ is given by Faà di Bruno's formula for each positive integer n. For $n=q$ this gives

$$
\begin{equation*}
\frac{d^{q}}{d z^{q}}(\zeta-f(z))^{-1}=\frac{f^{(q)}(z)}{(\zeta-f(z))^{2}}+R_{q}(z, \zeta) \tag{4.24}
\end{equation*}
$$

where $R_{q}(z, \zeta)$ denotes the sum of the remaining $q-1$ terms in that formula. Because $f^{(j)}(z)$ is bounded for $z \in M \cap \Delta$ and $j=1,2, \ldots, q-1$ and $\left|f(z)-w_{0}\right| \leq \eta$, we conclude that

$$
\left|R_{q}(z, \zeta)\right| \leq C
$$

for $0 \leq \theta \leq 2 \pi$ and $z \in M \cap \Delta$. By replacing M by a smaller neighborhood of z_{0} we also have

$$
\begin{equation*}
\left|R_{q}(t z, \zeta)\right| \leq C \tag{4.25}
\end{equation*}
$$

for $\tau \leq t \leq 1$. From (4.14) and (4.24) we obtain

$$
\begin{equation*}
g^{(q)}(z)=\frac{\rho}{2 \pi} \int_{0}^{2 \pi} \Phi(\zeta) e^{i \theta}\left\{\frac{f^{(q)}(z)}{(\zeta-f(z))^{2}}+R_{q}(z, \zeta)\right\} d \theta \tag{4.26}
\end{equation*}
$$

for $z \in M \cap \Delta$.
Let $H(z)=\int_{\tau}^{1} t^{\alpha}(1-t)^{q-\alpha-1} g^{(q)}(t z) d t$ for $z \in \Delta$. Then (4.26) yields

$$
H(z)=\int_{\tau}^{1} t^{\alpha}(1-t)^{q-\alpha-1} \frac{\rho}{2 \pi} \int_{0}^{2 \pi} \Phi(\zeta) e^{i \theta}\left\{\frac{f^{(q)}(t z)}{(\zeta-f(t z))^{2}}+R_{q}(t z, \zeta)\right\} d \theta d t
$$

By writing

$$
\frac{1}{(\zeta-f(t z))^{2}}=\left\{\frac{1}{(\zeta-f(t z))^{2}}-\frac{1}{(\zeta-f(z))^{2}}\right\}+\frac{1}{(\zeta-f(z))^{2}}
$$

we obtain $H(z)=I(z)+J(z)+K(z)$ where $I(z)=(\rho / 2 \pi) \int_{\tau}^{1} \int_{0}^{2 \pi} I(\theta, t, z) d \theta d t$,

$$
\begin{gathered}
I(\theta, t, z)=\frac{\Phi(\zeta) e^{i \theta} t^{\alpha}(1-t)^{q-\alpha-1}[f(t z)-f(z)][2 \zeta-f(z)-f(t z)] f^{(q)}(t z)}{[\zeta-f(t z)]^{2}[\zeta-f(z)]^{2}} \\
J(z)=\frac{\rho}{2 \pi} \int_{0}^{2 \pi} \frac{\Phi(\zeta) e^{i \theta}}{(\zeta-f(z))^{2}} d \theta \int_{\tau}^{1} t^{\alpha}(1-t)^{q-\alpha-1} f^{(q)}(t z) d t
\end{gathered}
$$

and

$$
K(z)=\frac{\rho}{2 \pi} \int_{\tau}^{1} t^{\alpha}(1-t)^{q-\alpha-1} \int_{0}^{2 \pi} \Phi(\zeta) e^{i \theta} R_{q}(t z, \zeta) d \theta d t \quad \text { for } z \in \Delta
$$

From (4.23), (4.22), and (4.13) we conclude that $I(\theta, t, z)$ is bounded for $0 \leq \theta \leq 2 \pi$, $\tau \leq t<1$, and $z \in M \cap \Delta$. Considering $I(z)$ as a double integral, we see that we can apply the Lebesgue convergence theorem to conclude that $\lim _{z \rightarrow z_{0}} I(z)$ exists. Also, $J(z)$ is the product of two integrals each of which has a limit. The second integral has a limit as a consequence of Lemma 3.3. Hence $\lim _{z \rightarrow z_{0}} J(z)$ exists. From (4.25) and the existence of $\int_{\tau}^{1}(1-t)^{q-\alpha-1} d t$ we also conclude that $\lim _{z \rightarrow z_{0}} K(z)$ exists. We have shown that $\lim _{z \rightarrow z_{0}} H(z)$ exists. Lemma 3.3 implies that $\lim _{z \rightarrow z_{0}} g^{[\alpha]}(z)$ exists.

Acknowledgement

The authors thank the referee for helpful comments about this paper and for suggesting related lines of inquiry.

References

[1] C. Carathéodory, Theory of Functions of a Complex Variable, Vol. 2 (Chelsea, New York, 1954).
[2] G. H. Hardy and J. E. Littlewood, 'Some properties of fractional integrals II', Math. Z. 34 (1932), 403-489.
[3] D. Kraus, O. Roth and St. Ruscheweyh, 'A boundary version of Ahlfors' lemma, locally complete conformal metrics and conformally invariant reflection principles for analytic maps', J. Anal. Math. 101 (2007), 219-256.
[4] T. H. MacGregor and M. P. Sterner, 'Hadamard products with power functions and multipliers of Hardy spaces', J. Math. Anal. Appl. 282 (2003), 163-176.
[5] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley \& Sons, New York, 1993).
[6] K. B. Oldham and J. Spanier, The Fractional Calculus (Academic Press, New York, 1974).
[7] J. H. Shapiro, Composition Operators and Classical Function Theory (Springer, New York, 1993).

THOMAS H. MACGREGOR, Bowdoin College, Brunswick, ME 04558, USA
e-mail: t@thomasmacgregor.com
MICHAEL P. STERNER, University of Montevallo, Montevallo, AL 35115, USA
e-mail: sternerm@montevallo.edu

[^0]: (C) 2016 Australian Mathematical Publishing Association Inc. 1446-7887/2016 \$16.00

