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ON UNIQUENESS POLYNOMIALS FOR

MEROMORPHIC FUNCTIONS

HIROTAKA FUJIMOTO

Abstract. A polynomial P (w) is called a uniqueness polynomial (or a uique-
ness polynomial in a broad sense) if P (f) = cP (g) (or P (f) = P (g)) implies
f = g for any nonzero constant c and nonconstant meromorphic functions f and
g on C. We consider a monic polynomial P (w) without multiple zero whose
derivative has mutually distinct k zeros ej with multiplicities qj . Under the
assumption that P (e`) 6= P (em) for all distinct ` and m, we prove that P (w)
is a uniqueness polynomial in a broad sense if and only if

P

`<m
q`qm >

P

`
q`.

We also give some sufficient conditions for uniqueness polynomials.

§1. Introduction

In this paper, a meromorphic function means a meromorphic function

on the complex plane C. A discrete subset S of C is called a uniqueness

range set for meromorphic (or entire) functions if there exists no pair of two

distinct nonconstant meromorphic (or entire) functions such that they have

the same inverse images of S counted with multiplicities. Since F. Gross and

C. C. Yang proved that the set S := {w ; w+ew = 0} is a uniqueness range

set for entire functions ([4]), many efforts were made to find uniqueness

range sets which are as small as possible ([5], [9], [10]). In relation to this

problem, B. Shiffman, C. C. Yang and X. Hua studied polynomials P (w)

satisfying the condition that there exists no pair of two distinct nonconstant

meromorphic (or entire) functions f and g with P (f) = P (g) in their papers

[7] and [8]. For a finite set S = {a1, a2, . . . , aq}, it is necessary for S to

be a uniqueness range set for meromorphic (or entire) functions that the

associated polynomial

PS(w) = (w − a1)(w − a2) · · · (w − aq)

satisfies this condition.

In this paper, we use the following terminology.
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34 H. FUJIMOTO

Definition 1.1. Let P (w) be a nonconstant monic polynomial. We
call P (w) a uniqueness polynomial if P (f) = cP (g) implies f = g for any
nonconstant meromorphic functions f, g and any nonzero constant c. We
also call P (w) a uniqueness polynomial in a broad sense if P (f) = P (g)
implies f = g for any nonconstant meromorphic functions f, g.

In the previous paper [1], the author gave some sufficient conditions for

uniqueness polynomials as well as for uniqueness range sets.

Let P (w) be a monic polynomial without multiple zero whose derivative

has mutually distinct k zeros e1, e2, . . . , ek with multiplicities q1, q2, . . . , qk

respectively. Under the assumption that

(H) P (e`) 6= P (em) for 1 ≤ ` < m ≤ k,

he proved the following:

Theorem 1.2. If k ≥ 4, P (w) is a uniqueness polynomial in a broad

sense.

He also gave the following theorem for uniqueness polynomials:

Theorem 1.3. For a polynomial P (w) with k ≥ 4 satisfying the hy-

pothesis (H), if

P (e1) + P (e2) + · · · + P (ek) 6= 0,

then P (w) is a uniqueness polynomial.

Moreover, he obtained some partial results for the case where k = 3.

The main purpose of this paper is to give new geometric proofs of the

above results in [1], which is due to the ideas used in [7, Section 4], and

some improvements in [1] for the case where k = 2, 3.

We first investigate uniqueness polynomials in a broad sense. For a

given nonconstant polynomial P (z), we consider the algebraic curve C in

P 2(C) which is the closur of a plane curve {(z, w) ; (P (z) − P (w))/(z−w) =

0} in C2(⊂ P 2(C)). We can show that P (z) is a uniqueness polynomial in

a broad sense if and only if every irreducible component of C is of genus

greater than one. Under the condition (H), we prove that C is irreducible

and give a formula for the genus of C. These enable us to obtain the

following improvement of the above results:
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Theorem 1.4. Let P (w) be a polynomial satisfying the above assump-

tion (H). Then, P (w) is a uniqueness polynomial in a broad sense if and

only if

(1.5)
∑

1≤`<m≤k

q`qm >

k∑

`=1

q`.

We can show that, for the case k ≥ 4, the condition (1.5) is always

satisfied. Moreover, (1.5) holds when max(q1, q2, q3) ≥ 2 for the case k = 3

and when min(q1, q2) ≥ 2 and q1 + q2 ≥ 5 for the case k = 2.

Next, we try to obtain some improvements of the results in [1] for

uniqueness polynomials with k = 3. We prove the following:

Theorem 1.6. Let P (w) be a monic polynomial with k = 3 satisfying

the condition (H). Assume that max(q1, q2, q3) ≥ 2 and

P (e`)

P (em)
6= ±1 for 1 ≤ ` < m ≤ 3,(1.7)

P (e`)

P (em)
6=

P (em)

P (en)
for any permutation (`,m, n) of (1, 2, 3).(1.8)

Then, P (w) is a uniqueness polynomial.

Lastly, we give some sufficient conditions for uniqueness polynomial for

the case k = 2, which is not treated in [1].

§2. Uniqueness polynomials in a broad sense

Let P (w) be a monic polynomial of degree q (> 0) without multiple

zero, and let its derivative be given by

(2.1) P ′(w) = q(w − e1)
q1(w − e2)

q2 . . . (w − ek)
qk ,

where e1, . . . , ek are mutually distinct and q1 + q2 + · · · + qk = q − 1.

In the followings, we assume k ≥ 2, because P (w) cannot be a unique-

ness polynomial in a broad sense for the case k = 1 (cf., [1, p. 1183]).

Furthermore, by technical reasons we assume the following:

(H) P (e`) 6= P (em) for 1 ≤ ` < m ≤ k.
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Consider the polynomial

Q(z, w) :=
P (z) − P (w)

z − w

in two variables z and w, and the associated homogeneous polynomial

Q∗(u0, u1, u2) := ud
0Q

(
u1

u0

,
u2

u0

)

of degree d in three variables u0, u1, u2, where d := q− 1. By using this, we

define the algebraic curve

(2.2) C : Q∗(u0, u1, u2) = 0, (u0 : u1 : u2) ∈ P 2(C),

where (u0 : u1 : u2) denote the homogeneous coordinates on P 2(C).

Proposition 2.3. The algebraic curve C has ordinary singularities

with multiplicities q` at the points P` := (1 : e` : e`) (1 ≤ ` ≤ k), and has

regular points at all other points.

Proof. Set L∞ := {u0 = 0}. We first investigate points in C ∩L∞. By
the assumption, P (w) can be written as

P (w) = wd+1 + terms of lower degree

and so we have

Q∗(u0, u1, u2) = (ud
1 + ud−1

1 u2 + · · · + ud
2) + u0R(u0, u1, u2),

where R(u0, u1, u2) is a homogeneous polynomial of degree d − 1. It is
easily seen that the first term is factorized into mutually distinct d linear
functions u1 − ζ`u2 (` = 1, 2, . . . , d), where ζ denotes a primitive (d + 1)-st
root of unity. This shows that C∩L∞ consists of mutually distinct d points
Q` := (0 : ζ` : 1) (` = 1, 2, . . . , d) and each Q` is a regular point of C.

We next investigate the singularities of C \ L∞. We may use inhomo-
geneous coodinates z, w. Let P0 = (z0, w0) (= (1 : z0 : w0)) be a singularity
of C, namely, let P0 satisfy the condition

Q(z0, w0) = Qz(z0, w0) = Qw(z0, w0) = 0.

Then, by differentiating the identity

P (z) − P (w) = (z − w)Q(z, w),
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we have

q(z0 − e1)
q1(z0 − e2)

q2 · · · (z0 − ek)
qk = (z0 −w0)Qz(z0, w0) + Q(z0, w0) = 0.

This implies that z0 = e` for some ` (1 ≤ ` ≤ k). By the same reason, we
see w0 = em for some m. It then follows that

P (e`) − P (em) = (z0 − w0)Q(z0, w0) = 0.

By virtue of the assumption (H), we can conclude ` = m. Therefore, C has
no singulalrities outside P`’s.

We next investigate shapes of C around each point P`. Without loss of
generality, we may assume ` = 1 and e1 = 0 after suitable translations of
coordinates. Then, by the assumption (2.1), we can write

P (w) − P (e1) = cwq1+1 + terms of higher degree

with a nonzero constant c, and so

Q(z, w) = c(zq1 + zq1−1w + · · · + wq1) + terms of higher degree.

The first term in this expansion can be factorized into the product of mu-
tually distinct linear forms z − η`w (` = 1, 2, . . . , q1) in z and w, where
η denotes a primitive (q1 + 1)-st root of unity. This shows that P1 is an
ordinary singularity of C with multiplicity q1 (cf., [2, p. 66]). The proof of
Proposition 2.3 is completed.

Proposition 2.4. The curve C is irreducible.

Proof. Suppose that C is reducible and so Q(z, w) can be written as

Q(z, w) = Q1(z, w)Q2(z, w)

with nonconstant polynomials Q1 and Q2. Consider the curves

Ci : Q∗
i (u0, u1, u2) := udi

0 Qi

(
u1

u0

,
u2

u0

)
= 0, (i = 1, 2)

in P 2(C), where each di denotes the degree of Ci. We then have

C1 ∩ C2 j {P1, P2, . . . , Pk},
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because C has a singularity at every point in C1 ∩ C2. Since C1 ∩ C2 is
discrete, C1 and C2 have no common irreducible component. For each `,
there is a neighborhood U of P` such that U ∩ C has mutually distinct q`

irreducible components by virtue of Hensel’s lemma (cf., [6, p. 68]). Some of
them are included in C1 and the others are included in C2. These guarantee
that Ci has at worst ordinary singularities at some of the points P`’s and
regular points elsewhere. Assume that C1 and C2 have ordinary singularities
of multiplicities r` and s` (0 ≤ r`, s` ≤ q`) at each P` respectively, where
an ordinary singularity of multiplicity 0 means that the curve does not
contain P`. We then have

(2.5) q` = r` + s` (` = 1, 2, . . . , k).

Moreover, we can show

(2.6) d1 = r1 + r2 + · · · + rk, d2 = s1 + s2 + · · · + sk.

To see this, we consider the diagonal line

L∆ : u1 − u2 = 0

in P 2(C). Since

Q(z, z) = lim
w→z

Q(z, w) = lim
w→z

P (w) − P (z)

w − z
= P ′(z),

we have C1 ∩ L∆ j {P1, P2, . . . , Pk}. The tangent lines

z − e` − η`(w − e`) = 0

of C at P` do not coincide with L∆, and so the intersection number of C1

and L∆ at P` is r`. By the classical Bezout’s theorem (cf., [2, p. 112]), we
get

d1 = r1 + r2 + · · · + rk.

Similarly, we have d2 = s1 + s2 + · · · + sk.
On the other hand, the intersection number of C1 and C2 at each point

P` is r`s`. Applying Bezout’s theorem again, we obtain

d1d2 = r1s1 + r2s2 + · · · + rksk.

Therefore, ∑

`,m

r`sm −
∑

`

r`s` =
∑

6̀=m

r`sm = 0.
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Since r` and s` are nonnegative integers, we have necessarily r`sm = 0 for all
mutually distinct ` and m. Changing indices if necessary, we may assume
r1 6= 0, because d1 =

∑
r` > 0. Then, s` = 0 for ` = 2, 3, . . . , k. On the

other hand, since d2 =
∑

s` > 0, we see s1 6= 0. This implies that r` = 0
for ` = 2, . . . , k, because s1r` = 0 for ` = 2, . . . , k. By (2.5), this shows
that k = 1, which contradicts the assumption k ≥ 2. Proposition 2.4 is
completely proved.

With each irreducible algebraic curve V in P 2(C) we can associate the

normalization (Ṽ , µ) of V , namely, a compact Riemann surface Ṽ and a

holomorphic mapping µ of Ṽ onto V which is injective outside the inverse

image of the singular locus of V . By definition, the genus g(V ) of V means

the genus of the compact Riemann surface Ṽ .

Proposition 2.7. The genus of the curve C defined as above is given

by

g(C) =
(d − 1)(d − 2)

2
−

k∑

`=1

q`(q` − 1)

2
.

This is an easy result of Propositions 2.3, 2.4 and the classical Plücker’s

genus formula (cf., [2, p. 199]).

Theorem 2.8. Let P (w) be a monic polynomial whose derivative has

k distinct zeros e1, e2, . . . , ek with multiplicities q1, q2, . . . , qk, respectivley.

Assume that

P (e`) 6= P (em), (1 ≤ ` < m ≤ k).

If k ≥ 4, then P (w) is a uniqueness polynomial in a broad sense.

Moreover, P (w) is a uniqueness polynomial in a broad sense when and

only when

max(q1, q2, q3) ≥ 2

for the case k = 3, and when and only when

min(q1, q2) ≥ 2 and q1 + q2 ≥ 5

for the case k = 2.

Remark. (1) In [1], the author proved Theorem 2.8 for the case k ≥ 4
and the ‘when’ part for the case k = 3 under the additional assumption
(e1, e2, e3,∞) = −1 by function-theoretic method.
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(2) For the case k = 2, there is no harm in assuming that e1 = 0 and
e2 = 1 after a suitable linear change of coordinate on C. In this case, P (w)
is nothing but the polynomial studied by Frank and Reinders in [3] after a
suitable multiplication of a nonzero constant. In this particular case, the
condition (H) is automatically satisfied, because

(−1)q2(P (1) − P (0)) =

∫ 1

0

qxq1(1 − x)q2 dx > 0.

In [3], Frank and Reinders proved Theorem 2.8 for a particular case where
k = 2, min(q1, q2) = 2 and q1 + q2 ≥ 6.

Proof. Suppose that P (w) is not a uniqueness polynomial in a broad
sense. By definition, there exist two distinct nonconstant meromorphic
functions f and g satisfying the condition P (f) = P (g). We can write
f = f1/f0 and g = f2/f0 with suitably chosen entire functions f0, f1, f2

without common zeros. Consider a holomorphic map

Φ := (f0 : f1 : f2) : C −→ P 2(C).

We denote by E the union of the sets of all poles of f , of all poles of g and
of all points z with f(z) = g(z). By the assumption, E is a discrete subset
of C, and we have

Φ(C \ E) j

{
(z, w) ∈ P 2(C) \ L∞ ; Q(z, w) :=

P (z) − P (w)

z − w
= 0

}
.

Therefore, by the continuity of Φ the image Φ(C) is included in the algebraic
curve C defined by (2.2). Take the normalization (C̃, µ) of C. Then, there
is a nonconstant holomorphic map Φ̃ of C into C̃ with µ · Φ̃ = Φ. For our
purpose, it suffices to seek the condition for the genus g(C̃) (= g(C)) of the
compact Riemann surface C̃ is greater than one. In fact, in this case, we
have an absurd conclusion that the map Φ̃, and so Φ, is a constant by virtue
of the classical Picard’s theorem, which asserts that every holomorphic map
of C into a compact Riemann surface of genus greater than one is necessarily
a constant. On the other hand, if g(C̃) is not larger than one, then C̃
is a torus or the Riemann sphere. Therefore, there exists a nonconstant
holomorphic map Ψ̃ of C into C̃. Consider the map Ψ := µ · Ψ̃, which
can be regarded as a holomorphic map of C into P 2(C). We write Ψ =
(f∗

0 : f∗
1 : f∗

2 ) with nonzero holomorphic functions which have no common
zeros. It is easily seen that f ∗ := f∗

1/f∗
0 and g∗ := f∗

2/f∗
0 are nonconstant
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distinct meromorphic functions satisfying the condition P (f ∗) = P (g∗).
The polynomial P (w) cannot be a uniqueness polynomial in a broad sense.
On the other hand, according to Proposition 2.7 the genus of C is given by

g(C) =
(d − 1)(d − 2)

2
−

k∑

`=1

q`(q` − 1)

2
=

∑

1≤`<m≤k

q`qm −
k∑

`=1

q` + 1 (≥ 0).

Therefore, P (w) is a uniqueness polynomial in a broad sense if and only if
it satisfies the condition (1.5) as mentioned in Section 1.

For the case k ≥ 4, it is easily seen that

g(C) = q1

( k∑

`=2

q` − 1

)
+

( ∑

2≤`<m≤k

q`qm −

k∑

`=2

q` + 1

)
≥ k − 2 ≥ 2.

For the case k = 3, under the assumption that at least one of q`’s is larger
than one, say q3 ≥ 2, we have

g(C) = q1(q2 + q3 − 1) + (q2 − 1)(q3 − 1) ≥ 2.

Moreover, for the case k = 2, under the assumption min(q1, q2) ≥ 2 and
q1 + q2 ≥ 5, we have

g(C) = (q1 − 1)(q2 − 1) ≥ 2.

Conversely, for the case k = 3, if q1 = q2 = q3 = 1, we have g(C) = 1. For
the case k = 2, q1 = 1, q2 = 1 or q1 + q2 ≤ 4, then g(C) ≤ 1. The proof of
Theorem 2.8 is completed.

§3. Uniqueness polynomials

As in the previous section, we consider a monic polynomial P (w) with-

out multiple zero whose derivative has mutually distinct k (> 1) zeros

e1, e2, . . . , ek with multiplicities q1, q2, . . . , qk respectively, and assume that

P (w) satisfies the condition (H).

In the previous paper [1], the author proved the following:

Theorem 3.1. Assume that k ≥ 4. If P (w) is not a uniqueness poly-

nomial, then there is a permutation (i1, i2, . . . , ik) of (1, 2, . . . , k) such that

P (ei1)

P (e1)
=

P (ei2)

P (e2)
= · · · =

P (eik)

P (ek)
6= 1.
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We note that Theorem 1.3 mentioned in Section 1 is an immediate

consequence of Theorem 3.1.

We now investigate the polynomial with k = 3. Changing indices if

necessary, we assume that q1 ≤ q2 ≤ q3.

Theorem 3.2. Assume that P (w) with k = 3 is not a uniqueness

polynomial.

(1) If q1 ≥ 2, then P (w) satisfies the condition

(C1)
P (ei1)

P (e1)
=

P (ei2)

P (e2)
=

P (ei3)

P (e3)
6= 1.

for some permutation (i1, i2, i3) of the indices (1, 2, 3).
(2) If q1 = 1 and 2 ≤ q2 ≤ q3, then P (w) satisfies the condition (C1)

or

(C2) P (e2) + P (e3) = 0

(3) If q1 = q2 = 1 and q3 ≥ 2, then P (w) satisfies the condition (C1)
or

(C3) P (e1) + P (e3) = 0, P (e2) + P (e3) = 0 or P (e1)P (e2) = P (e3)
2

For the proof of Theorem 3.2, we assume that there are distinct non-

constant meromorphic functions f and g and a nonzero constant c such

that P (f) = cP (g). For all cases of Theorem 3.2, the assumptions of The-

orem 2.8 are satisfied and so P (w) is a uniqueness polynomial in a broad

sense. Therefore, we have necessarily c 6= 1. As in the previous paper ([1]),

we set

Λ := {(`,m) ; P (e`) = cP (em)}.

We give the following lemma, which is an improvement of [1, Lemma 5.3].

Lemma 3.3. Assume that k = 3 and q`0 ≥ 2 for some `0. Then, there

are some indices m and m′ such that (`0,m) ∈ Λ and (m′, `0) ∈ Λ.

Proof. This is proved by the same argument as in the proof of
Lemma 5.3 of [1] with some simple modifications. For reader’s convenience,
we state the outline of the proof. We assume that (`0,m) 6∈ Λ for any
m. For each point z0 with f(z0) = e`0 , we see g(z0) 6= em for any m.
Since P ′(f)f ′ = cP ′(g)g′, we have necessarily g′(z0) = 0. This implies that
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N(r, ν
e`0

f ) ≤ N(r, ν∗
g′ |f=e`0

). Here, N(r, ν
e`0

f ) and N(r, ν∗
g′ |f=e`0

) denote the
counting functions of zeros of f − e`0 counted with multiplicities and of
zeros z of g′ counted with multiplicities such that f(z) = e`0 and g(z) 6= em

for any m, respectively. Assume that there are constants c0 (6= 0) and c1

with g = c0f + c1. Then, the assumption P (f) = cP (g) implies

(f − e1)
q1(f − e2)

q2(f − e3)
q3

= cc0(c0f + c1 − e1)
q1(c0f + c1 − e2)

q2(c0f + c1 − e3)
q3 .

Since f is not a constant, this is regarded as an identity of polynomials with
indeterminate f . Using the unique factorization theorem as in [1, p. 1191],
we can easily show that, for every `, there is some m with (`,m) ∈ Λ, which
contradicts the assumption. Hence, there does not exist such constants c0

and c1. As in [1, p. 1184], we set k0 = #Λ. By the assumption, we see
k0 ≤ 2, and so we can apply Lemma 3.8 of [1] to obtain N(r, ν∗

g′ |f=e`0
) =

S(r, f) + S(r, g). Therefore, N(r, ν
e`0

f ) = S(r, f) + S(r, g).
Consider the polynomial Q(w) := P (w)−P (e`0) and Q∗(w) := cP (w)−

P (e`0). We denote all distinct zeros of Q(w) and Q∗(w) by α1 (= e`0),
α2, . . . , αm and β1, β2, . . . , βn, respectively. Since Q has a zero of multi-
plicity q`0 + 1 at α1, we have m ≤ q − q`0 ≤ q − 2. Moreover, each βj

(1 ≤ j ≤ n) is not equal to em for any m, because Q∗(em) = 0 implies
(`0,m) ∈ Λ. This shows that all βj ’s are simple zeros of Q∗(w) and so
n = q. On the other hand, if g = βj for some j at a point z0, then
P (f(z0)) = cP (g(z0)) = cP (βj) = P (e`0) and so f(z0) = αi for some i. By
the second main theorem in value distribution theory, we obtain

(q − 2)T (r, g) ≤

q∑

j=1

N(r, ν̄
βj
g ) + S(r, g)

≤ N(r, ν̄
e`0

f ) +
m∑

i=2

N(r, ν̄αi

f ) + S(r, g)

≤ (m − 1)T (r, f) + S(r, g),

where N(r, ν̄
βj
g ) denotes the counting functions of the points z with g(z) =

βj counted without multiplicities. This gives an absurd conclusion q − 2 ≤
m − 1 ≤ q − 3. Therefore, there is some m with (`0,m) ∈ Λ. The proof of
the existence of m′ with (m′, `0) is similar. Thus, we get Lemma 3.3.

Now, we start to inquire into the assertion (1) of Theorem 3.2, namely,
the case min(q1, q2, q3) ≥ 2. By Lemma 3.3 there are indices i1, i2, i3 such

https://doi.org/10.1017/S0027763000008527 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008527


44 H. FUJIMOTO

that (`, i`) ∈ Λ (` = 1, 2, 3). In this situation, it is easily seen that these
i1, i2, i3 are mutually distinct by Lemma 3.5 of [1]. As its consequence, we
have the desired conclusion for the case (1).

We next inquire into the assertion (2), namely, the case q1 = 1 and
2 ≤ q2 ≤ q3. In this case, there are indices i2, i3 and j2, j3 such that

(2, i2) ∈ Λ, (3, i3) ∈ Λ, (j2, 2) ∈ Λ, (j3, 3) ∈ Λ.

If min(i2, i3) ≥ 2, then we have necessarily i2 = 3 and i3 = 2 by Lemma 3.5
of [1] because c 6= 1. Therefore, we get

c =
P (e2)

P (e3)
=

P (e3)

P (e2)
,

and so P (e2)
2 = P (e3)

2. Since P (e2) 6= P (e3) by the assumption (H), we
have the conclusion (C2). It remains to consider the case i2 = 1 or i3 = 1.
Changing indices if necessary, we assume that i2 = 1, namely, (2, 1) ∈ Λ.
This implies that i3 = 2, namely, (3, 2) ∈ Λ, because i3 6= 1, 3 by Lemma 3.5
of [1] and the fact c 6= 1. Moreover, we have (1, 3) ∈ Λ by the same reason.
Therefore, we have (C1).

Lastly, we inquire into the assertion (3), namely, the case q1 = q2 = 1
and q3 ≥ 2. In this case, there are indices i and j such that (3, i) ∈ Λ and
(j, 3) ∈ Λ. Then, we may assume i = 1 and so (3, 1) ∈ Λ by exchanging the
role of indices 1 and 2 if necessary. If j = 1, then we have P (e1)+P (e3) = 0
and, if j = 2, then we have P (e1)P (e2) = P (e3)

2. The proof of Theorem 3.2
is completed.

We note here that Theorem 1.6 mentioned in Section 1 is an easy con-

sequence of Theorem 3.2.

For the case k = 2, we can prove the following:

Theorem 3.4. Assume that the derivative P ′(w) has two distinct ze-

ros e1 and e2 with multiplicities q1 and q2 respectively and assume that

q1 ≤ q2. If it satisfies one of the conditions

(1) q1 ≥ 3 and P (e1) + P (e2) 6= 0,

(2) q1 ≥ 2 and q2 ≥ q1 + 3,

then P (w) is a uniqueness polynomial.

Proof. Assume that P (w) is not a uniqueness polynomial. Then, there
are nonconstant distinct meromorphic functions f, g and a nonzero constant
c such that P (f) = cP (g). By virtue of Theorem 2.8 we have c 6= 1.

We first show the following:
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Lemma 3.5. If c 6= P (e2)/P (e1), then q2 ≤ 2.

Proof. As in the proof of Lemma 3.3, we consider the polynomials
Q(w) := P (w) − P (e2) and Q∗(w) := cP (w) − P (e2), and denote all zeros
of Q(w) and Q∗(w) by α1 (= e2), α2, . . . , αm and β1, β2, . . . , βn, respectively.
Then, α1 is a zero of Q(w) with multiplicity q2 + 1 and αi are simple zeros
of it for i = 2, 3, . . . ,m. Moreover, by the assumption, all βj (1 ≤ j ≤ n)
are simple zeros of Q∗(w). Therefore, m = q − q2 = q1 + 1 and n = q. We
now apply the second main theorem to the function g and q values βj ’s to
obtain

(q − 2)T (r, g) ≤

q∑

j=1

N(r, ν̄
βj
g ) + S(r, g),

For every point z0 with g(z0) = βj , we have P (f(z0)) = cP (g(z0)) =
cP (βj) = P (e2) and so f(z0) is equal to one of the values α1, α2, . . . , αm.
Noting that T (r, f) = T (r, g) + O(1) by Lemma 3.2 of [1], we obtain

(q − 2)T (r, g) ≤

m∑

j=1

N(r, ν̄
αj

f ) + S(r, f)

≤ mT (r, f) + S(r, f)

≤ (q1 + 1)T (r, g) + S(r, g).

This concludes that q − 2 = q1 + q2 + 1 − 2 ≤ q1 + 1, whence q2 ≤ 2.

We continue the proof of Theorem 3.4. Under the assumption of (1),
we have either c 6= P (e2)/P (e1) or c 6= P (e1)/P (e2), because otherwise

c2 =
P (e2)

P (e1)

P (e1)

P (e2)
= 1,

which contradicts to the assumption P (e1) + P (e2) 6= 0. Therefore, q1 ≤ 2
or q2 ≤ 2 as a consequence of Lemma 3.5. Thus, we have the assertion (1).

The proof of the assertion (2) is given by the the same argument as in [3,
191]. For readers’ convenience, we repeat it here. By virtue of Lemma 3.5,
it suffices to consider the only case c = P (e2)/P (e1). By the same argument
as in the proof of Lemma 3.5, Q(w) := P (w)−P (e2) has mutually distinct
m := q1 + 1 zeros α1, . . . , αm and Q∗(w) := cP (w) − P (e2) has mutually
distinct n := q2 + 1 zeros β1, . . . , βn. In this case, if g(z0) = βj for some
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z0 ∈ C and some j, then f(z0) = αi for some i. Therefore, we have

((q2 + 1) − 2)T (r, g) ≤

m∑

j=1

N(r, ν̄
βj
g ) + S(r, g)

≤
m∑

i=1

N(r, ν̄αi

f ) + S(r, g)

≤ (q1 + 1)T (r, g) + S(r, g).

This concludes q2 − 1 ≤ q1 + 1, which contradicts the assumption. The
proof of Theorem 3.4 is completed.
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