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SUMMARY

A pandemic H1N1 infection wave in the USA occurred during spring 2009. Some hypothesized

that for regions affected by the spring wave, an autumn outbreak would be less likely or delayed

compared to unaffected regions because of herd immunity. We investigated this hypothesis using

the Outpatient Influenza-like Illness (ILI) Network, a collaboration among the Centers for

Disease Control and Prevention, health departments, and care providers. We evaluated the

likelihood of high early autumn incidence given high spring incidence in core-based statistical

areas (CBSAs). Using a surrogate incidence measure based on influenza-related illness ratios, we

calculated the odds of high early autumn incidence given high spring incidence. CBSAs with high

spring ILI ratios proved more likely than unaffected CBSAs to have high early autumn ratios,

suggesting that elevated spring illness did not protect against early autumn increases. These novel

methods are applicable to planning and studies involving other infectious diseases.
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INTRODUCTION

During spring 2009, a novel H1N1 virus strain caused

the first influenza pandemic of the 21st century. When

the spring wave in the USA subsided, there was

speculation about the early autumn return of pan-

demic virus and about what prevention and control

measures could be put in place. There was keen

interest in whether communities affected in spring

would be spared if a second wave occurred in early

autumn when schools reopened so that vaccine

and other control measures could be appropriately

targeted. In theory, herd immunity derived from

a disease outbreak should be effective in reducing

subsequent transmission. Based on previous research

[1], some theorized that geographical areas with

high spring incidence would not be affected in early

autumn, or if disease did occur, it would occur later

in those areas than in areas that were not affected

in spring [2]. We evaluated whether areas that had
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extensive influenza activity during the spring wave

also had extensive influenza activity during the early

autumn wave. This evaluation dealt with the relative

effect of spring incidence by region, not with the

spring wave impact on the overall autumn wave dis-

ease burden.

We examined this hypothesis using data from the

U.S. Outpatient Influenza-Like Illness Surveillance

Network (ILINet), a collaborative effort among the

Centers for Disease Control and Prevention (CDC),

local and state health departments, and primary

healthcare providers. For the unit of spatial data ag-

gregation, we used the U.S. Office of Management

and Budget’s core-based statistical area (CBSA),

widely used for analysis of national statistics [3].

The CBSA designation includes both metropolitan

(population >50000) and micropolitan (population

between 10 000 and 50000) areas. Initially we devel-

oped an analysis strategy to evaluate changes in

morbidity over time at the metropolitan and micro-

politan levels. This strategy was then used to evaluate

differences in morbidity in communities during the

spring and early autumn time periods to determine

whether areas affected by the H1N1 virus in spring

were protected from illness in early autumn.

MATERIALS AND METHODS

ILINet description

The ILINet participant base includes over 3300

healthcare providers representing all 50 states, the

District of Columbia, and the U.S. Virgin Islands.

Enrolled providers use the internet or fax to send

weekly reports to CDC. These reports give the total

number of patients seen for any reason and, for

each of a fixed set of age groups (0–4, 5–24, 25–49,

50–64, o65 years), the number of those patients with

influenza-like illness (ILI). Case definition for ILI is

fever (patient temperature of 37.8 xC) with a cough

and/or sore throat in the absence of a known cause

other than influenza.

An ILINet data provider may be a physician prac-

tice, a health centre, or as large as a group of hospital

emergency departments. These participating units re-

ported total visit counts averaging from 10 to

>10000 per week. In 2009, the median total weekly

reported visit count was nearly 650 000 and during

the height of the pandemic exceeded 850 000. Thus,

while coverage is national, data are somewhat het-

erogeneous and subject to large local fluctuations in

representation. Until summer 2009, CDC conducted

surveillance with ILINet data at the regional level

because of the fluctuating, heterogeneous provider

base. The nine-division census partition of states

shown in Table 1 [4] was used for this purpose. Each of

these divisions includes more than 300 data providers.

Determination of baseline ILI rates at the regional

level

For each of the nine census divisions, the statistic used

to determine excess ILI rates for a region was:

observed ILI ratio x baseline ILI ratio

baseline standard deviation
, (1)

The observed ILI ratio is the current week’s number

of reported ILI cases divided by the total number of

visits. The baseline ILI ratio is the proportion during

weeks from the past three influenza seasons [October

Table 1. Nine US census divisions used for ILINet baseline calculations

Northeast Region

New England Division : Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, Connecticut
Middle Atlantic Division : New York, New Jersey, Pennsylvania

Midwest Region

East North Central Division : Ohio, Indiana, Illinois, Michigan, Wisconsin

West North Central Division : Minnesota, Iowa, Missouri, North Dakota, South Dakota, Nebraska, Kansas

South Region

South Atlantic Division : Delaware, Maryland, District of Columbia, North Carolina, South Carolina, Georgia, Florida
East South Central Division : Kentucky, Tennessee, Alabama, Mississippi

West South Central Division : Arkansas, Louisiana, Oklahoma, Texas

West Region

Mountain Division : Montana, Idaho, Wyoming, Colorado, New Mexico, Arizona, Utah, Nevada
Pacific Division : Washington, Oregon, California, Alaska, Hawaii

Source : www.census.gov/geo/www/tiger/glossry2.pdf.
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of one year to mid-May of the following year (weeks

40 to 20)] when virological data indicate that influenza

activity is at a minimum [defined as weeks during

which fewer than 10% of laboratory tests reported

to the 80 U.S. World Health Organization (WHO)

affiliated laboratories and 70 National Respiratory

and Enteric Virus Surveillance System (NREVSS)

laboratories for influenza had positive results for the

region of interest]. Figure 1 illustrates the selection of

baseline weeks at the national level. The dotted curve

shows weekly proportions of laboratory influenza

tests that gave positive results, and baseline weeks are

those during influenza seasons for which the curve

is below the thick 10% line. Weeks for the baseline

calculation are chosen similarly for each region.

Observed and baseline ratios are weighted by the state

population for both regional and national aggre-

gation to avoid using ratios skewed by unrepresent-

ative participation among states. In view of the data

heterogeneity, anomalies are presented as the number

of standard deviations above the baseline mean with-

out assuming a fixed probability distribution [5].

Determination of baseline ILI rates at the CBSA level

Since understanding of disease transmission patterns

at the local level is important for effective public

health response, analysis of ILINet data at finer

spatial resolution was needed. We adjusted the re-

gional estimation approach to calculate baseline rates

at the CBSA level, including both metropolitan and

micropolitan areas. A CBSA is an ‘area containing

a substantial population nucleus, together with ad-

jacent communities having a high degree of economic

and social integration with that core ’ [2]. Providers

of recent ILINet data represent approximately 450 of

the total 935 CBSAs in the nation.

The CBSA estimation approach adjusts for weekly

variations in reporting by sentinel providers within

a CBSA and also for the increase in the number of

participating providers observed. The first step is

to estimate provider-specific baseline ratios. These

were estimated by either a trusted provider method

or a provider-type method. Trusted providers were

defined as those with substantial reporting over the

past three influenza seasons, where the substantial

reporting criterion was that the provider’s data in-

cluded non-zero ILI counts for at least 10 weeks

during the previous year. This criterion was derived

empirically, based on the mix of trusted and non-

established providers and on the classification of some

providers whose usual reporting was known. For each

trusted provider, we estimated the baseline mean ILI

ratio as the mean over the past three influenza seasons

of weekly ratios of ILI counts to total visits for that

provider, restricted to weeks when the ILI count was

positive. Among the hundreds of data providers, zero

reports could occur because a provider might consider

ILI activity negligible or for reasons related to various

reporting system operations. Inclusion of all weeks

with zero reports yielded test statistics that were

volatile even during baseline weeks.
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Fig. 1. Weekly counts (–––) of ILINet data providers shown with weekly ratios (- - -) of WHO/NREVSS positive
laboratory tests for influenza. Baseline weeks are those, from weeks 40 of one year to week 20 of the next (shown within bold

parentheses), for which <10% of influenza laboratory tests have positive results.
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For providers whose ILI counts did not meet the

10-week criterion, we estimated the baseline mean

ratio using the provider type. These types are listed

in Table 2. Distinct differences between provider

types were found in baseline ILI ratios, ranging

from <1% for a miscellaneous category to 2.6% for

paediatric providers. Therefore provider-type-specific

baseline mean ratios were computed using data

from all trusted providers of each type. We assigned

to non-established providers, including many en-

rollees that began participating during the pandemic,

the baseline mean ratios of their respective practice

types.

For each week and each CBSA, the baseline ratio is

a weighted sum of the baseline ratios for providers

within that CBSA. Each provider ratio is weighted by

the fraction of the current-week total visits from

that provider in the CBSA in the current week. For

example, assume that a CBSA has two participating

data providers, a paediatric practice with a baseline

ILI ratio of 0.025, and a community clinic with a

baseline ratio of 0.010. In the current week, if the

paediatric practice reports 1000 total cases and

the community clinic reports 300 total cases, then the

CBSA baseline ratio for this week is :

[1000 (0�025)+300 (0�010)]=1300=0�022:
We calculated the CBSA baseline standard deviation

by taking the standard deviation of the binomial dis-

tribution centred at the baseline ratio [6]. The CBSA

baseline mean and standard deviation estimates were

then combined with observed CBSA ILI ratios as in

equation (1) to obtain the test statistic. This procedure

adjusts for growth in the number of providers and for

weekly reporting variability.

We tested the impact of test statistic modifications

in several ways for both metropolitan and micro-

politan CBSAs. We examined the number of CBSAs

whose statistic was 2, 2.5, …, 5 standard deviations

(S.D.) above the baseline value for endemic periods

back to 2006 and found stable behaviour even for the

smaller CBSAs with less than 200 total visits per

week. In comparisons with/without the provider ad-

justment, the adjustment significantly reduced the

number of CBSAs above each threshold during non-

epidemic periods. Provider counts and baselines

within individual CBSAs were examined to verify the

effect of this adjustment. Statistical behaviour during

known seasonal influenza epidemics and the spring

2009 H1N1 wave indicated sensitivity and timely in-

creases at the tested thresholds. Figure 2 shows grey-

scale values of the provider-adjusted ILINet statistic

at four stages of the 2009 pandemic.

Estimation of incidence in CBSAs for spring and early

autumn influenza waves

We analysed 2009 CBSA-level ILINet data during the

first emergence of novel H1N1 in spring (weeks 13–26,

29 March–4 July) and for the early autumn wave

(weeks 31–39, 2 August–3 October). The analysis

stopped weeks before the autumn wave peak because

we were mainly interested in determining the effect of

high spring incidence on the occurrence and relative

timing of the onset of increased influenza activity

during the early autumn wave of the pandemic.

Figure 3 plots nationwide weekly ILI ratios during

these intervals, with the spring and early autumn time

periods indicated by solid shading in the curve. For

the basic scenario, we classified each CBSA as ‘ in

exceedance’, a surrogate for high incidence, if its

weekly ILI ratio was at least 3 S.D. above baseline for

o2 consecutive weeks. This requirement was imposed

to reduce the effect of worried ill on ILINet data, for

example because heightened media coverage could

have caused more people to seek medical care with

minor ILI symptoms.

Regarding CBSA threshold exceedance during the

spring weeks as group exposure, we computed the

odds of early autumn exceedance with/without this

exposure. Because the autumn and spring measure-

ments are regarded not as matched observations

but as exposure and outcome indicators, we used a

conventional odds ratio rather than a matched-pairs

design. The contingency table for the odds ratio cal-

culation is given explicitly in Table 3.

Table 2. Distribution of ILINet provider types for

4119 data providers

Provider type

No. of providers

represented in
ILINet data
(Sept. 2006–Sept. 2010)

Emergency medicine 584

Family practice 1703
Infectious disease 39
Internal medicine 339

Obstetrics/Gynaecology 16
Other 216
Paediatrician 648

Student health 382
Urgent care 192

Spring/autumn H1N1 incidence association 2213
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Fig. 2. Greyscale maps of provider-adjusted ILINet statistic by core-based statistical area (CBSA) at four stages of the novel H1N1 pandemic.
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Pooling the test statistics for represented CBSAs,

we used the following formula to calculate the odds of

ILI levels in early autumn being in exceedance :

OR=odds (early autumn excd j spring excd) =

odds (early autumn excd j no spring excd)

=(A=B) = (C=D)=AD=BC (see Table 3): (2)

where OR=odds ratio, and excd=exceedance.

We calculated 95% confidence intervals for each

odds ratio using the Woolf method [7] for computing

the odds ratio standard deviation. A protective

effect in early autumn from spring exceedance

would be indicated by a statistically significant odds

ratio <1.

Sensitivity analysis : alternate scenarios

To check the robustness of this calculation, we varied

both the definition of exceedance and the weeks

chosen for comparison for the spring and early

autumn seasons. The exceedance definition was

varied to comprise 12 combinations: 1, 2, 3, and 4

S.D. above the mean applied at minimum consecutive

intervals of 1, 2, and 3 weeks. Each combination was

applied to the following spring/early autumn interval

definitions :

Spring weeks 13–26, early autumn weeks 31–39 (used

for Fig. 4),

Spring weeks 17–26, early autumn weeks 31–36,

Spring weeks 17–26, early autumn weeks 31–39,

Spring weeks 17–26, early autumn weeks 31–42.

We chose the three alternate sets of intervals to avoid

the residual effects of the seasonal influenza epidemics

and to include earlier and later effects of the wide-

spread early autumn H1N1 outbreak. Figure 4 allows

visualization of the odds ratio cell counts for the

scenario of single-week, 3 S.D. exceedance with the

original spring/early autumn intervals.

RESULTS

Descriptive data statistics

Approximately 60% of participating providers send

data every week during the influenza season, some

intermittently, and the provider base generally grows

with occasional dropouts. The solid curve in Figure 1

shows weekly variation of the number of participating

providers for >4 years beginning 2 October 2006.

Note the seasonal participation, brief holiday drop-

offs, and sustained participation resulting from the

pandemic. For the last year of this interval, the me-

dian weekly reported visit count was just above

649 500 (range y431 000 to >864 000).

Evaluation of CBSA-based odds ratios for spring and

early autumn wave analysis

Our calculated odds ratios provided quantitative

measure of the effect of spring exceedance on early

autumn exceedance. For the exceedance definition

given in the previous section – an ILI ratio o3 S.D.

above its baseline ratio for 2 consecutive weeks – the

cell counts for exceedance combinations of (a) neither

spring nor early autumn interval, (b) early autumn

only, (c) spring only, and (d) both spring and early

autumn, were 282, 17, 101, and 33, respectively. The

resultant odds ratio was

OR=(33*282=(101*17) ffi 5�42: (3)

The 95% confidence interval for this calculation

is 2.89–10.15. A protective effect from spring ex-

ceedance would be indicated by an odds ratio <1.

Figure 5 shows CBSAs whose ILI ratios satisfied

this exceedance requirement for both spring and early

autumn intervals, for spring weeks only, for early

autumn weeks only, and for neither interval. Note

that localities affected in spring are mainly urban

metropolitan areas.

Alternate scenario findings

From applying the 12 exceedance definitions to the

four sets of intervals, all resulting 48 odds ratios were

>1, with a median 4.36 and a minimum 1.85. Figure 6

plots these ratios on a log scale with confidence

intervals.

Confidence limits <1 were found for only five of

the 48 alternate scenarios, and these five all had

the more stringent exceedance requirement of 3 con-

secutive weeks with an ILI ratio above baseline. Full

Table 3. Contingency table formats for CBSA counts

Table entries :
counts of CBSAs

Early autumn
exceedance

No early
autumn
exceedance

Spring exceedance A C
No spring exceedance B D

CBSA, Core-based statistical area.

Spring/autumn H1N1 incidence association 2215
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details including odds ratio cell counts are shown in

Table 4.

Odds ratio visualization

The main scenario changed to exceedance based on

single-week statistics allows graphic presentation of

the odds ratio calculation. For this purpose, Figure 4

shows a scatter plot of the maximum provider-

adjusted statistic for the 433 CBSAs with providers

that supplied data in both spring and early autumn

intervals. Each CBSA is represented by one marker,

whose x value is the statistic maximum during 2009

spring weeks, and whose y value is the statistic maxi-

mum over early autumn weeks. The lower left quad-

rant markers indicate 214 CBSAs whose ILI ratios

were not in exceedance in either spring or early early

autumn interval. Markers in the lower right quadrant

indicate the 25 CBSAs that experienced o1 week in

spring when ILI ratios were in exceedance, but none

in early autumn. The upper left quadrant markers

show the 137 CBSAs with o1 week of exceedance

in early autumn but none in spring. The upper right

quadrant shows the 57 CBSAs that had o1 week

of elevated ILI ratios during both spring and early

autumn. If a high spring incidence, as measured

by elevated ratios for ILI-related visits, did indeed

impart a protective effect, we would expect to see

negative correlation between spring and early autumn

visit ratios. However, a line fitted to the plotted points

has a positive slope, with a Pearson correlation coef-

ficient of 0.31 (P<0.0001) between the spring and

early autumn statistics. From scenario 7 of Table 4a,

the odds ratio corresponding to this single-week

scenario is 3.56, as opposed to the main-scenario odds

ratio (scenario 8, Table 4a) of 5.42, and both scen-

arios have a lower confidence limit well above 1.

Effect of threshold on odds ratios

An additional sensitivity analysis held fixed the 2

consecutive-week exceedance definition in the original

No report

No outbreak

Outbreak spring only

Outbreak autumn only

Outbreak spring and autumn

Fig. 5. Colour-coded map showing core-based statistical areas (CBSAs) in 50 US states in which the influenza-like illness
(ILI) ratios met the exceedance criterion of 3 S.D. above baseline for two consecutive weeks during the designated spring and
autumn intervals.
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spring and early autumn intervals, and we computed

odds ratios for thresholds ranging from 2 to 15 S.D. to

examine the effect of the threshold on odds ratios. As

seen in Figure 7, the odds ratio values increased

monotonically with the threshold and remained stat-

istically significant up to a threshold of 13. For higher

thresholds, significance is lost because the Table 3 cell

counts A and B for spring exceedance become too

small, increasing the odds ratio variance.

Sensitivity analysis for provider type

We conducted another sensitivity analysis to address

the wide variation in provider type among CBSAs

(Table 2). For more than half of the CBSAs, the data

are obtained from only 1–2 providers. The concern

was that some of these would have artificially reduced

ILINet statistics during the H1N1 pandemic if they

lacked representation of younger patients. For a more

restrictive analysis, we considered only CBSAs whose

data included providers classified as either ‘paedia-

trician’ or ‘student health’, and the 433 CBSAs sup-

plying data in both seasons dropped to 237. For

the exceedances o3 S.D. for o2 consecutive weeks,

the Figure 4 cell counts became 131 for exceedance in

neither spring nor early autumn, 12 for spring-only

exceedance, 71 for early autumn only, and 23 for ex-

ceedance in both seasons. The odds ratio remained

significant at 3.54 (95% CI 1.66–7.53). For this re-

duced number of CBSAs, we also repeated the odds

ratio calculations for the rest of the 48 exceedance

definitions. Odds ratios for all of these other combi-

nations remained >1 with a median of 2.55, but

more of the lower confidence limits for the stricter

exceedance criteria fell to <1.

Effect of CBSA size and population density

We investigated the effect of CBSA size on this study

by inspecting the week-by-week Pearson correlation

of the test statistic with population and density across

all CBSAs providing data. For this purpose the data

interval was widened to January 2008 to February

2010. For the substantial 2007–2008 H3N2 epidemic,

there was positive correlation with population size

and density, although the weekly correlation coef-

ficients never exceeded 0.2. Following that event,

there was prolonged slight but consistently negative

correlation of the test statistic with both population

and density. We again found mild positive correlation

for the milder 2009 H3 influenza season and then the

2009 spring wave of H1N1, but none for the early

autumn wave.

DISCUSSION

We developed a method to monitor changes in ILI

activity at the CBSA level. We used this method to

examine the likelihood of high ILI activity in early

autumn given high ILI activity in spring. Our results

demonstrate that an outbreak of novel H1N1 in

spring did not protect against the onset of an autumn

wave at the CBSA level. In fact, a spring outbreak

increased rather than decreased the probability of an

early autumn outbreak. This finding was sustained in

multiple sensitivity analyses. Altering the definitions
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Fig. 6. Sensitivity analysis : Spring/autumn odds ratios with confidence limits for variations in statistic threshold, consecutive
week limits, and chosen spring/autumn intervals. Table 4 contains additional details.
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Table 4. Details of odds ratio findings for 48 exceedance scenarios

Scenario

Spring

weeks

Autumn

weeks

Threshold (no.
S.D. above base-

line for excd)

Minimum
no. weeks
above threshold

for excd

Results

OR (95% CI)

Odds ratio cells
(excd. both seasons,
spring only, autumn

only, neither)

(a) Exceedance scenarios 1–24

1 13–26 31–39 1 1 2.92 (4.49–1.9) (153, 41, 134, 105)
2 13–26 31–39 1 2 5.07 (8.36–3.08) (82, 25, 128, 198)

3 13–26 31–39 1 3 4.27 (7.48–2.44) (42, 22, 114, 255)
4 13–26 31–39 2 1 3.72 (5.91–2.34) (96, 31, 139, 167)
5 13–26 31–39 2 2 6.23 (11.41–3.39) (48, 16, 120, 249)
6 13–26 31–39 2 3 4.52 (9.01–2.27) (23, 15, 100, 295)

7 13–26 31–39 3 1 3.56 (5.97–2.12) (57, 25, 137, 214)
8 13–26 31–39 3 2 5.42 (10.15–2.89) (33, 17, 101, 282)
9 13–26 31–39 3 3 5.22 (11.93–2.28) (14, 11, 80, 328)

10 13–26 31–39 4 1 5.32 (9.92–2.85) (38, 16, 117, 262)
11 13–26 31–39 4 2 4.74 (9.84–2.29) (19, 14, 89, 311)
12 13–26 31–39 4 3 2.65 (7.4–0.95) (6, 11, 71, 345)

13 17–26 31–36 1 1 2.65 (3.97–1.77) (100, 63, 97, 162)
14 17–26 31–36 1 2 3.56 (5.82–2.18) (46, 40, 82, 254)
15 17–26 31–36 1 3 3.17 (6.04–1.67) (18, 32, 56, 316)

16 17–26 31–36 2 1 3.18 (5.03–2.01) (58, 45, 92, 227)
17 17–26 31–36 2 2 3.87 (7.03–2.13) (25, 29, 67, 301)
18 17–26 31–36 2 3 1.85 (4.74–0.72) (6, 25, 45, 346)
19 17–26 31–36 3 1 2.9 (4.96–1.7) (32, 36, 83, 271)

20 17–26 31–36 3 2 3.16 (6.2–1.61) (16, 29, 56, 321)
21 17–26 31–36 3 3 2.39 (7.47–0.76) (4, 17, 36, 365)
22 17–26 31–36 4 1 3.27 (6.05–1.77) (22, 28, 72, 300)

23 17–26 31–36 4 2 4.2 (9.66–1.83) (10, 18, 46, 348)
24 17–26 31–36 4 3 4.92 (16.46–1.47) (4, 11, 28, 379)

(b) Exceedance scenarios 25–48

25 17–26 31–39 1 1 2.6 (4.05–1.67) (131, 36, 154, 110)
26 17–26 31–39 1 2 4.93 (8.49–2.86) (68, 20, 140, 203)
27 17–26 31–39 1 3 5.26 (9.98–2.78) (36, 15, 119, 261)

28 17–26 31–39 2 1 4.05 (6.76–2.43) (81, 23, 152, 175)
29 17–26 31–39 2 2 7.28 (14.3–3.71) (43, 12, 124, 252)
30 17–26 31–39 2 3 4.57 (9.73–2.14) (19, 12, 103, 297)

31 17–26 31–39 3 1 3.75 (6.58–2.14) (49, 20, 143, 219)
32 17–26 31–39 3 2 5.73 (11.06–2.97) (31, 15, 102, 283)
33 17–26 31–39 3 3 5.42 (13.29–2.21) (12, 9, 81, 329)
34 17–26 31–39 4 1 4.8 (9.01–2.56) (35, 16, 119, 261)

35 17–26 31–39 4 2 4.91 (10.66–2.26) (17, 12, 90, 312)
36 17–26 31–39 4 3 2.43 (7.32–0.81) (5, 10, 71, 345)
37 17–26 31–42 1 1 3.27 (6.04–1.77) (159, 14, 222, 64)

38 17–26 31–42 1 2 18.43 (59.37–5.72) (88, 3, 226, 142)
39 17–26 31–42 1 3 5.21 (11.34–2.39) (44, 8, 209, 198)
40 17–26 31–42 2 1 8.39 (19.69–3.58) (102, 6, 235, 116)

41 17–26 31–42 2 2 11.41 (32.12–4.05) (53, 4, 216, 186)
42 17–26 31–42 2 3 4.45 (10.52–1.89) (25, 7, 190, 237)
43 17–26 31–42 3 1 4.74 (10.17–2.21) (64, 8, 243, 144)

44 17–26 31–42 3 2 8.99 (23.18–3.49) (42, 5, 199, 213)
45 17–26 31–42 3 3 2.91 (7.09–1.2) (14, 8, 164, 273)
46 17–26 31–42 4 1 5.5 (12.48–2.43) (46, 7, 221, 185)
47 17–26 31–42 4 2 5.33 (13.3–2.13) (24, 6, 184, 245)

48 17–26 31–42 4 3 2.12 (5.76–0.78) (8, 8, 142, 301)

OR, Odds ratio, CI, confidence interval ; excd, exceedance ; S.D., standard deviation.
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of an exceedance and the chosen study weeks had only

minor effects on these findings.

The association between local incidence levels dur-

ing the two pandemic waves depends on multiple

factors, including herd immunity, population dy-

namics, age structure, relationship to other popu-

lation centres, and antigenic drift of the novel virus.

Recent works by other authors have addressed these

factors in context of 2009 pandemic transmission

[8–10]. For the current study, the CBSA is a plausible

unit for studying the aggregation of these effects be-

cause of its definition as ‘a substantial population

nucleus, together with adjacent communities having

a high degree of economic and social integration’.

Thus, the residence and workplace of a susceptible

individual are likely to be in the same CBSA as those

of most of his/her contacts. However, it is possible a

given CBSA was too small (unaffected by the spring

wave because of size) or too large (multiple sub-

populations with varied experience) for group-level

analysis.

The cross-wave protection hypothesis that motiv-

ated this study is natural in view of the widely ac-

cepted finding that naturally acquired immunity to

H1N1 variants often lasts for more than 20 years [11].

Authors have theorized [12] and, more recently, in-

vestigated this hypothesis using 1918 pandemic data

[1]. A logical question is whether an initial epidemic

wave affects enough of the population to provide

some protection against subsequent waves or whether

it only introduces a new endemic strain that can

later reach more of the population when conditions of

climate and population mixing are more conducive

to transmission. An important feature of the investi-

gation by Barry et al. [1] was the substantial 11.8%

overall attack rate among the closed populations

whose first-wave data were examined. Data from

closed populations with known denominators were

not available for the current study, so attack rate

estimates were difficult to quantify. Nevertheless, evi-

dence of an overall relatively weak first wave in 2009

is ample: only y5% of the total 56 million cases had

occurred up to July 2009 [13]. Another US study [14]

found only 1 week from 28 March until 22 August

(weeks 12–33) during which the ILI percentage ex-

ceeded baseline levels nationally. Other authors have

reported that the secondary attack rate and the effec-

tive reproductive number of the pandemic were

low relative to past large epidemics (e.g. [15]).

Furthermore, studies both within [14] and outside

[16, 17] the USA cite the focal nature of the first wave

as one of its defining characteristics ; a study from

Serbia [17] notes that ‘ the most significant features

of this epidemic [were] the rapid establishment … and

abrupt cessation of community transmission’. Thus,

many CBSA-level spring attack rates were probably

small, and so our findings support a competing hy-

pothesis that spring outbreaks were insufficient to

provide protection at the CBSA level in the autumn.

By this hypothesis, because a novel H1N1 virus was

introduced late relative to the usual influenza season,

it did not infect to population exhaustion and could

persist until the next opportune outbreak season

(early autumn) to resume transmission. Hence, the
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Fig. 7. Odds ratios with confidence limits for statistic thresholds from 2 to 15 S.D. above baseline for at least 2 consecutive
weeks. UCL, Upper confidence limit ; LCL, lower confidence limit.
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combination of susceptible individuals returning from

vacation and climatic conditions favourable to virus-

shedding may have provided a renewed spreading

opportunity for the endemic strain introduced in

spring. The effects of climatic factors on transmiss-

ibility have been quantified in detail [18].

Study limitations include ILINet data quality issues

which restricted the analysis methodology. Data pro-

viders gave ILI counts for each age group, but the

total visit counts are not age-stratified, so only all-age

ILI ratios may be directly calculated. The multiple

types of care providers (Table 2) contributing ILINet

data suggest heterogeneity in the covered patient base

across CBSAs. This heterogeneity gives a broad basis

of information but complicates comparisons between

CBSAs with substantially different provider types.

The sections above describe adjustments for this het-

erogeneity both in the test statistic and in the sub-

sequent analysis. Effectiveness of these adjustments

is difficult to quantify without years of labelled his-

torical data, but anecdotal verification and the stab-

ility of the adjusted ILINet statistic during baseline

weeks have been positive.

Although adjustments were made to baselines based

on provider type, analysis of variance investigations

revealed regional differences in rates within provider

types, particularly among Emergency Departments

and Urgent Care centres, that may have led to assign-

ment of incorrect baseline levels and misclassification

of CBSAs both for the early autumn and spring ex-

ceedance. However, we have no reason to suspect sys-

tematic estimation bias across time periods of interest.

Therefore, we believe that misclassification had little

effect on the odds ratio. Similarly, disregarding weeks

of zero ILI case reports may have caused loss of sen-

sitivity, although our testing indicated oversensitivity

during non-epidemic weeks when these weeks were

included, and our simple modification gave plausible

results using historical data.

The study methodology is dichotomous in that the

odds ratio requires classification of excessive or non-

excessive ILI ratios relative to the computed CBSA

baseline. As discussed above, we sought to avoid

artifacts of this classification by repeating the analysis

with several definitions of ILI ratio exceedance, our

surrogate for high incidence. A more general logistic,

hierarchical modelling approach is under develop-

ment. Any such approach should account for the

evolving set of data providers, the substantial vari-

ation among ILI ratios both within and between

provider types, and the heterogeneity among CBSAs.

The second wave analysis was restricted to the early

autumn cases with the idea that similar methodology

might be used to aid public health decision-making

in a future anticipated multi-wave scenario. This de-

cision has both positive and negative implications for

the validity of the findings. Negative effects are that

early stages of an epidemic are associated with high

variability [19], so restriction to the first 9 weeks

(weeks 6–11 in sensitivity analysis) of the lengthy

autumn wave may have been insufficient to avoid net

odds ratio bias in the findings among the hundreds

of CBSAs in the study. On the positive side, the re-

striction probably reduced odds ratio bias by im-

proving the specificity of the ILI diagnoses. The

positive predictive value (PPV) of symptoms ap-

proximating ILINet criteria for influenza has been

reported at 79–87% in studies during influenza

seasons [20, 21]. While the symptom PPV is reduced

before the peak period of many seasonal epidemics

[22], it was plausibly higher in the early weeks of the

2009 autumn wave, weeks in this year when ILINet

reporting is usually low and before competing febrile

respiratory infections are prevalent.

An intended objective of the current study and of

similar analytical findings is to inform decision-

makers responsible for preparedness and vaccine

programme planning activities. Any such planning

should also consider effects of external commuting

patterns that may cause a highly variable degree of

inter-area transmission among CBSAs. The import-

ance of such factors has been modelled and docu-

mented [23, 24]. However, these factors probably do

not contradict our findings that high spring incidence

was not generally protective against illness in early

autumn at the community level.

In summary we developed an approach for assess-

ing and monitoring influenza activity at the local level

and used the method to determine that elevated in-

fluenza activity during the first wave of the 2009

pandemic was not generally protective of localities

from subsequent disease in early autumn nor did

it delay the onset of the autumn outbreak. The ap-

proach seeks epidemiological inference using a rou-

tinely collected dataset lacking individual patient

detail. Both metropolitan and micropolitan areas are

represented among CBSAs [2], and while it was not

feasible to investigate contact patterns or vaccination

rates in each CBSA, it is reasonable to expect some

cancellation of these differences among hundreds of

CBSAs. Richer analyses with patient-level data are

required to address many important questions, but
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broad statements such as the claim of protection from

an earlier wave are difficult to quantify on a popu-

lation level by clinically detailed studies, and this

study is an attempt at such quantification. The study

approach, while not sufficiently detailed to directly

measure herd immunity, may serve as an inexpensive,

readily available tool to help assess the likelihood of

localized subsequent wave disease occurrence using

high-volume, pre-diagnostic data.
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