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ON KATËTOV SPACES 

BY 

JACK PORTER AND MOHAN TIKOO 

ABSTRACT. Recent work by Krystock, Porter, and Vermeer has em
phasized the importance of the concepts of Katëtov spaces and //-sets 
in the theory of //-closed spaces. These properties are closely related to 
being the 0-closure of some set and being the adherence of an open filter. 
This relationship is developed by establishing, among other facts, that an 
//-closed space in which every closed set is the ^-closure of some set is 
compact and the ^-closure of a subset of an //-closed space is Katëtov and 
characterizing the open filter adhérences of a space as precisely those sets 
which are the image of a closed set of the absolute of the space. Also, ex
amples are given of a countable, scattered space which is not Katëtov and 
an //-closed space with an //-closed subspace which is not the ^-closure 
of any subset of the given space. 

1. Introduction and Preliminaries. Katëtov spaces and //-sets have been studied 
in detail recently by Porter and Vermeer [6]. These properties bear an intricate rela
tionship with the properties of being //-closed and being the ^-closure of some set; 
thus, a deeper analysis is needed. In this paper several results and examples revealing 
this interrelationship and connection with the open filter adherence property (devel
oped in [5]) are provided. Among other facts, the following results are provided: (1.8) 
There exists a 0-closed subset of an //-closed space which is not //-closed. (2.2) If X 
is //-closed and A CX, then dgA is Katëtov. (2.5) An //-closed space in which every 
closed set is the 0-closure of some set is compact. (2.7) There exists an //-closed 
subspace of an //-closed space which is not the ^-closure of any subset (in the given 
space). (3.3) There exists a countable, scattered space which is not an //-set in any 
space. 

In this paper all spaces are assumed to be Hausdorff. 
Let X and Y be spaces. A function / : X —* Y is ^-continuous if for each x EX 

and open neighborhood U of f(x) in Y, there is an open neighborhood V of x in 
X such that/[c/V] Ç dU. The function/ is perfect if/ is closed and every fiber 
is compact and is irreducible if for each A Ç X, A is closed and/[A] = Y imply 
A = X. For A C X, denote {y e Y : f*~(y) Ç A} by f#[A]. Note that for A Ç X, 
f#[A] — Y\f[X\A] ( / does not need to be onto). In particular, if/ is a closed function 
and A is open in X, then/#[A] is open in Y. 
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Let X be a space. For A Ç X , the 0-closure of A, denoted by cCgA, is defined as 
{x E X : (cCU) DA ^ 0 for each open neighborhood U of x}. A subset A of X is 
0-closed if A = CCQA. Note that the ^-closure of a subset in a nonregular space may 
not be 0-closed and that if X is extremely disconnected and 7 is an open filter on X, 
then adx 7 is 0-closed. The next result is well-known and easy to verify. 

PROPOSITION 1.1. LetX and Y be spaces andf : X —• Y be a 0-continuous function. 
If A Ç X, thenf\A : A —• Y is 6-continuous andf[c(oA] Ç cC$f[A]. 

A space X is //-closed if X is a closed subset in every space containing X as a 
subspace. //-closed spaces are characterized (among Hausdorff spaces) by the property 
that every open cover has a finite subfamily whose union is dense. A related concept 
is that of an //-set - a subset A of a space X is an //-set if for every cover c of A 
by sets open in X there is a finite subset J C c such that A Ç c(x(\J 7)- An //-set 
with the subspace topology may not be an //-closed subspace; however, an //-closed 
subspace is an //-set. If A is an //-set in X and A Ç JJ C X where U is open (resp. 
X is a subspace of Y), then A is an //-set in £/ (resp. in Y). If X is an //-closed 
subspace and A Ç X, Velicko [8] has shown that CCQA is an //-set. The next results 
are well-known. 

PROPOSITION 1.2. [7] LetX and Y be spaces andf : X —>Y a 9-continuous function. 
(a) IfX is H-closed, then so is f[X]. 
(b) IfACX is an H-set, then so is f[A]. 

PROPOSITION 1.3. [5] If 7 is an open filter on an H-closed space X, then adx 7 is 
an H-set 

A subset A of a space X is regular open (resp. regular closed) if A = int(c/A) 
(resp. A = cC(int A)). The set of all regular open sets of X form a base for a topology 
on the underlying set of X, and X(s) denotes this new space. A space is semiregular 
if X = X(s). It is straightforward to verify that X(s) is a semiregular space. 

PROPOSITION 1.4. [7] Let X be an H-closed space and A Ç X. 
(a) If A is regular closed, then A is an H-closed space. 
(b) If A is an H-set in X, then A = (~){Y : A Ç 7 C X :Y is regular closed in X}. 

For a space X, recall that the Iliadis absolute is an extremely disconnected, Ty-
chonoff space EX and a perfect, 0-continuous, irreducible surjection k : EX —-• X. The 
Iliadis absolute is unique in this sense: if Y is an extremely disconnected, Tychonoff 
space and / : Y —> X is a perfect 0-continuous, irreducible surjection, then there is 
a homeomorphism h : EX —> Y such that / o h = k. The absolute EX can be con
sidered as the set {11 : U is an open ultrafilter on X and adx ̂  ^ 0} where the 
topology on EX is generated by the {OU : // is open in X} which is closed under 
finite unions and intersections, and OU = {ïl : U G U}. For an open set U of X, 
int(cCU) = £#[<9Z/] Ç it[01/] = cCU [7; Theorem 6.8(f)]. 

PROPOSITION 1.5. Let X be a space and A Ç X . 
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(a) [7] X is H-closed iff EX is compact. 
(b) [1] A is Q-closed in X iff k*~[A] is closed in EX. 

A space is minimal Hausdorff if it contains no strictly Hausdorff topology. Katëtov 
[4] has characterized minimal Hausdorff spaces as those spaces which are //-closed 
and semiregular and if X is an //-closed space, then X(s) is minimal Hausdorff. A space 
is Katëtov if it has a coarser minimal //-closed topology or equivalently, a coarser 
//-closed topology. A number of facts about Katëtov spaces have been established by 
Porter and Vermeer in [6, 9]. The next result gives two characterizations of Katëtov 
spaces. 

PROPOSITION 1.6. [2, 6, 9] For a space X, the following are equivalent: 
(a) X is Katëtov, 
(b) X is the remainder of an H-closed extension of a discrete space, and 
(c) X is the perfect image of a compact space. 

A nice corollary to this result is the following: 

COROLLARY 1.7. 

(a) A space is 9-closed in some H-closed space iff it is Katëtov. 
(b) A Katëtov space is an H-set in some space. 

PROOF. The proof of one direction of (a) is immediate from 1.6(b). Conversely, 
suppose A is a 0-closed subspace of an //-closed space X. By 1.5, k*~[A] is a compact 
subspace of EX. Since £|/:*~[A] : k*~[A] —• A is a perfect surjection (not necessarily 
^-continuous), it follows from 1.6 that A is Katëtov. The proof of (b) follows from 
these two statements: the remainder of an //-closed extension of a discrete space is 
0-closed, and a 0-closed subspace of an //-closed space is an //-set (cf. the paragraph 
preceding 1.2). • 

The space Q of rationals with the usual topology is an example of a space which 
is not Katëtov [3]. Since Q is 0-closed in Q, it follows immediately that "//-closed" 
cannot be removed from 1.7(a). On the other hand, a space A is an //-set in some 
space iff A is an //-set in an //-closed space as each space is contained in an //-closed 
space (see [4]) and by the comments in paragraph preceding 1.2. Vermeer [9; 5.3] has 
asked if the converse of 1.7(b) is true. The first space to try for a counterexample to 
1.7(b) is Q; however, Vermeer [9, 5.4] has shown that Q is not an //-set in any space. 

The class of Katëtov spaces is broad as each complete metric space is Katëtov [4, 
4.4]. In particular, the discrete space N is Katëtov. But N is neither the 0-closure of 
another set nor an //-set in /3N; of course, by 1.6, N is an //-set in some //-closed 
space. 

EXAMPLE 1.8. Consider the space X = R U {/?,</} where R is the space of real 
numbers with the usual topology and p and q are distinct elements not in R; U Ç X 
is defined to be open if U D R is open in R and p G U (resp. q G U) implies that 
\J{(2n,2n+l)U(-2n-l,-2n) :n^m}CU (resp. \J{(2n- l,2n)U(-2n, - 2 « + l ) : 
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n ^ m} Ç U) for some m E N. The space X is //-closed and the discrete subspace 
N U {/?} is Katëtov (and an //-set) but is not the ^-closure of any set; also, N U {/?, q} 
is a 0-closed subset of X which is not //-closed. 

2. 0-closure of sets. In this section, we extend 1.7(a) by showing that if A is a 
subspace of an //-closed space X, then CIQA is a Katëtov subspace. Also, a variation 
of a result first proven by Katëtov, is established by showing that an //-closed space 
in which every closed set is the ^-closure of another set is compact. In the preceding 
paragraph, an example of a non-//-closed, 0-closed subspace of an //-closed space is 
given; in this section, an //-closed subspace of a space which is not the ^-closure of 
any subset is given. First we prove some preliminary results. 

LEMMA 2.1. Let X and Y be spaces, B ÇY, andf : X —> F a perfect, 6-continuous 
function such that CCQB Ç/[X]. Thenf[cCgf^[B]] = CIQB. 

PROOF. By 1.1,f[c[ef~[B]] C d0B. Let p <E Y\f[cCtf^[B]]. If p G Y\f[X], then 
p 0 CIQB. SO, suppose p E f[x]. Now, f^(p)n cCof^[B] = 0. For each q ef^ip), 
there is an open set Uq such that q € Uq and dUq C\f*~[B] = 0. By compactness of 
f^(p), f^(P) £ U{^ : Q e F} for some finite set F Ç f^(p). Let W = \J{Uq : 
q e F}. Then f[cCW] 2 cCf[W] 2 df#[W] where f#[W] = Y\f[X\W] is open and 
P Ef#[W]. As cCWnf^-[B] = 0, it follows that df#[W]nB = 0. So,/? ^ cl9B. This 
shows that deB Çf[cCdf^[B]l D 

COMMENT. For a space X, consider the absolute EX and the perfect, ^-continuous 
surjection k : EX —• X. For 5 Ç X, by 2.1, ^[c/"^^[5]] = c^£. Since EX is 
Tychonoff, c f ^ [ £ ] = dk*-[B], So, ifctcfit^tB]] = cCeB. 

PROPOSITION 2.2. IfX is an H-closed space and A Ç X, then CCQA is Katëtov. 

PROOF. For C = c[ok^~[A\,k\C : C —» c/gA is a perfect surjection. By 1.5(a) and 
1.6, it follows that CCQA is Katëtov. • 

In 1947, Katëtov [4] proved that an //-closed space in which every closed set is 
//-closed is compact. Since an //-closed subspace is Katëtov and an //-set, it is natural 
to inquire whether the result by Katëtov can be improved by changing the hypothesis 
to "every closed set is an //-set" or "every closed set is Katëtov." In [10], Viglino 
gave an example of a non-compact //-closed space in which every closed set is an H-
set. To show the second possibility is false, consider this example of a non-compact, 
//-closed space in which every closed set is Katëtov. Let / denote the unit interval 
[0,1] with the usual topology enlarged by making { l / « : n G N } a closed set. Clearly, 
/ is a noncompact, //-closed space. Using that a complete metric space is Katëtov [6, 
9.4], it follows that every closed set of J is Katëtov. 

By 2.2 and a result of Velicko [8], if X is an //-closed space and A Ç X, then dgA 
is Katëtov and an //-set. We now show that an //-closed space with the hypothesis 
"every closed set is the ^-closure of some set" is compact. First two lemmas are 
needed. 
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LEMMA 2.3. Let X and Y be spaces, f :X —• F a perfect, 9-continuous function, A 
a closed subset ofX, and f[A] D CIQB for some B Ç Y. Then f[cCo(f^~[B] HA)] = 
cltflf*-[B]nA] = cCoB. 

PROOF. The proof follows from 1.1 and 2.1. • 

LEMMA 2.4. Let X be an H-closed space and c a chain of nonempty sets such that 
for each C G c, C = CIQB for some B Ç X. Then He is a nonempty H-set which is 
Katëtov. 

PROOF. We can assume c = {Ca : a < 7} is indexed over an ordinal 7 with 
Ca 2 Cp whenever a ^ j3 < 7. By 1.5(a), EX is compact. Let D0 = c(k*~[B'] where 
Co = cCgB'. By induction, suppose for (3 < 7, there is a chain {Da : a < j3} of closed 
sets such that k[Da] = Ca for a < p. Let D = C\{Da : a < (3}. For p e Cp and 
a < /3,p ECa = k[Da]\ hence, {k*~(p)r\Da : a < (3} is a chain of nonempty compact 
sets. It follows that k^(p)HD ^ 0 and k[D] D Cp(= deB for some B Ç X). For 
£>0 = cCk*-[B]r\D, k[Dp] = Cp by 2.3. By induction there is a chain {Da : a < 7} of 
closed subsets of EX such that k[Da] = Ca for a < 7- Now A = n{Da : a < 7} is a 
nonempty compact set and, by repeating the above argument, k[A] = H{Ca : a < 7}. 
By 1.2 and 1.6, Pl{Ca : a < 7} is Katëtov and an //-set. • 

THEOREM 2.5. Arc H-closed space in which every closed set is the 9-closure of some 
set is compact. 

PROOF. This follows from 2.4 and Alexander's subbase theorem for compactness.D 

In the first section an example of a 0-closed subset of an //-closed space is given 
which is not //-closed. An //-closed space is both Katëtov and an //-set in every 
//-closed space containing it as a subspace. In view of 2.2, it is natural to inquire if 
an //-closed subspace of an //-closed space is the ^-closure of some set. The next 
example gives a negative answer to this question. First some preliminary results and 
definitions are needed. 

For a space X, KX is used to denote the set X U {VI : 11 is a free open ultrafilter 
on X} with the topology defined by U Ç KX is open if U Pi X is open in X and 
11 € U\X implies U HX G 11. Katëtov [4] showed that KX is an //-closed extension 
of X. Note that nX\X is a closed discrete subspace of KX. Additional information 
about KX can be found in [7, 4.8 and 7.2]. 

Let X be a space and S(X) — XXCJ. The topology on S(X) is defined by U Ç 5(X) 
is open iff (/?, 0) G U implies there is some open set W in X and nip) G N such that 
p G W and W x ({0}U[n(p), 00)) Ç U. Note (see [7, 2G(3)]) that S (X) is a semiregular 
Hausdorff space and {(/?, n)} is open for each p G X and n^ 1. 

LEMMA 2.6. LeJ X be a space, A Ç X and J a filter base of closed sets on X such 
that n? = 0 and F Ç Afar each F G 7 • 77te« there is a point p G K(S(X))\S(X) 

such that p G de(A x {0}) {9-closure in K(S(X))). 

https://doi.org/10.4153/CMB-1989-061-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1989-061-0


430 J. PORTER AND M. TIKOO [December 

PROOF. Let Y = S(X). For each F G J , let UF = F x N. Then UF is open in 
Y and dYUF = F x CJ. T = { £ / F \ F \ F E 7 and 7 H ({<?} x N) is finite for each 
<7 G F} . For UF\T G T , it follows that (dY(UF\T)) H (X x {0}) == F. In particular, 
ady *T = 0. So, T is contained in some free open ultrafilter p on 7; now p E KY\Y . 
Let W G p ,F G J , and 7 = W H (F x N). If W H ({(7} x N) is finite for each q eF, 
then W D (UF\T) = 0; this is impossible as T Cp. Thus, W Pi ({<?} x N) is infinite 
for some q G F and dYW H (Ax {0}) ^ 0. This shows that p G cC9(A x {0}). • 

Let Y be the unit interval [0,1] with the usual topology and Q — {x G Y : x 
rational}. Now Y is an //-closed extension of Q. Define U Ç Y to be open iff £/ DQ 
is open in Q and if /? G t / \ ô , there are an open set V in F and a closed nowhere 
dense set N in Q such that p e V and (V H Q)\N Ç //. Denote F with this new 
topology by Z. Note that Z is an extension of X and that Z\Q is a closed discrete 
subspace of Z. It is now straightforward to show that Z is //-closed. 

THEOREM 2.7. Not every H-closed subspace of an H-closed space X is a 6-closure 
inX. 

PROOF. Let X — K{S (Z)) where Z is defined in the previous paragraph. Consider the 
//-closed subspace Z x {0}. Assume there is a subset A Ç Z such that CCQ(A X {0}) — 
Zx{0}. If A\Q is infinite, then J = {A\(QUF) : F is a finite subset of A\Q} is a filter 
base of closed sets on Z such that nf = 0. By above fact, cCg(A x {0})\5(Z) ^ 0, a 
contradiction. So, A\Q is finite. Let /? G [0,1]\(A Ug)) . Assume there is a sequence 
{g„} in AD Q such that (#„) —* p. Let F„ = {gm : m ^ n}. Then FQ is closed and 
nowhere dense in Z. Now, J — {Fn : n G N} is a filter base of closed sets in Z 
such that F „ C A for each n G N and Hf = 0. By 2.6, ĉ CA x {0})\5(Z) ^ 0, a 
contradiction. Thus, there is an e > 0 such that (p,p + 4e) n A = 0. Then /? + 2e G 
(p + e,p + 3e) Ç (p + e,p + 3e] Ç (p,p + 4e) and (p + 2 e , 0 ) G Z x {0}. D 

3. Compact Preimages. In the previous section, a subspace of an //-closed space 
which is the ^-closure of some set is shown to be Katëtov. This is accomplished by 
showing that the ^-closure of a set is the perfect image of a closed subset of the 
absolute. In this section we characterize those subspaces of a space X which are the 
image of closed sets of EX. A special case is noted in 1.5(b) - if A is a subset of 
a space X,k^~[A] is a closed subset of EX iff A is 0-closed in X. In [9], Vermeer 
characterizes the //-closed subspaces A of an //-closed space X as those for which 
there is a compact subspace B of EX such that k[B] = A and k\B : B ^ A is 
^-continuous. 

THEOREM 3.1. Let X be a space and 0 ^ A Ç X. There is a closed B Ç EX such 
that k[B] = A iff A = ad J for some open f Iter J on X. 
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PROOF. Suppose there is a closed set B of EX such that k[B] — A. For each 
p G X\A, k*~(p) is compact and k^(p)HB = 0. There is an open set Up in X such 
that k*~(p) Ç Of/p Ç EX\B(OUp is defined in the paragraph preceding 1.5). Denote 
k*[OUp] by Wp (recall that Wp = mt(cCUp)); it is easy to verify that Ŵ  H A = 0 and 
p G Wp. Let J be the filter generated by {X\cC((J{Wp : p G F}) : F is a finite subset 
of X\A}. To show jF is a filter and A = ad jF, it suffices to establish that for each finite 
set F Ç X\A,A H (mt(c((D{Wp : p G F})) = 0. Now, £ H ( | J { ^ ^ : P € F}) = 0. 
But U { 0 ^ : p G F} = 0((J{tfp : p ^ } ) (see 6.8(f) in [7]). Since k*[0(\J{Up : 
p G F})] = int(c/"(|J{^ : P e F})], it follows that A D int(c/"(U{^ : P e F})] = 0. 
Conversely, suppose A — 2ÂJ for some open filter J on X. Now B — C\{OU : U G 
F̂ } is a closed set of EX and it [5] Ç D{k[OU] : î / 6 f } = f l { ^ : ^/ G jF } = A. 

Suppose ^ ^ ifc[fi]. Then r ( < ? ) n n { 0 ( / : U G J } = 0. As Jfc^) is compact and F̂ 
is a filter, there is some V G 7 such that ^ ( ^ P l O V = 0. So, <7 ^ k[OV] = cCV. So 
^ 0 A as A Ç c(V. This shows that A Ç £[£]. D 

If J is an open filter on a space X, then ad f is a closed set in X(s). Consider 
the //-closed space / described in the paragraph following 2.2 and the closed subset 
A = {1/n : n £ N}. Now, A is not a closed subset of J(s) which is the unit interval 
with the usual topology. So, A is not the image of any closed subset of the compact 
space EJ. 

Let X be a space and A Ç X. By 2.1, CCQA is the adherence of some open filter. By 
Vermeer's result [9; 4.3], an //-closed subspace of X is the adherence of some open 
filter on X. We can now extend 1.3. 

COROLLARY 3.2. Let f be an open filter on an H-closed space X. Then ad J is an 
H-set ofX and is Katëtov. 

PROOF. By 1.3, ad^F is an //-set of X. By 3.1, ad^F = k[B] for some closed set 
B of EX. By 1.5(a) and 1.6, ad^F is a Katëtov space. D 

It was our hope that by using 3.2 we could prove that an //-set of a countable 
//-closed space is the adherence of an open filter base and conclude that //-sets in 
countable semiregular //-closed spaces are Katëtov. This would have provided a partial 
converse to 1.7(b) and a partial solution to Vermeer's question. However, Krystock [5; 
2.9] has given an example of a countable semiregular //-closed space with an //-set 
S which is not the adherence of an open filter base. As S is discrete, it is Katëtov, and 
the problem of the converse of 1.7(b) for countable //-closed spaces remain open. 

A related problem was proposed in [6] where it is shown that a countable, Katëtov 
space is scattered (scattered means every nonempty subspace has an isolated point). 
The problem is to determine if a countable, scattered space is Katëtov. We now 
present an example of a countable, scattered space X which is not an //-set in any 
space. Hence, by 1.7(b), X is not Katëtov. 
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EXAMPLE 3.3. Let X = Q x ({0} U{l/n : n e N}). Define U C X to be open 
iff for each (r, 0) G £/, there are e > 0 and m G N such that (r — e, r + e) x \/n : 
n è w} Ç [/, Clearly, X is Hausdorff. Since the points of Q x {\/n : n G N} are 
isolated and Q x {0} is a discrete space, it is easy to verify that X is scattered. Let 
X = {je, : / G u;}, and suppose X is an //-set of a space F. Let m be the least 
element of ^\{0} such that xm G Q x {0}. There is an open set U\ in Y such that 
xm G £/i and {xo, ...,jcm_i} Ç Y\dYU\. There are ei > 0 and n\ G N such that 
#i = (*m — ei,xm + ei) x {1/AI : « ^ m} Ç U\. Let £ be the least element of 
a;\{0,.. . , m} such that xk G B\ D Q x {0}. There is an open set W2 such that xk G W2 

and {jt0,... ,**-i} Q Y\cCYW2. Let f/2 = W2nUi. There are e2 > 0 and n2 G N such 
that #2 = (** — ^ 2 , ^ + e2) x {l//i : n ^ «2} £ ^2- Continue by induction to obtain a 
decreasing sequence {Un : n G N} of open sets of Y such that Un HX ^ 0 for each 
« G N and i n n { c f y ( / „ : « G N} = 0. Thus, X is not an //-set in Y. D 

We appreciate the help of Judy Roitman and Fred Galvin in constructing the above 
example. 

COMMENT. Vermeer [9] has shown that an //-closed space in which all //-sets are 
minimal Hausdorff is compact. An infinite discrete space is a noncompact space in 
which each //-set is compact. A more interesting example of a noncompact (and non-
regular) space in which every //-set is compact is described as follows: Let X = 
{(l/n,l/m):n,\m\ G N} U {(l/n,0) : n G N}U{(0,1),(0,-1)}. Let U G /3N\N. A 
set U Ç X is defined to be open iff £/\{(0,1), 0, —1)} is open in the topology induced 
by the usual topology of the plane R2 and if (0,1) G U (resp. (0 , -1) G U), then there 
is a set K G ZL such that {(l//i, 1/m) (resp. (1/n, -1/w)) : « G #,ra G N} Ç £/. 

NOTE. In response to a comment from Mike Girou, here is an example of a non-
regular space in which every closed set is the ^-closure of some set. Let UJ\ and UJ + 1 
have the usual order topology and f be the unique free closed ultrafilter on uj\. Let 
X = UJ\ x (UJ + 1) U {00} and define U Ç X to be open if U Pi UJ\ X (UJ + 1) is open in 
o;i x (a; + 1) and 00 G U implies F x UJ Ç U for some F G f . Using that for each 
F G 7 " , there is an open set U in CJI such that U Pi F is dense in F and F\£/ G 7, 
it is straightforward to show that X has the desired properties. 
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