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Global smooth solutions and singular-
ity formation for the relativistic Euler
equations with radial symmetry∗

Geng Chen, Houbin Guo and Yanbo Hu

Abstract. In this paper, we consider the global-in-time existence and singularity for-
mation of smooth solutions for the radially symmetric relativistic Euler equations of
polytropic gases. We introduce the rarefaction/compression character variables for the
supersonic expanding wave with relativity and derive their Riccati type equations to
establish a series of priori estimates of solutions by the characteristic method and the
invariant domain idea. It is verified that, for rarefactive initial data with vacuum at
the origin, smooth solutions will exist globally. On the other hand, the smooth solution
develops a singularity in finite time when the initial data are compressed and include
strong compression somewhere.

1 Introduction

We consider the global-in-time existence and singularity formation of radi-
ally symmetric relativistic smooth flows. The system of equations for the
relativistic fluid dynamics, as an important representative model of non-
linear hyperbolic conservation laws, has wide applications in several fields
such as astrophysics, plasma physics and nuclear physics, and has been
extensively studied by many mathematicians and physicists. The motion
of perfect inviscid fluids in the (d + 1)-dimensional Minkowski space-time
(t, x) ∈ R+×Rd (d ≥ 1) in special relativity can be described by the isentropic
relativistic Euler equations (e.g. [48, 53, 15, 50])

(
ρ+ εp

1− εu2
− εp

)
t

+∇ ·
(

ρ+ εp

1− εu2
u
)

= 0,(
ρ+ εp

1− εu2
u
)

t

+∇ ·
(

ρ+ εp

1− εu2
u ⊗ u + p

)
= 0,

(1.1)

where ρ is the mass-energy density of fluid, p = p(ρ) is the pressure, u =
(u1, · · · , ud) is the particle speed, ε = 1/c2 and c > 0 is the light speed. The

AMS subject classification: 35Q31, 35L65, 35Q75, 35A09, 35B44.
Keywords: Relativistic Euler equations, global smooth solution, singularity, characteris-

tic method, Riccati equation, radial symmetry.
Corresponding author: Yanbo Hu.
∗G. Chen was partially supported by National Science Foundation (DMS-2306258). Y.

Hu was partially supported by National Natural Science Foundation of China (12171130)
and Natural Science Foundation of Zhejiang province of China (LMS25A010014).

2025/09/23 21:48

This is a ``preproof'' accepted article for Canadian Journal of Mathematics
This version may be subject to change during the production process.
DOI: 10.4153/S0008414X25101648

https://doi.org/10.4153/S0008414X25101648 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101648


2 G. Chen, H. Guo and Y. Hu

first and second equations in (1.1) are the conservation laws in energy and
momentum for the relativistic fluids. We are interested in system (1.1) with
the classical equation of state for the polytropic ideal gas

p(ρ) = Aργ , (1.2)

where A is a positive constant and γ > 1 is the adiabatic constant. The
relativistic constraint leads to the corresponding physical area

Π =
{
(ρ,u)| 0 ≤ ρ < ρ∗; |u| =

√
u2
1 + · · ·+ u2

d <
1√
ε

}
,

where the number ρ∗ is determined by p′(ρ∗) = 1/ε.
For a radially symmetric relativistic flow, that is the solution has the

following geometric structure

ρ(x, t) = ρ(r, t), ui(x, t) =
xi

r
u(r, t),

r = |x| =
√

x2
1 + · · ·+ x2

d with d > 1,
(1.3)

where u(r, t) is a scalar function, system (1.1) can be reduced to
(

ρ+ εp

1− εu2
− εp

)
t

+

(
ρ+ εp

1− εu2
u

)
r

= − (d− 1)(ρ+ εp)u

r(1− εu2)
,(

ρ+ εp

1− εu2
u

)
t

+

(
ρ+ εp

1− εu2
u2 + p

)
r

= − (d− 1)(ρ+ εp)u2

r(1− εu2)
.

(1.4)

In this paper, we tackle the problems of global existence and singularity
formation of smooth solutions to system (1.4) in all dimensions d > 1. Partic-
ularity, system (1.4) with d = 2 and d = 3 correspond to the cylindrically and
spherically symmetric relativistic Euler equations, respectively. In the New-
tonian limit (c → ∞), system (1.4) formally reduces to the classical radially
symmetric isentropic Euler equations

ρt + (ρu)r = − (d− 1)ρu

r
,

(ρu)t + (ρu2 + p)r = − (d− 1)ρu2

r
.

(1.5)

Many excellent pieces of work have been contributed on the study of one-
dimensional isentropic relativistic Euler equations (1.1) with the equation of
state (1.2). We refer the reader to, e.g., works on the Riemann solutions [15,
13], on the local existence of smooth solutions [21, 47], on the formation of
singularities of smooth solutions [1, 2, 24, 48] and on the studies of weak
solutions [14, 20, 30, 50, 53]. In [51], Ruan and Zhu established an existence
theorem of global smooth solutions to its Cauchy problem by applying the
characteristic method and maximum principle. The global existence of smooth
solutions for some general one-dimensional quasilinear hyperbolic systems was
presented in [40, 42].
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Global smooth solutions and singularity formation 3

As a special but physically interesting multi-dimensional flow, the radially
symmetric relativistic Euler equations (1.4) has also been broadly investi-
gated. By using Sideris’s framework [52], singularity formation results of
smooth solutions to the multi-dimensional relativistic Euler equations with
polytropic gases were presented in [48, 24, 54, 2]. The framework of Sideris
is based on the establishment of differential inequalities for some averaged
quantities, and therefore can not provide a local analysis of the singularity.
For more general solutions in multiple space dimensions, a geometric frame-
work was introduced by Christodoulou [16] to study the singularity formation
of smooth solutions for the relativistic Euler equations. Also see the related
works in [3, 4, 5, 17, 19, 44, 45] etc for the classical Euler equations and in
[26, 34, 35] etc for the more general quasilinear wave equations. The singular-
ity formation problem for the radially symmetric relativistic Euler equations
with the so-called Chaplygin gas equation of state p = −ρ−1 was analyzed by
the characteristic method in [27, 28].

In another related area, the global existence of bounded weak entropy solu-
tions for (1.4), (1.2) with γ = 1 was established outside a unit ball by Mizohata
[46] employing Glimm’s method. This method was also applied by Hao, Li and
Wang [25] to achieve the non-relativistic global limits of entropy solutions for
(1.4). In [31], Hsu, Lin and Makino utilized the Lax-Friedrichs scheme to estab-
lish the global existence of spherically symmetric weak solutions of (1.4) with
initial data containing the vacuum state. The spherical piston problem for the
relativistic Euler equations was discussed in [18, 37]. In [55], Wei analyzed
the stabilizing effect of the power law inflation on relativistic Eulerian fluids.
Moreover, Lai [36] constructed a family of self-similar bounded weak entropy
solutions for (1.4). Recently, the third author and Zhang [29] constructed a
piecewise smooth solution containing a single shock wave for the radially sym-
metric relativistic Euler equations (1.4) with polytropic gas equation of state
(1.2).

An important feature of quasilinear hyperbolic systems is that, even for
sufficiently smooth and small initial data, their smooth solutions may form
singularities in finite time. Therefore, it is rather meaningful and interesting
to investigate what conditions are necessary to guarantee the global existence
of smooth solutions for the relativistic system (1.4). Grassin [23] studied the
multi-dimensional classical Euler equations with polytropic gases and acquired
global smooth solutions for sufficiently small initial density and sufficiently
smooth initial velocity that forces particles to spread out, also see Lecureux-
Mercier [39] for the extension of van der Waals gases. Godin [22] derived the
lifespan of smooth solutions for the spherically symmetric Euler equations
with initial data that are a small perturbation of a constant state.

To study the global existence and singularity formation of smooth solutions
for the one-dimensional quasilinear hyperbolic systems, the characteristic
method is undoubtedly a significant idea. It is proved by using the characteris-
tic method that smooth solutions of one-dimensional classical isentropic Euler
equations exist globally if and only if the initial data are rarefactive every-
where, see among others [6, 8, 10, 11, 40, 59]. Also see the works by Ruan and
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Zhu [51] and Athanasiou, Bayles-Rea and Zhu [1, 2] for the one-dimensional
relativistic Euler equations. Based on the fact that these one-dimensional
hyperbolic systems are homogeneous, the rarefaction/compression (R/C)
character of solutions can be directly defined by the sign of the gradient on
a pair of Riemann invariants. Due to the presence of non-constant entropy,
the situation for the one-dimensional full, non-isentropic Euler equations is
relatively more complex. Some singularity formation results of its smooth
solutions were established in [7, 12] by utilizing the strong compressibility of
initial data to overcome the influence of entropy. In [10], Chen, Pan and Zhu
shown that initial weak compressions do not necessarily form singularity in
finite time, unless the compression is strong enough for general data. Pan and
Zhu [49] found a class of solutions of the non-isentropic Euler equations, devel-
oping singularity in finite time even though their initial data do not contain
any compression. In [1], the authors demonstrated the development of singu-
larities for the one-dimensional non-isentropic relativistic Euler equations with
strong compressive initial data by discussing some non-homogeneous ordinary
differential equations along characteristics.

For the radially symmetric Euler and relativistic Euler systems, a natural
idea is to use the gradient of Riemann variables to characterize the R/C
character of solutions by mimicking the one-dimensional cases. However, due
to the influence of source terms, directly selecting gradient variables in this
way often fails to obtain the desired a priori estimates of solutions. In [58, 57],
the authors studied the radially symmetric Euler equations (1.5) satisfying a
polytropic gas equation of state (1.2) with damping. Under the assumption
that the damping is strong enough, they applied the characteristic method
to establish the global existence of smooth solutions outside a ball under
some sufficient conditions. Some global existence results for the p-system with
damping were presented in [56, 32, 33]. In [38], Lai and Zhu manipulated a
class of initial data that are constant state near the origin and meet tedious
conditions elsewhere to acquire a global existence result for (1.5) with d =
2. The constant initial data allow them to construct a smooth self-similar
solution and then gain an expanding vacuum region centered at the origin.

In [9], Chen et al introduced the concepts of rarefaction and compression
characters for expanding wave for the radially symmetric Euler equations (1.5)
with (1.2). The corresponding R/C character variables are not only related to
the gradients of Riemann variables but also to the non-homogeneous terms of
the governing system. The idea in [9] originates from the observation that the
stationary solution of the governing system is neither rarefactive nor compres-
sive, that is the R/C character variables should be vanished in the stationary
solution. Then they derived the Riccati type equations for the R/C character
variables and utilized them to prove that smooth solutions with rarefactive
initial data will exist for any time, while strong initial compression will make
solutions to form finite time singularities.

In the current paper, we are inspired by the previous work [9] to discover
a pair of appropriate gradient variables from the stationary solution of the
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Global smooth solutions and singularity formation 5

relativistic Euler equations (1.4) and apply them to discuss the global exis-
tence and singularity formation of its smooth solutions. For the classical Euler
system (1.5), the authors [9] introduced its R/C characters

αe = −∂e1(r
d−1ρu)

rd−1ρ · λe2
, βe = −∂e2(r

d−1ρu)

rd−1ρ · λe1
, (1.6)

where λei = u+(−1)i
√

p′(ρ) are two eigenvalues of (1.5), and ∂ei = ∂t+λei∂r.
It is noted that rd−1ρu is constant in the stationary solution of (1.5). For the
relativistic Euler equations (1.4), we can easily see that the quantity

rd−1 ρ+ εp(ρ)

1− εu2
u

is constant in its stationary solution. Then we define the variables α and β by

α =−
∂1

(
rd−1 ρ+εp(ρ)

1−εu2 u
)

rd−1(ρ+ εp(ρ)) · u+
√

p′(ρ)

1−ε
√

p′(ρ)u

,

β =−
∂2

(
rd−1 ρ+εp(ρ)

1−εu2 u
)

rd−1(ρ+ εp(ρ)) · u−
√

p′(ρ)

1+ε
√

p′(ρ)u

,

(1.7)

where

∂1 = ∂t + λ1∂r, ∂2 = ∂t + λ2∂r, (1.8)

are the directional derivatives along the characteristics, and

λ1 =
u−

√
p′(ρ)

1− ε
√
p′(ρ)u

, λ2 =
u+

√
p′(ρ)

1 + ε
√
p′(ρ)u

, (1.9)

are two eigenvalues of the relativistic Euler equations (1.4). It is worth empha-
sizing that the last two terms in the denominators of (1.7) are not the
eigenvalues λ1 and λ2, which are different from the constructions in (1.6).
These special resultants are used to determine the signs of some coefficients
in the Riccati equations of (α, β), which are important for our analysis in the
paper.

We present the main process of this paper below. For any number b >
0, we first consider the Cauchy problem to (1.4) with (1.2) on [b,∞). By
using the equations of the Riemann variables, we can gain the a priori C0

estimates of the solutions. Then we derive the Riccati type equations for
the rarefaction characters (α, β) and apply these equations and initial data
0 ≤ α(r, 0), β(r, 0) ≤ M to establish their invariant domain, which leads to
the a priori C1 estimates of the solutions. Moreover, the invariant domain of
(α, β) allows us to deduce a lower bound estimate of density independent of
the spatial variable r. For any fixed time T > 0, the lower bound of density
and the C1-estimates of the solutions depend only on the numbers b and
T . Hence we can achieve a unique global solution of (1.4) on the region Ωb,
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t

0

Ωb

1−characteristic

2−characteristic

T

rb

Figure 1: The region Ωb..

where Ωb = {(r, t) : 0 ≤ t ≤ T, r ≥ r2(t; b, 0)} and r = r2(t; b, 0) is the 2-
characteristic curve starting from point (b, 0). See Figure 1 for illustration.
Based on the conclusion that the characteristic starting from (r, t) = (0, 0)
must be r = 0, we let b → 0 to establish the global existence result on the
entire half line [0,∞). On the other hand, for the compressive initial data
α(r, 0) < 0, β(r, 0) < 0, we employ their Riccati type equations to prove
that α(r, t) < 0, β(r, t) < 0 in the region of existence of smooth solutions. If
−α(r, 0) or −β(r, 0) is further assumed to be sufficiently large somewhere at a
certain point, then the smooth solution may form singularities in finite time.

The rest of the paper is organized as follows. In Section 2, we introduce
the Riemann variables for system (1.4) and provide the main result of the
paper. Section 3 is devoted to deriving the Riccati type equations of (α, β).
In Section 4, we establish invariant domains for the Riemann variables and
the rarefaction characters (α, β), from which we obtain the a priori C1 esti-
mates of the solutions. A positive lower bound estimate for density that is only
time-dependent while spatially independent is also deduced in this section. In
Section 5, we demonstrate the global existence of C1 solution on the entire
domain t ≥ 0, r ≥ 0 for rarefactive initial data. Finally, the singularity
formation of smooth solutions is discussed in Section 6.

2 The main results

In this section, we introduce a pair of Riemann variables to transform system
(1.4) into a diagonal form and then present the main results of the paper.

We consider smooth solutions of system (1.4) with (1.2), in which case the
system can be rewritten as

AUt + BUr = F, (2.1)
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where the variables and the coefficient matrices are

U =

(
ρ
u

)
, F = − (d− 1)(ρ+ εAργ)u

(1− εu2)r

(
1
u

)
,

and

A =


1 + ε2Aγργ−1u2

1− εu2

2ε(ρ+ εAργ)u

(1− εu2)2

(1 + εAγργ−1)u

1− εu2

(ρ+ εAργ)(1 + εu2)

(1− εu2)2

 ,

B =


(1 + εAγργ−1)u

1− εu2

(ρ+ εAργ)(1 + εu2)

(1− εu2)2

Aγργ−1 + u2

1− εu2

2(ρ+ εAργ)u

(1− εu2)2

 .

The eigenvalues of (2.1) are defined by finding the roots of |λA − B| = 0,
which are given in (1.9). The corresponding right eigenvectors of λ1 and λ2

are, respectively,

R1 =

(
−

√
Aγργ−1

ρ+ εAργ
,

1

1− εu2

)T

, R2 =

(√
Aγργ−1

ρ+ εAργ
,

1

1− εu2

)T

.

One can check that there hold ∇λi ·Ri ̸= 0 for 0 < ρ < ρ∗, which means that
system (2.1) is strictly hyperbolic and genuinely nonlinear.

Let the symbol a represent the sound speed, that is, a =
√
pρ =

√
Aγρ

γ−1
2

with γ > 1 satisfying the relativistic constraint a < 1/
√
ε. We rewrite system

(2.1) as follows

2γ

γ − 1

εau(1− εu2)

γ + εa2
∂ta+ ∂tu+

2γ

γ − 1

(1− εu2)a

γ + εa2
∂ra+ u∂ru = 0,

2γ

γ − 1

1− εu2

γ + εa2
∂ta+ εau∂tu+

2γ

γ − 1

1− εu2

γ + εa2
u∂ra+ a∂ru

= −d−1
r (1− εu2)ua.

(2.2)

The eigenvalues λ1 and λ2 in (1.9) become

λ1 =
u− a

1− εau
, λ2 =

u+ a

1 + εau
, (2.3)

Introduce the Riemann variables w± = w±(u, a)

w+ =
1

2
√
ε
ln

(1 +√
εu

1−
√
εu

)
+

2
√
γ

√
ε(γ − 1)

arctan
(√ ε

γ
a
)
.

w− =
1

2
√
ε
ln

(1 +√
εu

1−
√
εu

)
−

2
√
γ

√
ε(γ − 1)

arctan
(√ ε

γ
a
)
.

(2.4)
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from which one has

u(w+, w−) =
e
√
ε(w++w−) − 1

√
ε(e

√
ε(w++w−) + 1)

,

a(w+, w−) =

√
γ

ε
tan

(√ε(γ − 1)

4
√
γ

(w+ − w−)
)
,

(2.5)

Then we can obtain the governing equations for (w+, w−)

∂w+

∂t
+ λ2

∂w+

∂r
= −d− 1

r

au

1 + εau
, (2.6)

∂w−

∂t
+ λ1

∂w−

∂r
=

d− 1

r

au

1− εau
. (2.7)

We next supply the assumptions of the paper.

Assumption 1 Let the adiabatic constant γ be in the interval 1 < γ < 3.
For any given b > 0, the initial data (ρ0(r), u0(r)) = (ρ(r, 0), u(r, 0)) of (2.1)
make the following inequalities hold

0 ≤ w−(r, 0) < w+(r, 0) ≤ C :=
1

2
√
ε
ln
(7− γ

1 + γ

)
, (2.8)

for any r ∈ (b,∞), where

w±(r, 0) =
1

2
√
ε
ln
(1 +√

εu0(r)

1−
√
εu0(r)

)
±

2
√
γ

√
ε(γ − 1)

arctan
(√ ε

γ
a0(r)

)
, (2.9)

and a0(r) =
√
Aγρ

γ−1
2

0 .

Remark 1 The inequalities in (2.8) form an invariant domain of (w−, w+)
holding for any time before singularity formation.

We now set

α0(r) =
u′
0(r)

1− εu2
0(r)

+
2γ

γ − 1

a′0(r)

γ + εa20(r)
+

d− 1

r

u0(r)a0(r)

u0(r) + a0(r)
,

β0(r) =
u′
0(r)

1− εu2
0(r)

− 2γ

γ − 1

a′0(r)

γ + εa20(r)
− d− 1

r

u0(r)a0(r)

u0(r)− a0(r)
.

(2.10)

Assumption 2 Let the adiabatic constant γ be in the interval 1 < γ < 3.
For the initial data (ρ0(r), u0(r)) = (ρ(r, 0), u(r, 0)) of (2.1), there exists a
uniform constant M > 0 such that

min
r∈[0,∞)

{α0(r), β0(r)} ≥ 0, max
r∈[0,∞)

{α0(r), β0(r)} < M, (2.11)

where α0(0) = limr→0+ α0(r) and β0(0) = limr→0+ β0(r) are assumed to exist
and nonnegative.

2025/09/23 21:48

https://doi.org/10.4153/S0008414X25101648 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101648


Global smooth solutions and singularity formation 9

Remark 2 The inequalities in (2.10) form an invariant domain of (α, β)
holding for any time before singularity formation.

Then the main results of the paper can be stated as follows.

Theorem 2.1 Let the initial data (ρ0(r), u0(r)) ∈ C1([0,∞)) satisfy Assump-
tions 1 and 2. We further assume ρ0(0) = u0(0) = 0, ρ0(r) > 0 for r > 0.
Then the radially symmetric relativistic Euler equations (1.4) with (1.2) admit
a global C1 solution (ρ, u)(r, t) on the entire domain r ≥ 0, t ≥ 0. Moreover,
the solution satisfies ρ(0, t) = 0 and u(0, t) = 0 and

√
2Aγ

γ − 1
ρ

γ−1
2 (r, t) ≤ u(r, t) ≤ 3− γ

4
√
ε
, ρ(r, t) > 0, ∀ r ≥ 0, t ≥ 0, (2.12)

and

min
r≥0,t≥0

(α, β)(r, t) ≥ 0, max
r≥0,t≥0

(α, β)(r, t) < M. (2.13)

Theorem 2.2 Let the initial data (ρ0(r), u0(r)) ∈ C1((b,∞)) with b > 0
satisfy Assumption 1 and the following compression conditions

α0(r) < 0, β0(r) < 0, ∀ r ∈ [b,∞). (2.14)

Then there exists a constant N(b, T ), depending on b and T , such that, if

α0(r
∗) ≤ −N(b, T ), or β0(r

∗) ≤ −N(b, T ), (2.15)

for some number r∗ > b, then singularity forms before time T .

Remark 3 The precise form of the constant N(b, T ) will be given along with
the analysis of the problem in Section 6.

3 The Riccati type equations

In this section, we derive the Riccati type equations of (α, β), which play a
very important role in our analysis below.
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We first calculate the rarefaction characters α and β introduced in (1.7).
According to the definition of ∂1 in (1.8), we directly compute by (2.2)

∂1

(
rd−1 ρ+ εp

1− εu2
u
)

=∂t

(
rd−1 ρ+ εp

1− εu2
u
)
+

u− a

1− εau
∂r

(
rd−1 ρ+ εp

1− εu2
u
)

=− ∂r

(
rd−1 ρ+ εp

1− εu2
u2

)
− rd−1∂rp+

u− a

1− εau
∂r

(
rd−1 ρ+ εp

1− εu2
u
)

=− rd−1 ρ+ εp

1− εu2

{
u∂ru+

a(1 + εu2)

1− εau
∂ru+

d− 1

r

au(1− εu2)

1− εau

}
− rd−1 a(a+ u)

1− εau
∂rρ

=− rd−1(ρ+ εp)
a+ u

1− εau

( ∂ru

1− εu2
+

d− 1

r

ua

u+ a

)
− rd−1 2

γ − 1

ρ(a+ u)

1− εau
∂ra.

(3.1)

The last step in (3.1) is used the relation ρ∂ra = γ−1
2 a∂rρ. It follows by (3.1)

that

α = −
∂1(r

d−1 ρ+εp
1−εu2u)

rd−1(ρ+ εp) u+a
1−εua

=
∂ru

1− εu2
+

2

γ − 1

ρ∂ra

ρ+ εp
+

d− 1

r

ua

u+ a

=
∂ru

1− εu2
+

2γ

γ − 1

∂ra

γ + εa2
+

d− 1

r

ua

u+ a

= ∂rw+ +
d− 1

r

ua

u+ a
.

(3.2)

Analogously, one has

∂2

(
rd−1 ρ+ εp

1− εu2
u
)

=∂t

(
rd−1 ρ+ εp

1− εu2
u
)
+

u+ a

1 + εau
∂r

(
rd−1 ρ+ εp

1− εu2
u
)

=− rd−1(ρ+ εp)
u− a

1 + εau

( ∂ru

1− εu2
− d− 1

r

ua

u− a

)
+ rd−1 2

γ − 1

ρ(u− a)

1 + εau
∂ra,

(3.3)
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Global smooth solutions and singularity formation 11

which gives

β = −
∂2(r

d−1 ρ+εp
1−εu2u)

rd−1(ρ+ εp) u−a
1+εua

=
∂ru

1− εu2
− 2γ

γ − 1

∂ra

γ + εa2
− d− 1

r

ua

u− a

= ∂rw− − d− 1

r

ua

u− a
.

(3.4)

We next derive the Riccati equations for the radially symmetric isentropic
relativistic Euler equations.

Lemma 3.1 For smooth solutions of (2.1) with λ1λ2 ̸= 0, we have the
following Riccati type equations on α and β

∂1β =− 1− εu2

(1− εau)2
(γ + 1)(γ − εa2)

4γ
β2

− 1− εu2

(1− εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
αβ +A1α−B1β,

(3.5)

where

A1 =
(d− 1)(u+ a)

2r(1 + εau)(u− a)2

(γ − 1

2
u2 − a2 +

3γ − 1

2γ
εu2a2

)

B1 =
(d− 1)(1− εu2)

r(u− a)(1− εau)2

{
ua

u+ a

(
a(1− εa2) +

γ − 1

2γ
(γ + εa2)u

)
+

1− εau

2(1− εu2)

(
a2(1− εu2) +

γ − 1

2γ
u2(γ + εa2)

)}
,

(3.6)

and

∂2α =− 1− εu2

(1 + εau)2
(γ + 1)(γ − εa2)

4γ
α2

− 1− εu2

(1 + εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
αβ +A2β −B2α,

(3.7)

where

A2 =
(d− 1)(u− a)

2r(1− εau)(u+ a)2

(γ − 1

2
u2 − a2 +

3γ − 1

2γ
εu2a2

)

B2 =
(d− 1)(1− εu2)

r(u+ a)(1 + εau)2

{
ua

u− a

(
a(1− εa2)− γ − 1

2γ
(γ + εa2)u

)
+

1 + εau

2(1− εu2)

(
a2(1− εu2) +

γ − 1

2γ
u2(γ + εa2)

)}
.

(3.8)

Remark 4 It is obvious that equations (3.5) and (3.7) are homogeneous, i.e.
their right hand sides vanish when α = β = 0. This important property

2025/09/23 21:48

https://doi.org/10.4153/S0008414X25101648 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101648


12 G. Chen, H. Guo and Y. Hu

originated from the special selection of α and β is crucial for us to establish
the a priori C1 estimates of solutions by constructing the invariant domains.

Proof We only derive (3.5) since the derivation of (3.7) is parallel. In view
of (3.4), we first have

∂1β = ∂1

(
∂rw− − d− 1

r

ua

u− a

)
= ∂1∂rw− − ∂t

(d− 1

r

ua

u− a

)
− u− a

1− εau
∂r

(d− 1

r

ua

u− a

)
.

(3.9)

Moreover, thanks to (2.7) and (3.4), one obtains

∂1∂rw− =
u− a

1− εau
∂r

(d− 1

r

ua

u− a

)
+

d− 1

r

ua

u− a
∂r

( u− a

1− εau

)
− ∂r

( u− a

1− εau

)
∂rw−

=
u− a

1− εau
∂r

(d− 1

r

ua

u− a

)
− β∂r

( u− a

1− εau

)
,

(3.10)

which together with (3.9) yields

∂1β = −β∂r

( u− a

1− εau

)
− ∂t

(d− 1

r

ua

u− a

)
= I1 + I2, (3.11)

where

I1 =− β

(1− εau)2

{
(1− εa2)∂ru− (1− εu2)∂ra

}
,

I2 =
d− 1

r(u− a)2
(a2∂tu− u2∂ta).

(3.12)

To proceed, we next give some relationships among α, β, ∂tu, ∂ta, ∂ru and
∂ra. Owing to (2.4), one has by directly calculates

∂rw+ + ∂rw− =
2∂ru

1− εu2
, ∂rw+ − ∂rw− =

4γ

γ − 1

∂ra

γ + εa2
,

which together with (3.2), (3.4) and (2.2), we achieve the following formulas

2∂ru

1− εu2
= α+ β +

d− 1

r

2ua2

(u− a)(u+ a)
,

4γ

γ − 1

∂ra

γ + εa2
= α− β − d− 1

r

2u2a

(u− a)(u+ a)
,

(3.13)
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and

2γ

γ − 1

(1− εau)(1 + εau)

γ + εa2
∂ta

=− a∂ru− 2γ

γ − 1

u(1− εa2)

γ + εa2
∂ra− d− 1

r
ua,

(1− εau)(1 + εau)

1− εu2
∂tu

=− u(1− εa2)

1− εu2
∂ru− 2γ

γ − 1

a(1− εu2)

γ + εa2
∂ra+

d− 1

r
εa2u2.

(3.14)

Then putting (3.13) and (3.14) into (3.11) and doing simple rearrange-
ments, we acquire

I1 =− β

(1− εau)2

{
(1− εa2)∂ru− (1− εu2)∂ra

}
=− β

(1− εau)2

{
(1− εa2)(1− εu2)

2

(
α+ β +

d− 1

r

2ua2

(u− a)(u+ a)

)
− γ − 1

4γ
(1− εu2)(γ + εa2)

(
α− β − d− 1

r

2u2a

(u− a)(u+ a)

)}
=− d− 1

r

ua(1− εu2)

(u− a)(u+ a)(1− εau)2

{
a(1− εa2) +

γ − 1

2γ
(γ + εa2)u

}
β

− 1− εu2

(1− εau)2
(γ + 1)(γ − εa2)

4γ
β2

− 1− εu2

(1− εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
αβ. (3.15)

Furthermore, one applies (2.2), (3.13) and (3.14) again to achieve

a2∂tu− u2∂ta

=− 1

2(1− ε2a2u2)

(
a3(1− εu2)2 − γ − 1

2γ
(γ + εa2)(1− εa2)u3

)
(α− β)

− ua(1− εu2)

2(1− ε2a2u2)

(
a(1− εa2)− γ − 1

2γ
(γ + εa2)u

)
(α+ β)

+
d− 1

r(1− ε2a2u2)

{
u4a− u2a3

u2 − a2

(
εa3(1− εu2) +

γ − 1

2γ
(γ + εa2)u

)
+

u2a

u2 − a2

(
a3(1− εu2)2 − γ − 1

2γ
(γ + εa2)(1− εa2)u3

)
− u2a3(1− εu2)

u2 − a2

(
a(1− εa2)− γ − 1

2γ
(γ + εa2)u

)}
. (3.16)
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14 G. Chen, H. Guo and Y. Hu

Note that

u4a− u2a3

(u− a)(u+ a)

(
εa3(1− εu2) +

γ − 1

2γ
(γ + εa2)u

)
+

u2a

(u− a)(u+ a)

(
a3(1− εu2)2 − γ − 1

2γ
(γ + εa2)(1− εa2)u3

)
− u2a3(1− εu2)

(u− a)(u+ a)

(
a(1− εa2)− γ − 1

2γ
(γ + εa2)u

)
=

u2a(1− εu2)

(u− a)(u+ a)

{
εa3(u2 − a2) + a3(1− εu2)− a3(1− εa2)

}
+

γ − 1

2γ

u2a(γ + εa2)

(u− a)(u+ a)

{
u(u2 − a2)− (1− εa2)u3 + a2u(1− εu2)

}
= 0.

Utilizing the above fact into (3.16) leads to

a2∂tu− u2∂ta =− u+ a

2(1 + εua)

(
a2(1− εu2)− γ − 1

2γ
(γ + εa2)u2

)
α

− u− a

2(1− εau)

(γ − 1

2γ
(γ + εa2)u2 + a2(1− εu2)

)
β. (3.17)

We insert (3.17) into (3.12) to obtain

I2 =
d− 1

r(u− a)2
(a2∂tu− u2∂ta)

=− d− 1

r(u− a)2

[ u+ a

2(1 + εua)

(
a2(1− εu2)− γ − 1

2γ
(γ + εa2)u2

)
α

+
u− a

2(1− εau)

(γ − 1

2γ
(γ + εa2)u2 + a2(1− εu2)

)
β
]
.

(3.18)

One combines (3.11), (3.15) and (3.18) to easily gain (3.5). The proof of the
lemma is complete. �

4 Invariant domains

In this section, we establish invariant domains for (w−, w+) and (α, β) and
derive a positive lower bound estimate for the density.

Before studying the solution in the whole domain (r, t) ∈ R+×R+, we first
consider the Cauchy problem on the domain Ωb in the (r, t)-plane, where Ωb

is defined as in Figure 1.

Problem 1 For system (2.1) with the initial data (ρ0(r), u0(r)) =
(ρ(r, 0), u(r, 0)), we seek the smooth solution on domain of dependence Ωb

with base t = 0 and r ∈ (b,∞) for any b > 0, i.e. domain to the right of the
2-characteristic starting at (b, 0).

Then we have
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Global smooth solutions and singularity formation 15

Lemma 4.1 Let Assumption 1 hold. Then any smooth solution of Problem 1
in the domain of dependence Ωb based on (b,∞), with b > 0, satisfies

0 ≤ w−(r, t) ≤ w+(r, t) ≤ C. (4.1)

Remark 5 We shall show the fact that w− < w+(i.e. ρ > 0) in Ωb is true at
the end of this section.

Proof We first prove w− ≥ 0 in Ωb. Assume that there exists a point (r̄, t̄) ∈
Ω with t̄ > 0 such that w−(r̄, t̄) < 0. We use l1 to denote the 1-characteristic
r = r1(t) through the point (r̄, t̄):

dr1
dt

= λ1(r1(t), t), r1(t̄) = r̄.

Due to w−(r1(0), 0) ≥ 0 by (2.8), we know that there exist some times 0 ≤ t̃ <
t̂ ≤ t̄ such that along l1, there hold w−(r1(t), t) ≥ 0 for t ∈ [0, t̃), w−(r1(t̃), t̃) =
0, and w−(r1(t), t) < 0 for t ∈ (t̃, t̂]. Thus ∂1w−(r1(t̃), t̃) < 0. On the other
hand, one recalls (2.7) to see that

∂1w−(r1(t̃), t̃) =
d− 1

r

au

1− εau
(r1(t̃), t̃) ≥ 0,

which leads to a contradiction. Hence we have w−(r, t) ≥ w−(r, 0) ≥ 0 in Ωb.
According to the conclusion w−(r, t) ≥ 0 in Ωb, it suggests by the expression

of w− in (2.4) that

1

2
√
ε
ln
(1 +√

εu

1−
√
εu

)
≥

2
√
γ

√
ε(γ − 1)

arctan
(√ ε

γ
a
)
≥ 0,

which implies that u(r, t) ≥ 0 in Ωb. Thus one has by (2.6)

∂w+

∂t
+ λ2

∂w+

∂r
= −d− 1

r

au

1 + εau
≤ 0,

which means that w+(r2(t), t) ≤ w+(r2(0), 0) along any 2-characteristic curve
r2(t). Therefore, we attain

w+(r, t) ≤ w+(r, 0) ≤ C. (4.2)

The proof of the lemma is finished. �

Based on Lemma 4.1, we have following estimates

Lemma 4.2 Let Assumption 1 hold. Suppose that the smooth solution of
Problem 1 in Ωb satisfies 0 < w− < w+. Then there hold in the domain Ωb√

2

γ − 1
a ≤ u ≤ 3− γ

4
√
ε
, (4.3)

and

0 ≤ Ai ≤ Bi, (4.4)
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16 G. Chen, H. Guo and Y. Hu

where i = 1, 2, Ai and Bi are defined in (3.6) and (3.8).

Proof We first combine (2.5), (4.1) and (4.2) to obtain

√
εu ≤ e2

√
εw+(t,r) − 1

e2
√
εw+(t,r) + 1

≤ e2
√
εw+(0,r) − 1

e2
√
εw+(0,r) + 1

, (4.5)

which together with (2.8) arrives at

√
εu ≤ e2

√
εw+(0,r) − 1

e2
√
εw+(0,r) + 1

≤ 3− γ

4
. (4.6)

It is easy to find by the assumption 0 < w− < w+ that

u

1−
√
εu

≥ 1

2
√
ε
ln
(1 +√

εu

1−
√
εu

)
≥

2
√
γ

√
ε(γ − 1)

arctan
(√ ε

γ
a
)
≥ 2

γ − 1
a
(
1− εa2

3γ

)
. (4.7)

In view of (4.7), we calculate

γ − 1

2
u2 − a2 ≥ 2

γ − 1
a2
(
1− εa2

3γ

)
(1−

√
εu)2 − a2

≥ 2

γ − 1
a2
[(

1− εu2

3γ

)
(1−

√
εu)2 − γ − 1

2

]
=

2

γ − 1
a2I3, (4.8)

where

I3 =1− 2
√
εu− γ − 1

2
+

3γ − 2

3γ
εu2

+
2(
√
εu)3

3γ
(2−

√
εu) +

(εu2

3γ
(1−

√
εu)

)2

=2
(3− γ

4
−
√
εu

)
+

3γ − 2

3γ
εu2

+
2(
√
εu)3

3γ
(2−

√
εu) +

(εu2

3γ
(1−

√
εu)

)2

≥ 0, (4.9)

by (4.6). Combining (4.8) and (4.9) yield for 1 < γ < 3

a ≤
√

2

γ − 1
a ≤ u, and then Ai ≥ 0. (4.10)

Then (4.3) follows from (4.6) and (4.10).
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Global smooth solutions and singularity formation 17

To show Bi ≥ Ai, we recall the expressions of Ai, Bi in (3.6), (3.8) to obtain

B1 −A1

=
(d− 1)(1− εu2)ua

r(u− a)(u+ a)(1− εau)2

(
a(1− εa2) +

γ − 1

2γ
(γ + εa2)u

)
+

d− 1

2r(u− a)(1− εau)

(
a2(1− εu2) +

γ − 1

2γ
u2(γ + εa2)

)
− (d− 1)(u+ a)

2r(1 + εau)(u− a)2

(γ − 1

2
u2 − a2 +

3γ − 1

2γ
εu2a2

)
,

(4.11)

which gives through basic simplification

B1 −A1 =
(d− 1)(1− εu2)(1− εa2)ua2

r(u− a)(1− εau)

×
( 1

(u− a)(1 + εau)
+

1

(u+ a)(1− εau)

)
+

γ − 1

2

(d− 1)(1− εu2)(γ + εa2)u2a

r(u− a)(1− εau)

×
( 1

(u+ a)(1− εau)
− 1

(u− a)(1 + εau)

)
=

2(d− 1)(1− εu2)u2a2

r(u− a)2(u+ a)(1 + εau)(1− εau)2

×
(
(1− εa2)2 − γ − 1

2γ
(1− εu2)(γ + εa2)

)
,

(4.12)

Similarly, one has

B2 −A2 =
2(d− 1)(1− εu2)u2a2

r(u+ a)2(u− a)(1− εau)(1 + εau)2

×
(
(1− εa2)2 − γ − 1

2γ
(1− εu2)(γ + εa2)

)
. (4.13)

Furthermore, we find by (4.3) that

εa2 ≤ (γ − 1)(3− γ)2

32
,

from which one gains

(1− εa2)2 − γ − 1

2γ
(1− εu2)(γ + εa2)

≥(1− εa2)
(
(1− εa2)− γ − 1

2
(γ + εa2)

)
=
(1− εa2)[γ(3− γ)− εa2(3γ − 1)]

2γ

≥(1− εa2)
3− γ

2

(
1− (γ − 1)(3− γ)(3γ − 1)

32γ

)
> 0.

(4.14)
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18 G. Chen, H. Guo and Y. Hu

Substituting (4.14) into (4.12) and (4.13) yield Bi ≥ Ai. The proof of the
lemma is ended. �

Remark 6 The second to last inequality in (4.14) implies that the coefficients
of term αβ in (3.5) and (3.7) are negative.

We now employ (4.4) to verify that the set {min{α, β} ≥ 0} is an invariant
region for Problem 1.

Lemma 4.3 Consider a smooth solution on t ∈ [0, T0] for Problem 1 on Ωb,
satisfying Assumption 1 on (b,∞) with b > 0. We further assume that the
functions α0(r) and β0(r) defined in (2.10) fulfill

min
r∈[b,∞)

{α0(r), β0(r)} ≥ 0. (4.15)

Then the smooth solution satisfies

min
Ωb∩{t≤T0}

{α(r, t), β(r, t)} ≥ 0, (4.16)

i.e. {(α, β)|min(α, β) ≥ 0} is an invariant domain on time.

Remark 7 The proof of the invariant domain {(α, β)|min(α, β) ≥ 0} does
not require upper bounds on α0(r) and β0(r).

Proof We first utilize Lemmas 4.1 and 4.2 to estimate the upper bounds of
Bi. Indeed, the following facts hold

a

u− a
=

a

u−
√

2
γ−1a+

√
2

γ−1a− a

≤ a(√
2

γ−1 − 1
)
a
=

√
γ − 1(

√
2 +

√
γ + 1)

3− γ
, (4.17)

and

u

u− a
=1 +

a

u− a

≤1 +

√
γ − 1(

√
2 +

√
γ + 1)

3− γ
=

2 +
√
2(γ − 1)

3− γ
, (4.18)

which have positive upper bounds for 1 < γ < 3. Moreover, due to (4.3), one
gains

1− εa2 ≥ 1− εau ≥ 1− εu2 ≥ 16− (3− γ)2

16
> 0, (4.19)
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for 1 < γ < 3. Thus it concludes by the expressions of B1, B2 in (3.6), (3.8)
that

B1, B2 ≤d− 1

b
· 1

(1− εau)2

{
ua

(u− a)(u+ a)

(
a+

γ2 − 1

2γ
u
)

+
1

2(1− εu2)(u− a)

(
a2 +

γ2 − 1

2γ
u2

)}
≤ (d− 1)

b(1− εau)2(1− εu2)

(
a+

γ2 − 1

2γ
u
)

×
{√

γ − 1(
√
2 +

√
γ + 1)

3− γ
+

2 +
√
2(γ − 1)

3− γ

}
≤ 163(d− 1)

b[16− (3− γ)2]3
2 + 2

√
2(γ − 1) +

√
γ2 − 1

3− γ
(1 +

γ2 − 1

2γ
)
3− γ

4
√
ε

≤d− 1

b
√
ε
f(γ), (4.20)

where

f(γ) =
163[(2 + 2

√
2(γ − 1) +

√
γ2 − 1)(γ2 + 2γ − 1)]

4γ[16− (3− γ)2]3
.

Therefore, we have for all (r, t) ∈ Ωb

0 ≤ Ai(r, t) ≤ Bi(r, t) ≤
(d− 1)f(γ)

b
√
ε

=: Kb, i = 1, 2. (4.21)

Set K̂b = 2Kb + 2 and η > 0 is an arbitrary small number such that

16

16− (3− γ)2
· ηeK̂bt ≤ 1.

We introduce two new variables for t ≤ T0

X = α+ ηeK̂bt, Y = β + ηeK̂bt. (4.22)

According to Lemma 3.1, we can obtain the governing system of (X,Y ) as
follows

∂2X =

{
− 1− εu2

(1 + εau)2
(γ + 1)(γ − εa2)

4γ
(X − 2ηeK̂bt)

− 1− εu2

(1 + εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
(Y − ηeK̂bt)−B2

}
X

+

{
1− εu2

(1 + εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
ηeK̂bt +A2

}
Y

+ ηeK̂bt

{
K̂b −A2 +B2 −

(1− εu2)(1− εa2)

(1 + εau)2
ηeK̂bt

}
,

(4.23)
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and

∂1Y =

{
− 1− εu2

(1− εau)2
(γ + 1)(γ − εa2)

4γ
(Y − 2ηeK̂bt)

− 1− εu2

(1− εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
(X − ηeK̂bt)−B1

}
Y

+

{
1− εu2

(1− εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
ηeK̂bt +A1

}
X

+ ηeK̂bt

{
K̂b −A1 +B1 −

(1− εu2)(1− εa2)

(1− εau)2
ηeK̂bt

}
.

(4.24)

From (4.19), one has

(1− εu2)(1− εa2)

(1 + εau)2
≤ (1− εu2)(1− εa2)

(1− εau)2

≤1− εa2

1− εu2
≤ 16(1− εa2)

16− (3− γ)2
≤ 16

16− (3− γ)2
.

Thanks to the choice of K̂b and η, it suggests that

K̂b −Ai −Bi −
(1− εu2)(1− εa2)

(1− εau)2
ηeK̂bt

≥K̂b − 2Kb −
16ηeK̂bt

16− (3− γ)2
≥ 1 > 0, (4.25)

which mean that the last terms in (4.23) and (4.24) are strictly positive.
Next we apply the contradiction argument to confirm {(X,Y )|min(X,Y ) >

0} is an invariant domain for t ≤ T0. It is easy to see by the initial conditions
that X(r, 0) > 0, Y (r, 0) > 0 for any r ∈ [b,∞). Suppose that there exists some
point (r∗, t∗) with 0 < t∗ ≤ T0 in Ωb such that X(r∗, t∗) = 0 or Y (r∗, t∗) = 0
holds. Owing to the boundedness of the wave speed on [0, t∗], we can draw
the 1- and 2-characteristics starting from (r∗, t∗) downwards up to the line
t = 0 and obtain a characteristic triangle △∗ ⊂ Ωb. on the basis of the above
analysis, we can find the first time T ≤ t∗ such that X(T ) = 0 or Y (T ) = 0
in △∗. The proof is now divided into two cases.

Case I: At time T , Y = 0 and X ≥ 0. In this case, we apply (4.24) and
(4.25) to acquire

∂1Y

Y
>− 1− εu2

(1− εau)2
(γ + 1)(γ − εa2)

4γ
(Y − 2ηeK̂bt)

− 1− εu2

(1− εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
(X − ηeK̂bt)−B1,

(4.26)
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in the interval [0, T ). Integrating (4.26) along the 1-characteristic r = r1(t)
from 0 to s < T yields

Y (s) =Y (r1(s), s) > Y (r1(0), 0)

× exp

{∫ s

0

(
− 1− εu2

(1− εau)2
(γ + 1)(γ − εa2)

4γ
(Y − 2ηeK̂bt)

− 1− εu2

(1− εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
(X − ηeK̂bt)−B1

)
(r1(t), t) dt

}
,

which contradicts the fact that s is finite.
Case II: At time T , X = 0, and Y ≥ 0. In this case, we employ (4.23) and

(4.25) to obtain

∂2X

X
>− 1− εu2

(1 + εau)2
(γ + 1)(γ − εa2)

4γ
(X − 2ηeK̂bt)

− 1− εu2

(1 + εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
(Y − ηeK̂bt)−B2,

(4.27)

subsequently

X(s) =X(r2(s), s) > X(r2(s0), s0)

× exp

{∫ s

s0

(
− 1− εu2

(1 + εau)2
(γ + 1)(γ − εa2)

4γ
(X − 2ηeK̂bt)

− 1− εu2

(1 + εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
(Y − ηeK̂bt)−B2

)
(r2(t), t) dt

}
,

which also means by the initial conditions that s cannot be finite. This leads
a contradiction.

Therefore, we have

X = α(r, t) + ηeK̂bt > 0, Y = β(r, t) + ηeK̂bt > 0,

for t ≤ T0 and any η satisfying ηeK̂bT0 < 1. It follows by the arbitrariness of
η > 0 that

α(r, t) ≥ 0, β(r, t) ≥ 0, ∀ (r, t) ∈ Ωb ∩ {t ≤ T0},

which is the desired result (4.16). The proof of the lemma is complete. �

We next establish another invariant domain on the upper bounds of α and
β.

Lemma 4.4 Consider a smooth solution on t ∈ [0, T0] for Problem 1 on Ωb,
satisfying Assumption 1 on (b,∞) with b > 0. We further assume that the
functions α0(r) and β0(r) defined in (2.10) fulfill

min
r∈[b,∞)

{α0(r), β0(r)} ≥ 0, min
r∈[b,∞)

(α0(r), β0(r)) < M, (4.28)
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for some positive constant M . Then the smooth solution satisfies

max
Ωb∩{t≤T0}

{α(r, t), β(r, t)} < M. (4.29)

Remark 8 Lemmas 4.3 and 4.4 show that {(α, β)|min(α, β) ≥ 0,max(α, β) <
M} is an invariant domain on time.

Proof We first rewrite the equations of α and β in Lemma 3.1 as follows

∂1β =− 1− εu2

(1− εau)2
(γ + 1)(γ − εa2)

4γ
β2

− 1− εu2

(1− εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
αβ

+A1(α− β)− (B1 −A1)β,

(4.30)

and

∂2α =− 1− εu2

(1 + εau)2
(γ + 1)(γ − εa2)

4γ
α2

− 1− εu2

(1 + εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
αβ

+A2(β − α)− (B2 −A2)α.

(4.31)

Recalling (4.4) yields Bi −Ai ≥ 0 (i = 1, 2).
We verify the conclusion of the lemma by utilizing the contradiction argu-

ment again. As in the proof of Lemma 4.3, we may assume that there exists
a characteristic triangle tip at (r̄, T ) such that α = M or β = M at (r̄, T ),
but 0 ≤ α < M and 0 ≤ β < M in the characteristic triangle. Without loss
of generality, we assume 0 ≤ α < M and β = M at (r̄, T ). Then it is clear by
(4.30) that

∂1β(r̄, T )

<

{
− 1− εu2

(1− εau)2

( (γ + 1)(γ − εa2)

4γ
β2 +

γ(3− γ) + εa2(1− 3γ)

4γ
αβ

)}∣∣∣∣
(r̄,T )

<0,

which contradicts to the assumption that β < M in the characteristic triangle.
A similar contradiction when 0 ≤ β < M and α = M at (r̄, T ) can be obtained
by (4.31). This finishes the proof of the lemma. �

At the end of this section, we derive an only time-dependent density positive
lower bound, which directly leads to w− < w+ by (2.4).
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Lemma 4.5 Let the assumption in Lemma 4.4 hold. Moreover, suppose that
the initial data satisfy

ρ := min
r∈[b,∞)

ρ(r, 0) > 0. (4.32)

Then the smooth solution for Problem 1 satisfies

ρ(r, t) ≥ ρ
( 4b

√
ε

4b
√
ε+ (3− γ)t

)d−1

e−Mbt, (4.33)

for (r, t) ∈ Ωb ∩ {t ≤ T0}, where Mb is a positive constant depending on b.

Proof Set ∂0 = ∂t + u∂r. Thanks to the definitions of (∂1, ∂2), we attain

∂0 =
(1− εau)∂1 + (1 + εau)∂2

2
. (4.34)

Next we derive the equation for ∂0a. Applying the definitions of (∂1, ∂2) again,
we calculate by (3.13) and (3.14),

∂2a = ∂ta+
u+ a

1 + εau
∂ra

=− γ − 1

2γ

γ + εa2

1− ε2a2u2

(d− 1

r
ua+

2γ

γ − 1

u(1− εa2)

γ + εa2
∂ra+ a∂ru

)
+

u+ a

1 + εau
∂ra

=
γ − 1

4γ

(u+ a)(γ + εa2)

1 + εau

(
α− β − d− 1

r

2u2a

(u− a)(u+ a)

)
− d− 1

r

γ − 1

2γ

ua(γ + εa2)

1− ε2a2u2

− γ − 1

4γ

u(1− εa2)(γ + εa2)

1− ε2a2u2

(
α− β − d− 1

r

2u2a

(u− a)(u+ a)

)
− γ − 1

2γ

a(γ + εa2)(1− εu2)

2(1− ε2a2u2)

(
α+ β +

d− 1

r

2ua2

(u− a)(u+ a)

)
. (4.35)

Doing a simplification for (4.35) obtains

∂2a = −γ − 1

2γ

γ + εa2

1− ε2a2u2

(d− 1

r

u2a(1− εau)

u− a
+ a(1− εu2)β

)
. (4.36)

A similar computations gives

∂1a =∂ta+
u− a

1− εau
∂ra

=− γ − 1

2γ

γ + εa2

1− ε2a2u2

(d− 1

r

u2a(1 + εau)

u+ a
+ a(1− εu2)α

)
.

(4.37)

2025/09/23 21:48

https://doi.org/10.4153/S0008414X25101648 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101648


24 G. Chen, H. Guo and Y. Hu

Inserting (4.36) and (4.37) into (4.34) leads to

∂0a =
(1− εau)∂1a+ (1 + εau)∂2a

2

=− γ − 1

4γ

{
γ + εa2

1 + εau

(d− 1

r

u2a(1 + εau)

u+ a
+ a(1− εu2)α

)
+

γ + εa2

1− εau

(d− 1

r

u2a(1− εau)

u− a
+ a(1− εu2)β

)}
=− γ − 1

4γ
(γ + εa2)a

×
{d− 1

r

u2

u− a
+

d− 1

r

u2

u+ a
+

1− εu2

1− εau
β +

1− εu2

1 + εau
α
}
.

(4.38)

Then we employ the relationship between ρ and a to acquire

∂0

( 1

rd−1ρ

)
= − 1

rd−1ρ

d− 1

r
∂0r +

1

rd−1ρ2
∂0ρ

=
1

rd−1ρ

(
− 2

γ − 1

1

a
∂0a− d− 1

r
∂0r

)
=

1

rd−1ρ

{γ + εa2

2γ

(d− 1

r

u2

u− a
+

d− 1

r

u2

u+ a
+

1− εu2

1− εau
β +

1− εu2

1 + εau
α
)

− d− 1

r
u
}
,

from which one derives

∂0 ln
( 1

rd−1ρ

)
=
γ + εa2

2γ

(d− 1

r

u2

u− a
+

d− 1

r

u2

u+ a
+

1− εu2

1− εau
β +

1− εu2

1 + εau
α
)
− d− 1

r
u

=
(d− 1)(γ + εu2)

2rγ

( a2

u− a
+

a2

u+ a

)
+

(γ + εa2)(1− εu2)

2γ

( β

1− εau
+

α

1 + εau

)
. (4.39)

Recalling (4.3) and (4.17) and applying the fact r ≥ b for any point (r, t) ∈ Ωb,
there hold

1
1+εau ≤ 1

1−εau ≤ 1
1−εu2 ,

(d−1)(γ+εu2)
2rγ ≤ (d−1)(γ+1)

2bγ ,

γ+εa2

2γ ≤ γ+1
2γ ≤ 1,

a2

u+a ≤ a2

u−a ≤ (γ−1)(
√
2+

√
γ+1)

4
√
2ε

.
(4.40)
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Putting (4.39) into (4.39) achieves

∂0 ln
( 1

rd−1ρ

)
≤ (d− 1)(γ2 − 1)(

√
2 +

√
γ + 1)

4bγ
√
2ε

+ β + α

≤ (d− 1)(γ2 − 1)(
√
2 +

√
γ + 1)

4bγ
√
2ε

+ 2M =: Mb.

(4.41)

For any point (ν, µ) ∈ Ωb ∩ {t ≤ T0}, we define the curve r = r0(t) =
r0(t; ν, µ) (t ≤ µ) by

dr0(t)

dt
= u(r0(t), t), r0(µ) = ν. (4.42)

Denote the intersection point of r = r0(t) and the initial line t = 0 by (r0, 0).
Then one has

r0 ≤ r0(t) ≤ r0 +

∫ t

0

u(r0(τ), τ)dτ ≤ r0 +
3− γ

4
√
ε
t, (4.43)

which leads to
r0

r0(t)
≥ 4b

√
ε

4b
√
ε+ (3− γ)t

. (4.44)

Now we integrate (4.41) along r0(t) to conclude that

ρ(r, t) ≥
(r0(t0)
r0(t)

)d−1

ρ0(r0)e
−Mbt

≥ ρ0(r0)
( 4b

√
ε

4b
√
ε+ (3− γ)t

)d−1

e−Mbt

≥ ρ
( 4b

√
ε

4b
√
ε+ (3− γ)t

)d−1

e−Mbt,

(4.45)

which is the desired estimate (4.33). The proof of the lemma is ended. �

Remark 9 A density positive lower bound that is only linear about time was
previously established by Cai, Chen and Wang [6] for the classical radially
symmetric isentropic Euler equations (1.5). However, their lower bound also
depends on the spatial variable r, especially when r → ∞, this lower bound
tends to zero. In other words, their lower bound is not uniform with respect
to spatial variable.

5 Global existence of smooth solutions

In this section, we complete the proof of Theorem 2.1 by establishing the
global existence of smooth solutions in Ωb for Problem 1 and then letting
b → 0. These results are based on the L∞ bound in (4.3), the density lower
bound in (4.33) and C1 bound for w+ and w−.

We first have the following existence theorem in Ωb.
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Theorem 5.1 Let the initial data (ρ0(r), u0(r)) ∈ C1([b,∞)) satisfy Assump-
tions 1 and 2. We further suppose that ρ = minr∈[b,∞) ρ0(r) > 0. Then
Problem 1 admits a global C1 solution on the domain of dependence Ωb on
the (r, t) plane with base t = 0 and r ∈ (b,∞) for any b > 0. Moreover, the
solution (ρ, u)(r, t) satisfies√

2Aγ

γ − 1
ρ

γ−1
2 (r, t) ≤ u(r, t) ≤ 3− γ

4
√
ε
,

ρ(r, t) ≥ ρ
( 4b

√
ε

4b
√
ε+ (3− γ)t

)d−1

e−Mbt,

(5.1)

for some positive constant Mb, and

min
Ωb

(α, β) ≥ 0, max
Ωb

(α, β) < M. (5.2)

Proof The local existence of smooth solutions for Problem 1 can be obtained
by the classical theory, see for example Li and Yu [41]. We next use the
framework by Li [40] to extend the local smooth solution to a global domain.
According to the extension framework in [40], it suffices to establish the a priori
C1 estimates of the solution on the domain Ωb. Actually, the local existence
time δ of smooth solution in [41] depends only on the norm ||Γ∗|| and C1 norm
||(w−(r, 0), w+(r, 0))||C1([b,∞)), where Γ∗ is the following set of functions

Γ∗ =

{
λ1, λ2,

1

λ2 − λ1
,

∂λ1

∂w−
,

∂λ1

∂w+
,

∂λ2

∂w−
,

∂λ2

∂w+
,

ua

r(1 + εau)
,

∂

∂r

( ua

r(1 + εau)

)
,

∂

∂w−

( ua

r(1 + εau)

)
,

∂

∂w+

( ua

r(1 + εau)

)
,

ua

r(1− εau)
,

∂

∂r

( ua

r(1− εau)

)
,

∂

∂w−

( ua

r(1− εau)

)
,

∂

∂w+

( ua

r(1− εau)

)}
. (5.3)

The above conclusion can be found in Remark 4.1. in Chapter 1 in [41]. From
the above analysis and the a priori estimates established in Section 4, we know
that, for any number b > 0 and any time T > 0, the norm ||Γ∗|| depends only
on b and T . This means that, for fixed b and T , the local existence time δ is
a constant. Therefore, by solving a finite number of local existence problems,
we can extend the solution in the region Ωb ∩{0 ≤ t ≤ δ} to the global region
Ωb ∩ {0 ≤ t ≤ T}. Due to the arbitrariness of T , we thus obtain the smooth
solution on the global region Ωb for any fixed b > 0. Finally, we can directly
attain the properties of solution in (5.1) and (5.2) by the results in Section 4.
This completes the proof of the theorem. �

Proof of Theorem 2.1. Let us start establishing the global existence of
smooth solutions on the entire half line r ∈ [0,∞). We further suppose that
the boundary condition u(0, t) = 0 at origin, which is a reasonable physical
assumption. In order to match the condition (2.8), we specify the boundary
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2−characteristics

0

Ωb

t

rbb

(r,t)
.

T

Ωb

1−characteristics

Figure 2: The regions Ωb and Ωb..

data of density at the origin as ρ(0, t) = 0. Thus Assumption 1 is fulfilled on
the entire half line r ∈ [0,∞).

Assume that the conditions in Theorem 2.1 hold. Then for any b > 0, all the
conditions in Theorem 5.1 are satisfied and then the global smooth solution
exists in domain Ωb. Now for any point (r, t) with r > 0, we claim that one
can find a number b > 0 small enough such that (r, t) is in the domain Ωb, see
Figure 2 for illustration. To show this assertion, it is only necessary to verify
that the characteristic starting from (r, t) = (0, 0) must be r = 0. We also use
the contradiction argument to demonstrate it. Assume that, without lose of
generality, the 2-characteristic r = r̃(t) starting from the point (r, t) = (0, 0)
goes away from r = 0 at t = ť, that is r̃(ť) = 0 and r̃(t) > 0 when ť < t < ť+ δ̄,
where δ̄ is a small positive number. And we only consider smooth solutions
before gradient blowup on r = r̃(t) with ť ≤ t ≤ t̂ < ť + δ̄. According to the
differential mean value theorem with respect to r, it suggests that

λ2(r, t) = λ2(r, t)− λ2(0, t) ≤ K̃r, (5.4)

for some positive constant K̃. Then we see that on r = r̃(t)

dr̃(t)

dt
= λ2 ≤ K̃r̃(t), (5.5)

from which one has

r̃(t̂) ≤ eK̃(t̂−ť)r̃(ť) = 0, (5.6)

which contradicts to the fact r̃(t̂) > 0. Therefore, the characteristic starting
from (r, t) = (0, 0) must be r = 0. Hence we obtain the smooth solution on
the entire domain r ≥ 0, t ≥ 0. The properties of solution in (2.12) and (2.13)
follow directly by Theorem 5.1. The proof of Theorem 2.1 is complete.
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6 Singularity formation

In this section, we present the proof of Theorem 2.2, that is, the singu-
larity forms in finite time when the compressive initial data include strong
compression somewhere.

We first establish the invariant domain for the compressive initial data.

Lemma 6.1 Consider a smooth solution of (1.4) with (1.2) on Ωb∩{t ≤ T0},
satisfying Assumption 1 on (b,∞) with b > 0. We further assume that the
functions α0(r) and β0(r) fulfill (2.14), that is they are compressed. Then the
smooth solution satisfies

α(r, t) ≤ 0, β(r, t) ≤ 0, ∀ (r, t) ∈ Ωb ∩ {t ≤ T0}. (6.1)

Proof We note that the inequality (4.21) still holds now by the fact that the
proof of Lemmas 4.1 and 4.2 only needs to use Assumption 1. Let Kb and
K̂b = 2Kb + 2 be the constants defined in (4.21) and (4.22), respectively, and
η > 0 be a small number. We introduce two new variables

X̃ = α+ ηe−K̂bt, Ỹ = β + ηe−K̂bt. (6.2)

Let R > b be any fixed real number. Denote

κR = − max
r∈[b,R]

{α0(r), β0(r)}. (6.3)

According to (2.14), we know that the number κR is a positive constant. Now
we choose η small enough such that

η ≤ min

{
κR,

16− (3− γ)2

16

}
. (6.4)

Thus it follows by (6.2)-(6.4) that

X̃(r, 0) < 0, Ỹ (r, 0) < 0, ∀ r ∈ [b,R]. (6.5)

Moreover, in view of Lemma 3.1, we can obtain the governing system of (X̃, Ỹ )
as follows

∂2X̃ =

{
− 1− εu2

(1 + εau)2
(γ + 1)(γ − εa2)

4γ
(X̃ − 2ηe−K̂bt)

− 1− εu2

(1 + εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
(Ỹ − ηe−K̂bt)−B2

}
X̃

+

{
1− εu2

(1 + εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
ηe−K̂bt +A2

}
Ỹ

− ηe−K̂bt

{
K̂b +A2 −B2 +

(1− εu2)(1− εa2)

(1 + εau)2
ηe−K̂bt

}
,

(6.6)
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and

∂1Ỹ =

{
− 1− εu2

(1− εau)2
(γ + 1)(γ − εa2)

4γ
(Ỹ − 2ηe−K̂bt)

− 1− εu2

(1− εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
(X̃ − ηe−K̂bt)−B1

}
Ỹ

+

{
1− εu2

(1− εau)2
γ(3− γ) + εa2(1− 3γ)

4γ
ηe−K̂bt +A1

}
X̃

− ηe−K̂bt

{
K̂b +A1 −B1 +

(1− εu2)(1− εa2)

(1− εau)2
ηe−K̂bt

}
.

(6.7)

We first consider the smooth solution in the region Ωb ∩ {(r, t)| r ≤ R, t ≤
T0}. If (r̄, t̄) ∈ Ωb∩{(r, t)| r ≤ R, t ≤ T0} is the first time such that X̃(r̄, t̄) =

0, Ỹ (r̄, t̄) ≤ 0, then one has

∂2X̃|(r̄,t̄) ≥ 0. (6.8)

On the other hand, we observe from (6.6) that

∂2X̃|(r̄,t̄)

≤− ηe−K̂bt

{
K̂b +A2 −B2 +

(1− εu2)(1− εa2)

(1 + εau)2
ηe−K̂bt

}
< 0,

(6.9)

by (4.25). This yields a contradiction. If (r̄, t̄) ∈ Ωb ∩ {(r, t)| r ≤ R, t ≤ T0}
is the first time such that X̃(r̄, t̄) ≤ 0, Ỹ (r̄, t̄) = 0, the proof is similar. Thus
we have

X̃(r, t) < 0, Ỹ (r, t) < 0, ∀ (r, t) ∈ Ωb ∩ {(r, t)| r ≤ R, t ≤ T0}, (6.10)

and subsequently

α(r, t) < −ηe−K̂bt < 0, β(r, t) < −ηe−K̂bt < 0, (6.11)

for any (r, t) ∈ Ωb ∩ {(r, t)| r ≤ R, t ≤ T0}. Due to the arbitrariness of R, we
obtain

α(r, t) ≤ 0, β(r, t) ≤ 0, ∀ (r, t) ∈ Ωb ∩ {t ≤ T0}. (6.12)

The proof of the lemma is complete. �

To proceed, we need derive an only time-dependent density positive lower
bound in the current conditions.

Lemma 6.2 Let the assumptions in Lemma 6.1 hold. Moreover, suppose that
(4.32) holds, that is, ρ = minr∈[b,∞) ρ(r, 0) > 0. Then the smooth solution
satisfies

ρ(r, t) ≥ ρ
( 4b

√
ε

4b
√
ε+ (3− γ)t

)d−1

e−M̃bt, (6.13)
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for (r, t) ∈ Ωb ∩ {t ≤ T0}, where

M̃b =
(d− 1)(γ2 − 1)(

√
2 +

√
γ + 1)

4bγ
√
2ε

. (6.14)

Proof Recalling the first inequality in (4.41), we have by (6.1) and (6.14)

∂0 ln
( 1

rd−1ρ

)
≤ (d− 1)(γ2 − 1)(

√
2 +

√
γ + 1)

4bγ
√
2ε

+ β + α ≤ M̃b. (6.15)

Recalling the definition of the curve r = r0(t) in (4.42) and using the estimate
(4.44), we integrate (6.15) along r = r0(t) to obtain

ρ(r, t) ≥
(r0(t0)
r0(t)

)d−1

ρ0(r0)e
−M̃bt

≥ρ
( 4b

√
ε

4b
√
ε+ (3− γ)t

)d−1

e−M̃bt, (6.16)

for any (r, t) ∈ Ωb ∩ {t ≤ T0}. The proof of the lemma is completed. �

Proof of Theorem 2.2. Now we are going to show Theorem 2.2. Recalling
the coefficients of β2 and α2 in (3.5) and (3.7), respectively, one has by (4.19)

− 1− εu2

(1± εau)2
(γ + 1)(γ − εa2)

4γ

≤− 16− (3− γ)2

22 · 16
· γ − 1

4
= − (γ − 1)[16− (3− γ)2]

256
, (6.17)

which, together with Lemmas 3.1, 6.1 and 6.2, yields

∂1β ≤ − (γ − 1)[16− (3− γ)2]

256
β2 −Kbβ

=− (γ − 1)[16− (3− γ)2]

512
β2 −

( (γ − 1)[16− (3− γ)2]

512
β +Kb

)
β,

∂2α ≤ − (γ − 1)[16− (3− γ)2]

256
α2 −Kbα

=− (γ − 1)[16− (3− γ)2]

512
α2 −

( (γ − 1)[16− (3− γ)2]

512
α+Kb

)
α.

(6.18)

Set

N(b, T ) = max

{
512Kb

(γ − 1)[16− (3− γ)2]
,

512

(γ − 1)[16− (3− γ)2]T

}
. (6.19)

If α0(r
∗) ≤ −N(b, T ), we consider the 2-characteristic curve r = r2(t; r

∗, 0)
for t ∈ [0, T ) to observe that

(γ − 1)[16− (3− γ)2]

512
α(r2(t; r

∗, 0), t) +Kb ≤ 0,
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and then

∂2α ≤ − (γ − 1)[16− (3− γ)2]

512
α2, (6.20)

along r = r2(t; r
∗, 0). Integrating (6.20) yields

1

−α(r, t)
≤ 1

−α0(r∗)
− (γ − 1)[16− (3− γ)2]

512
t, (6.21)

which implies that blowup happens not later than

T ∗ =
512

−α0(r∗)(γ − 1)[16− (3− γ)2]
≤ T. (6.22)

If β0(r
∗) ≤ −N(b, T ) at some point r∗, we can similarly show the blowup time

is before T ∗. The proof of Theorem 2.2 is complete.
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