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Abstract
Conditions are found for several intrinsically defined partial orders on fib, the
vector space of order-bounded additive functionals on a commutative
pogroup, to have Riesz interpolation properties, and to make fib a TRL group.

• Subject classification (Amer. Math. Soc. (MOS) 1970): primary 06 A 60,
46 A 40;secondary54 F 05, 06 A 75.

1. Introduction

We begin a study of the vector lattice fib of all order-bounded additive functionals
on a commutative partially ordered group G, with particular attention to tight
Riesz properties of fib. G is assumed to be an /-group with respect to a partial
order = ,̂ and to carry a compatible tight Riesz order and its open-interval topology.
Thus besides the usual notion of positivity for a functional /ef ib there are others,
some of which (here written <, < 0, =̂  J we describe.

A fundamental theorem due to F. Riesz describes the vector-lattice structure of
fib under its principal partial order =<. We show that two orders s£ and < o are
determining orders for this ^ . The main aim of the paper is to formulate condi-
tions under which < on fib is a compatible tight Riesz order for = .̂ The interest in
this question stems from the fact that, by Riesz's formula, the lattice operations on
fib with respect to =̂  are not pointwise on G+; this is unlike the situation in most
previously studied examples of compatible tight Riesz orders on /-groups. Two
types of conditions are found; one based on compactness properties in G (9° and
§5), the other on properties of basic elements of G (10°). The latter are the more
delicate.

We also find sufficient conditions for < to be non-secular (9°, 11°, 12°).
By examples it is shown that not all continuous additive functionals need be

order-bounded (4°, 5°).
Thanks are due to Robert Redfield who supplied the present form of Theorem 10°

and the example in 13°, thus substantially improving an earlier version of this paper.
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130 J. B. Miller [2]

Functionals/which are positive with respect to = ,̂ but not with respect to some
compatible tight Riesz order for = ,̂ lie on the surface of the positive cone of 2b,
so a study of such orders gives information about surface structure. A subsequent
paper will deal with these questions.

2. Preliminaries

2.1 We summarize some definitions and results which are needed later. All order
symbols <, <o, <.,... in this paper should be read as excluding equality, with <
meaning " < or = ", and so on. The (m, ri) tight Riesz property for a poset (X, <),
abbreviated TR (m,n), asserts the following: For any set of elements a^bj
(i= 1,2, ...,m;j = 1,2,...,«) in Z such that a* <bj for all/, j , there exists xeZsuch
that at<x<bj for all i,j. We have

TR(2,2) => TR(1,2);TR(1,2) => TR(1,1); TR(1,2) o TR(2,1)

when X is a pogroup; TR (1,2) does not imply TR (2,2). The loose Riesz property
LR (m, n) is defined by replacing < by < at each occurrence. For any order <
on X, its associatedpreorder =̂  is defined thus:

x = O if and only if (yueX)[u<x => M < J ] & ( V teX)[t>y => t>x\. (1)

When (X, ^ ) is a pogroup, this is equivalent to saying:

z^=0 if and only if a>0 =>• a+z>0;

that is, the positive wedge of =̂  is got by adjoining to the positive cone of < all
the pseudopositives of <. We consider only cases where =̂  is a partial order. We
call < a determining order for = .̂ A partial order may have many determining
orders.

A tight Riesz group (abbreviated TR group) is here defined to be a directed com-
mutativef pogroup (G, <) with the TR(1,2) property, and without pseudozeros,
so that (G, =Q is likewise a directed pogroup. We call < a compatible tight Riesz
order (CTRO) for = .̂ It is generally assumed that G^(0) and neither ^ nor =̂  is
trivial. The open-interval topology °U defined from < makes (G, °tt) a non-discrete
HausdorfF topological group, non-compact though quite possibly locally compact.
Thus a TR group has a structure (G, ̂ , =^,^). By a 77?(2,2) group we mean a
TR group for which ^ is TR (2,2). For elementary consequences of these various
definitions see Loy and Miller (1972) or Cameron and Miller (1975). We write
P = {xeG:x>0}, P* = P\{0}, G+ = {x:x^0} for the positive cones. Order-
intervals are written (a,b) = {x: a<x<b), [a,b] = {x: a^x^b}, and similarly
((a,b)), \[a,b]\ for ^ . The intervals (a, b), a<b, form a base for %.

By a TRL group we mean a structure (G, < , = ,̂ ^ ) in which (G, <) is a TR group
and (G, =Q is an /-group, =̂  being of course the associated order of < and °U

t We assume that all groups in this paper are commutative: "group" means "abelian group".
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[3] Order-dual of a TRL group, I 131

being the open-interval topology of <. (By an "/-group", we mean a "lattice-
ordered group" in the usual sense, as in Birkhoff (1967). The lattice operations of
(G, =Q are written A, V.) For a TRL group G, < is isolated and (G, %) has no
compact subgroups other than (0); see Loy and Miller (1972). If G is a TR group
for which =̂  is LR (2,2) (in particular, if G is a TRL group), then < is necessarily
TR(2,2). See Cameron and Miller (1975).

A TRL group G is called secular (or androgynous) if any of the following pairwise
equivalent properties hold:

(i) G contains a pair of elements x,y satisfying

(ii) The set T = {xeG: x+>0, x~>0} is non-empty. (Here x+

* - = - ( * A 0).)
(iii) P*$m. (Here m = {w >- 0: WAX = 0 => x = 0} is the set of weak units of

(G, =^); we may have xa = 0.)
There are other characterizations; see Miller (1976). The property expresses a

certain relationship of ^ to its associated order, resulting in P* occupying a
greater portion of G+ than is sometimes desirable; it can lead to computational
difficulties. Since < determines = ,̂ it is allowable to call < secular, rather than G.
Secular groups are discussed in some detail in Miller (1976).

2.2 For any pogroup (G, <), its order-dual is the real vector space fib(G) (briefly,
fib) of all order-bounded additive functionals in G, that is, additive functions
mapping order-intervals of G to bounded subsets of R. When G is a TR group, it
does not matter which of its two orders is used here: they produce the same set £6.
However, when it comes to ordering fib, as usual by ordering functionals point-
wise on the positive cone of G, several possibilities arise. For /e fib we shall write

/>0 if and only if (VxeG)[x>0 =>/(*)>()], (2)

/ > o 0 if and only if (V xeG)[x> 0 =>f(x)>0], (3)

/ > 0 if and only if (V xeG)[x>0 =>f(x)^0], (4)

. / > a 0 if and only if (VxeG)[x > 0 =>/(*)5*0]; (5)

and f^g will mean g—f>0 or g = / , etc. These definitions make fib a partially
ordered vector space with respect to each of <, < 0, = ,̂ =^a.

When G is a TRL group it is natural to think of the /-group structure of (G, =Q
as the dominating one, since much is known about /-groups. If we accept this view
then =̂  in (4) is the natural order to place on fib. Notice that the orders < and =̂
in (2) and (4) are wholly determined by ^ on G, that is, are defined for any pogroup
(G, =̂ ) whether or not =̂  is an associated order. Our principal concern is with (2)
and (4); nevertheless, the <-structure on G is relevant.
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132 J. B. Miller [4]

We write fi+ for the positive cone of =̂  in fib. It is clear that

/ > 0 = > / > 0 0 = > / > a 0 and / > 0 => />0 =>/>a0.

From results due to Hayes (1962) we know that Hom(G,R) contains non-
zero elements, for any non-trivial group G. Bonsall (1954) has pointed out
that if ((?, = )̂ is an everywhere non-archimedean pogroup, that is, if

G = {x: there exists a )= 0 such that —a < nx =̂  a for all neN},

then fi+ = (0). On the other hand, another result of Hayes (1962) shows that fi+
contains non-zero elements if G has a strong unit. When G is a locally compact
TR group with < isolated, Mackey's theorem shows that the continuous additive
functionals on G are sufficiently numerous to separate points. (Compare Hewitt and
Ross (1963), Theorems (24.34) and (24.35).) It is easy to construct examples in
which < on fib is non-trivial; see 6° below.

We note some preliminary results for the structure (G, <, =^,^).

1°. When G is a TR group, the orders =̂  and =^a 0« fib coincide, andf^ 0 implies
that f is continuous. We have, for a///efib,

/>0^/>00=>/>0o/>a0. (6)

PROOF. Certainly /^= 0 implies/^=a0. We prove tha t /> a O implies tha t / i s
continuous. Let/^=aO. Suppose ker(/) meets P*, say/(a) = 0 with a>0. Then
for any xeG, x+(—a, a) is a neighbourhood of x on which/is constant. Hence/
is continuous. Suppose, on the other hand, that ker(/) does not meet P*, that is
/ > O0. Let (xi)ieI be a net converging to x in G. Given any e>0 in R choose any
aeP*, then neN so that 0<f(a)/n< e, then beG such that 0<b<nb<a, and take
V = (x—b,x+b). (The existence of such an element b is easily shown.) Eventually
the net is in V and | f(x^) —f(x) j < e; so again / is continuous.

Finally,/^=a0 implies/^=0. For if/^=a0 then when x ^ O w e can find a net
(xi)iei m P* converging to x and continuity of / gives/(x)>0, so/^=0. The
implication (6) is clear. //

2°. When (G, s0 is a TR group:
(i) Iff^O andf{c)^0 for some c>0, then f does not vanish identically on (0, c).
(ii) Iffy-Q then ker(/) is a closed convex subgroup of (G, ^,^0, andf(b)>0

for some b>0.
(iii) For fe fib, / > 0 0 if and only iff> 0 and ker (/) is not open. Iff> o 0 then

ran (/) is dense in R.

PROOF, (i) and (ii) are straightforward, (iii) Clearly/> 00 if and only i f /> 0 and
ker (/) does not meet P*. On the other hand, ker (/) is open if and only if ker (/)
meets P*. For if ker(/) is open then it contains some interval (a, b), and taking
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a < x < y < b we get y - x e ker (/) n P *; conversely, if ker (/) meets P *, say/(a) = 0,
a>0, then by (ii) ker(/) contains the open interval (a, Id), hence it has an interior
point, hence it is open.

Suppose/>o0; let 0<eeR. As in the proof of 1° there exists b>0 with
0</(&)<£. (For this,./>0 does not suffice; we need/>o0.) So if 0<<x<j9 in R
write e = |(j8-a) and find a corresponding b. Then (m — 1 )/(&)< a<w/(6) for
some weN, and this implies a.<f(mb)<f}. Thus f(P*) is dense in R+ and hence
f(G) is dense in R. //

3°. When (G, ^) is a TR group, each of the orders < and < o , if non-trivial, is a
determining order on S-bfor = ,̂ and their cones have bases. The cone fi+ of=^ has a
base if G has a strong unit.

The same conclusions follow for <, and =̂  on fib if(G, =Q is any l-group.

PROOF. Consider < o. By 1° , /^ og implies/^ g. Now if h >- 0 then

/ > o 0 implies f+h>o0, (7)

for when xeP* we have (f+h)(x) =f(x)+h(x)>0; (7) shows that h is positive in
the associated order of «S 0. Conversely, suppose 0 < h, so that h(x) < 0 for some
x >- 0. If/> O0 then/(x) ^0 and by multiplying/by a small positive real if necessary
we can arrange that ()</(*)< -h(x), so 0 t,f+h and hence f+h>00. Therefore
(7) does not hold. This proves that < 0 determines =<. The proof for ^ is the same.

Concerning bases for the cones, by Peressini (1976), p. 26, it suffices to produce
a strictly positive linear functional in each case, that is, a linear map a: fib -*• R
such that/>0 => a(/)>0, o r / > o 0 => <*(/)> 0, o r / > 0 => a(/)>0, respectively.
For the first two cases take any xeP* and define a(f) =f(x). In the third define
a(f) =f(s) where s is a strong unit of G.f

When (G, ^ ) is any /-group (that is, no determining order for ^ is given) the
statements about < and =̂  on fib still make sense and are proved in the same
way. //

For any pogroup (G, ^ ) (whether or not ^ is an associated order) there is
F. Riesz's theorem (see, for example, Peressini (1967), §2.3):

If(G,*Q is an LR(2,2) directed pogroup then (fib(G), =Q is a complete vector
lattice, the lattice operations being given (for aeG+) by the formulae

(fvg)(a) = mp{f(x)+g(y): x,yeG+, x+y = a}, (8)

C/A*)(a) = mf{f(x)+g(y): x,yeG+, x+y = a}; (9)
and

fib = fi+-fi+. (10)

t The element 5 is a strong unit for (G, < ) if and only if (V x e G+) (3neN) (x^ns). The
order < and its associated order have the same set of strong units.

https://doi.org/10.1017/S1446788700038714 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038714


134 J. B. Miller [6]

The conditions here are met when (G, =Q is an /-group. The conclusions of the
theorem are also deducible from the following modified hypothesis: (G, <) is a
TR (2,2) group. The proof is like that for the theorem itself, and uses also 1° above.
Since < is TR(2,2) it is also LR(2,2), and the formulae (8) and (9) also hold in
their modified forms

(fvg)(a) = sup{f(x)+g(y): x, yeP*, x+y = a) (8')

and its dual, (9').

3. Examples

For a TR group G we can form the real vector space fisfl(G) of all continuous
additive functionals on G. By 1° and (10) we have

fibefi.

The following two examples illustrate cases where fib^fi. The first is due to
R. H. Redfield.

4°. Let G = RoR, the lexicographic product of R with itself, in which (x,y) >0
if and only if x > 0 or x = 0, y > 0. Here < is full and so coincides with its associated
order = ;̂ G is a TRL group. Let/be the map/<jc,y) = y. Then/efi. However, if
A = {<0,j>>: yeR} then A is bounded since <- l ,0><^<<l ,0>, but/(^) = R.
Thus ft fib.

5°. Let G be the subgroup of C[0,1] consisting of all continuous functions x for
which the derivative x'(0) exists. Take =̂  to be the weak pointwise order (x ^ 0
if and only if x(t)~^0 for all O^f^l), and define x>0 to mean x(t)>0 for all

1. Then (G, =̂ ) is an /-subgroup of (C[0,1], = )̂, though not convex, and'

(/(0) (ifx(0)<X0)),
(*VJO'(0) =

Uiax{jc'(0),/(0)} (if X(O) =

Moreover, < is a TR(2,2) determining order for = .̂ With respect to its open-
interval topology °ll, convergence of a net {x^)ieI to x implies that xt converges
uniformly to x on [0,1] and ^(0) = x(0) for i > some /„. G is a nonsecular TRL
group; =̂  is archimedean, ^ is not eudoxian.

Let/be the map defined by/(x) = x'(0); we have/efi\fib.
Instead, let G be as above, except that ^ is now defined thus: x>0 means

x(0>0if 0<t<h *(0>0if £<*<! or f = 0.

We still have/ef i \ fib, but ^ is now a secular order for the TRL group G.
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6°. Let c denote the sequence space of all real sequences a = (an)neN for which
the limit

A(a) = lim an
7l->0O

exists; c is a vector lattice, a fortiori a commutative /-group, with respect to the
weak pointwise order =̂  on sequences. For any real sequence £ = (£n)neN write

/(*)=££„«»• 01)
n=l

This equation defines an element/efi+(c) if and only if £ el1 and £n^ 0 for all n.
The general element of fi+ has the form/+pA, where />eR+, so that fib can be
identified with/1 e (A).

For / in (11) we have/>0 if and only if £n>0 for all n; on the other hand,
A>0, A>0. The only lattice homomorphisms in fi+ are A and those/for which
supp(£) is a singleton.

Let a filter !F of subsets of N be given; define ^ on c by

a>0 if and only if a^=0 and supp(a) ={«eN: an>0}e^r. (12)

Then ^ is a compatible TR (2,2) order for (c, =Q. For/in (11) we have

/ > 0 0 if and only if supp (£) meets every set in &;

wehaveA>o0.
Every sequence a in c+ for which inf <xn > 0 is a strong unit of c; fib has no strong

units.

4. Tight interpolation for < and < o

4.1 The orders ^ and < 0 on fib are TR(1,1), that is, order-dense, since for
example if/<g then/<f(/+g)<g. If < is non-trivial and TR(1,2) then since its
associated order is LR(2,2), ^ is a compatible TR(2,2) order for = .̂ The same
remark applies to <0. Let 3~ denote the open-interval topology of < on fib. We
have, in view of previous remarks:

7°. If(G, ^,z$,W)isaTR (2,2) group (or if(G, =<) is any l-group) and if ^ on fib
is non-trivial and TR (1,2), then

is a TRL group.

We ask if either order is TR(1,2). First, we note that «SO need not be TR(1,2).
This failure is simply illustrated by the following example.

8°. Take G = R2 with the strong and weak pointwise orders <, ^ , and func-
tionals

/ < 2> = *1> £<*!> *2> = *2-
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We have/,gefi+, in fact/ ,g>o0, and for any a = (a1,a2')>0 in R2,

(fAg)(a) = M{f(x)+g(y): 0 ̂  x,y; x+y = a} = 0,

the infimum being attained by taking x = <0,a2>, y = <al50>. Thus / A g = 0, and
so 0 < o h< 0 / ,g is possible for no h e fib.

This example also shows that A for fib need not be pointwise on G+, since
f{a)Ag(a) = m i n ^ , a j > 0. If for any TRL group G it is the case that A (and so v)
is pointwise on G+ then < and ̂  o are TR (2,2) on fib. For with 0 </, g in fib and
a>>0we should have 0<f(a)Ag(q) = (fAg)(d), sofAg>0, whence

so < is TR(1,2), hence TR(2,2). However, the proviso is rather special, as we
have seen. The counterexample shows that =* o is not really the appropriate order
to expect to be TR(2,2). For < the property is more apt, but is still a delicate
matter. The remainder of this section deals with the question for ^ on fib. We
describe two cases where <, if non-trivial, can be shown to be TR(2,2): when
(G,^) is interval-compact, and when (G, =O has a basis.

4.2 A TR (2,2) group is called interval-compact if \[a, b]\ is compact for every
a ̂  b. We have

{a, b)~ = ((a, b))~ — \[a, b]\ whenever a < b

(where ~ denotes closure); and equivalent formulations of the property are:
(a,b)~ is compact for every a<b; (0,a)~ is compact for every a>0; JO,a]] is
compact for every a ̂  0.

If (G, <, < , ^ 0 is an interval-compact TR(2,2) group then (G, =Q is a lattice-
complete /-group, and (G, °tt) is locally compact. For these and related results see
Loy and Miller (1972).

9° THEOREM. IfG is an interval-compact TR(2,2) group then < on fib(G) if non-
trivial is TR (2,2), and (fib, ^,^,^)isa non-secular TRL group.

PROOF. Let/,g efi+, and a >- 0 in G. From (9) we have

C/A*)(«) = g(a)-sup{g(x)-f(x): 0<^f l}>0. (13)

There exists a net (x^)ieI in [[0,a]] such that

lim (gixd -f(xd) = sup {g(x) -f(x): 0 ̂  x =< a}. (14)

Suppose that (jAg)(a) = 0. Then lim fefo)-/(*<)) = g(a). Since

for x G [[0,a]], it follows that

limgixj = g(a), Um/C**) = 0. (15)
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By assumption, \[0,a]\ is compact, so replacing (xi)ieI by a subset if necessary
we can assume that limjq exists, = xoe \[0,a]\. Since/and g are continuous by 1°,
g(a) = limgOq) = g(x0) and 0 = limf(xj =/(x0).

Now suppose that/> 0 and g > 0. Since x0 < a would imply g(x0) <g(a) we have
xo = a and hence 0</(a) —f(x0) = 0, contradiction. We have thus shown that
/ , g > 0 implies (/A g) (a) > 0 for all a > 0, that is, / A g > 0. Therefore < is TR (1,2),
and so TR (2,2), and 7° shows that fib is a TRL group.

Suppose instead that/>- 0 and g > 0. The above considerations in this case show
that f(a) = 0 whenever (/Ag)(a) = 0 and a > 0 . Thus f>0 and g>0 imply
fhg >- 0, which means (by 2.1) that fib is non-secular. //

REMARK: The trivial order is always TR(2,2); on the other hand, for < to
determine ^ on fib, < must be non-trivial.

A less direct proof of 9° is possible using 10° and 11° below and a result due to
Wirth (1975) characterizing interval-compact tight Riesz groups.

4,3 For any /-group (G, =Q, a basic element is by definition an element
aeG+\{0} such that \[0,a]\ is a fully-ordered subset of G+. Alternative char-
acterizations are: (i) The carrier a determined by a is an atom of the carrier lattice
£ of G; (ii) If 0 =̂  s, t =< a and sAt = 0 then s = 0 or / = 0; (iii) a^ is fully-ordered;
(iv) a11- is an atom of the lattice Pol (G) of all polars of G. (For any subset A £ G,
the polar of A is A1- = {xeG: \x\ A|O| = 0 for all aeA}, and c1 = {c}x. The polars
form a complete Boolean algebra Pol (G) with respect to inclusion and x as com-
plementation. For ceG+ the carrier determined by c is c — {xeG+:x-L = c±}.
The carriers form a distributive disjunctive lattice ((£, =O when ordered by writing
a =< b if and only if a^c b1^.)

A basis of the /-group (G, =<) is any subset of G+\{0} which is maximal with
respect to the property: each element of the subset is basic, and the elements are
pairwise disjoint. G has a basis if and only if (E is atomic, that is, every element
xe(E dominates some atom (it is then the join of the atoms it dominates); equi-
valently, every x >~ 0 dominates some basic element.

The following result is due to R. H. Redfield; it subsumes a number of special
cases proved earlier by the author using more complicated arguments.

10°. THEOREM. Let (G, =Q be any l-group with a basis. Then < on fib, if non-
trivial, is 77? (2,2), and fib is a TRL group.

PROOF. Let/,g>0 in fib and suppose M > 0 in G. Then/Ag>=0 and we wish to
show that (/Ag)(w)>0. By assumption there exists some basic element a^u.
Since (2a)~= a, 2a is also basic. Take any x,yeG+ with x+y = 2a; since [[0,2a]]
is fully-ordered, either a^x or a^y so either f{x)+g(y)^f{x)^f[a) or
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Ax)+g(y)>g(y)>g(a) and therefore by (9),

( / A S ) (2a)> min{f(a),g(a)} > 0

since / > 0 and g>0. Thus in either case

2(fAg)(u)>(fAg)(2a)>0.

This proves that/Ag>0 and hence that < is TR(2,2). Again 7° shows that fib is
a TRL group. //

The question of whether < is non-secular is not so immediately settled in this
case as it is in 9°. We have the following sufficient condition.

11°. Let (G, =Q be any l-group with a basis. Suppose that < on fib is non-trivial,
and that for every /> - 0 in fib there exists a basic element a such that f (a) > 0. Then
fib is non-secular.

PROOF. We have to show that in fib,/>0 and g>0 imply/AgX). Suppose a
is basic and f(a) > 0. Necessarily g(a) > 0, and consequently the same argument as
in the proof of 10° leads to (fAg)(a)>0. This proves fAg > 0. //

Call an /-group (G, =̂ ) Jaffard projectable if G has a basis, and

G = a-u-®a±

for every basic element. Call (G, =Q finitely based if G has a basis, and for every
non-zero xeG+ there exists no infinite subset of {y: 0-< j ^ x } the elements of
which are pairwise disjoint (equivalently: the carrier lattice G of G is atomic and
each non-zero carrier x dominates only finitely many atoms). P. Jaffard (1953)
showed that an /-group is expressible as a direct sum

i

of fully-ordered convex subgroups if and only if it is Jaffard projectable and finitely
based. In this case the H4's are precisely the principal bipolars a^, where Oj runs
through the atoms of (£. Here / need not be finite. From 11 ° we deduce:

12°. Let (G, ^)bea Jaffard projectable and finitely based l-group. Then <, if non-
trivial, makes fib a non-secular TRL group.

PROOF. If / vanishes on every basic element then by the representation
G = S^sj©o,-L,/vanishes on G. Thus/>-0 implies/(a)>0 for some basic element
a, and 11° gives the result. //

It is reasonable to conjecture that the condition that (f is finitely based can be
dropped from 15°. When (G, =̂ ) is Jaffard projectable its basic subgroup B (the
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subgroup generated by the set of all the basic elements) has G for its lattice-closure
(this result is due to R. H. Redfield), so if g vanishes on B it might be supposed
that it should vanish on G. However, if a continuous functional vanishes on a sub-
set X of a TRL group it need not vanish on sup (X). In fact the conjecture is false,
as the following counterexample (also due to Redfield) shows.

13°. EXAMPLE of a TRL group G for which (G, =̂ ) is order-dense, Jaffard pro-
jectable and archimedean, G is non-secular, but ^ on fib is secular. Let G be the
subset of n *Li R consisting of functions x of the form

x = s+p,

where s e ^ ^ R and p = (pk)keN, pk = 2~k<*x for some a z eQ. Clearly x deter-
mines 5 and p uniquely, and G is an /-subgroup of the cardinal product ( n R, = )̂-
Let s% be the strong pointwise order on G. Then (G, ^ , =Q is a TRL group with
the asserted properties. We produce two functional f,ge£b such t h a t / > 0, g>0
and/Ag = 0, namely

CO

f{x) = <xx, g(x) = 2 xk.

To prove / A # = 0, let a<=G+. If a e £ R then f(a) = 0 so fAg(a) = 0. Suppose
, and let e>0 in R; pick n such that Sfc>m2~fcaa<|e, define be J] R by

and let c = a v b - b. Then 0 =̂  c e £ R, so /(c) = 0, g(Z>) < £ and therefore

Thus/Ag = 0.

4.4 The question of whether < on 2b is TR (1,2), for /-groups G not covered in
9° and 10°, can be formulated in terms of certain sets of the form

= {x: 0 ̂  x =̂  a, but neither s =< x nor x =̂  f}.

Here a is some element in G+\{0}, and s,te((0,a)). It is found most useful to
choose s,t so that O-Ks-^t^a. Le t />0 and g>0 in £b, and assume that
(J~Ag)(a) = 0, and consider the sequence (x^ieI in the proof of 9°, with the pro-
perties (14) and (15). If for some s we have 0 -< s ̂  xt for all i in some cofinal subset
IQ of /, then 0<f(s)^f(x^) for all ie/o, contradicting (15). (Note that we need
/ > 0 here, not merely />- 0.) Similarly, if xt ^ t -< a for some ? and all i in some
cofinal subset we get g(xi)^g(t)<g(a), contradicting (15). Therefore, for all
s, t e ((0, a)), X{ is eventually in As/q).

If /*g^(a)#0 for all such s,t, this means roughly speaking that the net (xt)iEl

migrates towards the boundary of \[0,a]\ and away from 0 and a: this can be
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illustrated by considering the group G = R2, taking a > 0. If, on the contrary, it can
be shown that AsJl(a) = 0 for some pair s, t e ((0, a)) then we have a contradiction
implying (fAg)(a)>0. Thus

14°. Let (G, =Q be an l-group. For < on fib to be 77? (1,2) it is sufficient that G
satisfy the following condition:

[*] For every a >- 0 in G there exists a pair of elements s,te ((0, a)) such that
AgJia) = 0 .

The use of basic elements in 10° reduces the discussion to the case where [[0, aj
is fully-ordered; here [*] is satisfied trivially by any s,t such that Q<s-<t-<.a.
Since the sets As/a) for fixed a do not form a filterbase, [*] does not seem to be a
necessary condition.

5. Another CTRO for (fib, ^ )

There is another result establishing a CTRO for (fib, =Q, suggested by the
compactness argument in 9°. It concerns not ^ but yet another partial order on
fib, which we write ^ v This time we assume that (G, =S, = ,̂ %) is a locally compact
TR group. In this case the set

£>! = {x > 0: [[0, xj is compact}

is non-empty, and generates a subgroup G1 = D1 — Dv for which G1nG+= Dx.
For /efib(G) write

/ > ! 0 if and only if / > 0, and /(*) > 0 for every x e Dx \ {0}. (16)

This makes (fib(G), < i) a partially ordered vector space, and by almost the same
arguments as were used in proving 3° and 9° we find that < x, if non-trivial, Js a
TR(2,2) determining order for ^ on fib(G), and (fib, ^x, =O is a TRL group.

When (G, tft) is locally compact, 10° is a particular case of this result.
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