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Abstract

We describe a unified, lazy, declarative framework for solving constraint satisfaction prob-

lems, an important subclass of combinatorial search problems. These problems are both

practically significant and computationally hard. Finding solutions involves combining good

general-purpose search algorithms with problem-specific heuristics. Conventional imperative

algorithms are usually implemented and presented monolithically, which makes them hard

to understand and reuse, even though new algorithms often are combinations of simpler

ones. Lazy functional languages, such as Haskell, encourage modular structuring of search

algorithms by separating the generation and testing of potential solutions into distinct func-

tions communicating through an explicit, lazy intermediate data structure. But only relatively

simple search algorithms have been treated this way in the past. Our framework uses a generic

generation and pruning algorithm parameterized by a labeling function that annotates search

trees with conflict sets. We show that many advanced imperative search algorithms, including

conflict-directed backjumping, backmarking, minimal forward checking, and fail-first dynamic

variable ordering, can be obtained by suitable instantiation of the labeling function. More

importantly, arbitrary combinations of these algorithms can be built by simply composing

their labeling functions. Our modular algorithms are as efficient as the monolithic imperative

algorithms in the sense that they make the same number of consistency checks, and most

of our algorithms are within a constant factor of their imperative counterparts in runtime

and space usage. We believe our framework is especially well-suited for experimenting to find

good combinations of algorithms for specific problems.

1 Introduction

Combinatorial search problems offer a great challenge to the academic researcher:

they are of tremendous interest to commercial users and they are often very com-

putationally intensive to solve. Over the past several decades the AI community

has responded to this challenge by producing a steady stream of improvements to

generic search algorithms. There have also been numerous attempts to organize

the various algorithms into standardized frameworks for comparison (Tsang, 1993;

Kondrak, 1994; Frost, 1997).

Although the speed and cunning of search algorithms have improved, the new
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algorithms are more complicated and harder to understand, even though they are

often combinations of simpler, standard algorithms. The problem is exacerbated

by the fact that most algorithms are described by large, monolithic chunks of

pseudo-code or C code. Although it is recognized that most problems benefit from a

tailor-made solution involving a combination of existing generic and domain-specific

algorithms, modularity has not been a strong point of most recent research. It is

difficult to reuse code except via cut-and-paste. Moreover, to prove these algorithms

correct we must resort to complex reasoning about their dynamic behavior. For

example, although most of these search algorithms are conceived as varieties of ‘tree

search’, no actual tree data structures appear in their implementations; trees are

present only virtually, in the form of recursive routine activation histories. Perhaps

for this reason, even widely-used and well-studied algorithms often lack correctness

proofs.

In the world of lazy functional programming, the idea of implementing search

algorithms using modular techniques is a commonplace. The classic paper of Hughes

(1989) and the textbook of Bird & Wadler (1988) both give examples of search

algorithms in which generation and testing of candidate solutions are separated into

distinct phases, glued together using an explicit, lazy, intermediate data structure.

This ‘generate-and-test’ paradigm makes essential use of laziness to synchronize the

two functions (really coroutines) in such a way that we never need to store much of

the (exponential-sized) intermediate data structure at any one time. In general, the

modular lazy approach can lead to algorithms that are much simpler to read, write,

and modify than their imperative counterparts. However, the algorithms described

in these sources are fairly elementary.

In this paper we present a lazy declarative framework for solving one important

class of combinatorial search problems, namely Constraint Satisfaction Problems

(CSPs) over finite domains. This class of problems includes graph coloring and

matching, scene labeling in computer vision, temporal reasoning, resource allocation

in planning and scheduling, and many others (Tsang, 1993). For simplicity, we

restrict our attention to binary CSPs, but this restriction is not fundamental to our

general approach. Our framework is based on explicit, lazy, tree structures, in which

each tree node represents a state in the search space; problem solutions correspond

to leaf nodes that meet certain criteria. Nodes can be labeled with conflict sets, which

record constraint violations in the corresponding states; many algorithms use these

sets to prune subtrees that cannot contribute a solution.

Our code is written in Haskell 98 (Peyton Jones & Hughes, 1999). We provide

a small library of separate functions for generating, labeling, rearranging, prun-

ing, and collecting solutions from trees. In particular, we describe a generic search

algorithm, parameterized by a labeling function, and show that a variety of stan-

dard imperative CSP algorithms, including simple backtracking, conflict-directed

backjumping (Prosser, 1993a), backmarking (Gaschnig, 1977), and minimal forward

checking (Dent & Mercer, 1994), can be obtained by making a suitable choice of

labeling function. A further class of algorithms based on dynamic variable order-

ing (Kumar, 1992) can be obtained via a small change to the generating function.

Using an explicit representation of the search tree allows us to focus on the data
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associated with each search state and gives us new insights into more efficient algo-

rithms. As in other recent work on functional algorithms and data structures (King

& Launchbury, 1995; Okasaki, 1998), we found that recasting imperative algorithms

into a declarative lazy setting casts new light on the fundamental algorithmic ideas.

In particular, it is easy to see how to combine our algorithms, simply by composing

their labeling functions, and to see that the result will be correct.

Since the whole point of improving search algorithms is to be able to solve larger

problems faster, we must obviously be concerned with the performance of our lazy

algorithms. Our experiments show that lazy, modular Haskell code is an order of

magnitude slower than a direct recursive implementation in Haskell; moreover, even

the latter can be several times slower than the equivalent C code. However, since

search times often explode exponentially, even slowdowns of one or two orders of

magnitude have little effect on the size of problem we can solve within a fixed time

bound. All our algorithms and their combinations are fast enough for experiments

that have been interesting to researchers in the past; for example we are able to

reproduce parts of the comparative tables assembled by Bacchus & van Run (1995)

and Kondrak (1994). More importantly, our implementations are fast enough to

allow experimentation with different combinations of algorithms on problems of

realistic size. For such experiments, CPU time is often not an ideal comparison

metric, since it is difficult to compare times obtained from different implementations

on different systems. A widely used alternative metric is the number of consistency

checks performed by the algorithm, and we adopt this metric here.

Although the generate-and-test algorithms we discuss in this paper are widely

applicable, they are too low-level to take advantage of the specific characteristics

of many real-world problems, which are often better handled by explicit constraint

manipulation. For example, our framework could be used directly to solve scheduling

problems over discrete ordered domains by brute-force search, but it would typically

be much more efficient to represent scheduling constraints using intervals and to

apply interval-based reasoning to reduce the domains of variables before resorting

to generate-and-test. Thus, a more comprehensive system for solving constraint

problems might include our framework as just one component among several.

The paper is organized as follows. Section 2 formalizes our problem domain

and section 3 gives a Haskell specification for it. Section 4 describes simple tree-

based backtracking search. Section 5 introduces conflict sets and our generic search

algorithm, and recasts backtracking search in that framework. Section 6 briefly

discusses search heuristics based on value reordering. Section 7 describes how

the conflict set framework can be used to support more intelligent backtracking.

Sections 8 and 9 describe more sophisticated algorithms based on the idea of caching

consistency checks, and section 10 discusses how algorithms can be combined.

Section 11 extends these ideas to dynamic variable ordering. Section 12 summarizes

performance results, section 13 describes related work, and section 14 concludes.

The reader is assumed to have a working knowledge of lazy functional program-

ming and a reading knowledge of Haskell, although certain Haskell subtleties will be

explained as they arise. All the code examples in this paper and additional required

support code are available from the journal website.
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2 Binary CSPs

Definition 1

A binary constraint satisfaction problem is described by

• a set of variables V = {v1, v2, . . . , vm};
• for each variable vi, a finite set Di of possible values (its domain); and

• for each pair of distinct variables vi and vj , i < j, a binary relation Rij ⊆
Di × Dj , representing a constraint on the values that vi and vj can take on

simultaneously.

An assignment vi:=xi associates a variable vi to some value xi ∈ Di. A state is a

set of assignments, with at most one assignment per variable. A state S ′ extends

state S if it contains all the assignments of S together with one or more additional

assignments.

A pair of assignments vi:=xi and vj:=xj , i < j, satisfies the corresponding con-

straint Rij if (xi, xj) ∈ Rij . A state is consistent if every pair of distinct assignments

in the state satisfies the corresponding constraint; otherwise it is inconsistent.

A state is complete if it assigns all the variables of V ; otherwise it is partial. A

solution to a CSP is any complete consistent state.

This definition of binary CSPs can be generalized by replacing the binary relations

by n-ary relations. Although our general approach should extend to this broader

class of problems, the algorithms in this paper rely heavily on the binary nature

of the constraints. In any case, an n-ary CSP can always be encoded (though not

necessarily efficiently) as an equivalent binary CSP (Stergiou & Walsh, 1999).

To simplify the presentation in this paper, we assume that all domains have the

same size n and that their values are represented by integers in the set {1, 2, . . . , n};
these limitations could be trivially removed.

A naive approach to solving a CSP is to enumerate all possible complete states

and then check each in turn for consistency. In a binary CSP, consistency of a state

can be determined by performing consistency checks on each pair of assignments in

the state, until an inconsistent pair of variables is detected, or all pairs have been

checked. Following the conventions of the search literature, we use the number

of consistency checks as a key measure of algorithm efficiency, although it is not

necessarily an accurate predictor of execution time.

For some problems we want to calculate all solutions, but for others we only wish

to find one solution as quickly as possible. All the search algorithms in this paper

are suited to either situation; the heuristics in section 6 are specifically designed to

speed up the search for a first solution.

3 CSPs in Haskell

Figure 1 gives a Haskell framework for describing CSP problems. An assignment

is constructed using the infix constructor :=. Variables and values are numbered

beginning from 1. A CSP is modeled as a Haskell record containing the number

of variables, vars, the size of their domain, vals, and a constraint relation, rel;
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type Var = Int
type Value = Int

data Assignment = Var := Value

var :: Assignment -> Var
var (var := _) = var

value :: Assignment -> Value
value (_ := val) = val

type Relation = Assignment -> Assignment -> Bool

data CSP = CSP {vars, vals :: Int, rel :: Relation}

data State = State ([Assignment],[Var])

assignments :: State -> [Assignment]
assignments (State(as,_)) = as

unassigned :: State -> [Var]
unassigned (State(_,us)) = us

emptyState :: CSP -> State
emptyState CSP{vars=vars} = State([],[1..vars])

isEmptyState :: State -> Bool
isEmptyState = null . assignments

extensions :: CSP -> State -> [State]
extensions CSP{vals=vals} (State(as,nextvar:rest)) =

[State((nextvar := val):as,rest) | val <- [1..vals]]
extensions _ (State(_,[])) = []

newNextVar :: State -> Var -> State
newNextVar s@(State(as,[])) _ = s
newNextVar (State(as,us)) next = State(as,next:delete next us)

complete :: State -> Bool
complete = null . unassigned

lastAssignment :: State -> Assignment
lastAssignment = head . assignments

nextVar :: State -> Var
nextVar = head . unassigned

Fig. 1. A formulation of CSPs in Haskell.

many of our functions take this record as a parameter.1 We represent the relation

as an oracle function taking two assignments and returning True iff the assignments

obey the relevant constraint. For convenience, we require that the oracle function be

symmetric (i.e. ∀a, b.rel a b = rel b a), so that its two arguments can be passed in

1 Functions often reference only some of these parameters; in Haskell, it is possible to pattern match
against a subset of the fields of a record, as in, for example, the emptyState function. This function
also illustrates that the same identifier (here vars) can be used both as a field name and as the
corresponding pattern variable name.
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generate :: CSP -> [State]
generate csp@CSP{vars=vars} = g vars

where g 0 = [emptyState csp]
g var = concat [extensions csp st | st <- g (var-1)]

inconsistencies :: CSP -> State -> [(Var, Var)]
inconsistencies CSP{rel=rel} st =

[ (var a, var b) | a <- as, b <- as, var a > var b, not (rel a b) ]
where as = assignments st

consistent :: CSP -> State -> Bool
consistent csp = null . (inconsistencies csp)

test :: CSP -> [State] -> [State]
test csp = filter (consistent csp)

solver :: CSP -> [State]
solver csp = test csp candidates where candidates = generate csp

Fig. 2. A naive solver for CSPs.

either order. Using an oracle function permits great flexibility in the representation

of constraints; for example, they can be implemented by a four-dimensional array

of booleans or by a mathematical formula. However, the ‘black box’ character of

the oracle does prevent the use of algorithms that analyze constraint structure, such

as arc consistency maintenance (Kumar, 1992); changing our code to use a less

abstract constraint representation would be straightforward.

A state is modeled as a sequence of assignments, together with a sequence of

as yet unassigned variables. States are built from emptyState by repeated use of

extensions, which takes a state, extracts the head (if any) of its list of unassigned

variables, constructs assignments of this variable to each possible value, extends the

original state with each of these assignments in turn, and returns the resulting list

of extended states. The order of unassigned variables in each state thus governs

the order of assignments in its extensions. Ordinarily, the unassigned variables are

simply listed in increasing numeric order, as set by emptyState; however, the head

of the unassigned list can be changed using newNextVar (which we use only in

section 11). The lastAssignment operator returns the assignment with which the

state was most recently extended.

Figure 2 shows an implementation of a naive solver. We present the solver in the

standard ‘lazy pipeline’ style that separates generation of candidate solutions (here

the set of all complete states) from consistency testing. Although this code appears to

produce a huge intermediate list data structure candidates, lazy evaluation insures

that list elements are generated only on demand, and elements that fail the filter in

test can be garbage collected immediately. Similarly, although inconsistencies

appears to build a list of all inconsistent variable pairs in the state, consistent

actually demands just enough of the list to check whether it is null, and hence at

most one inconsistent variable pair is calculated. Finally, although the solver returns

a list of all solutions if demanded, it can be used to obtain just the first solution

(and do no further computation) by asking for just the head of the result. Although
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queens :: Int -> CSP
queens n = CSP{vals=n,vars=n,rel=safe}

where safe (col1 := row1) (col2 := row2) =
(row1 /= row2) && abs (col1 - col2) /= abs (row1 - row2)

graphcoloring :: Int -> ((Var,Var) -> Bool) -> Int -> CSP
graphcoloring nodes adj colors = CSP{vars=nodes,vals=colors,rel=ok}

where ok (n1 := c1) (n2 := c2) = c1 /= c2 || not (adj (n1,n2))

Fig. 3. CSP examples.

the code thus uses much less space than a strict reading would suggest, this solver

is still extremely inefficient because it duplicates work, but it serves to illustrate lazy

coding style and as a specification for the more sophisticated solvers we introduce

beginning in section 4.

Figure 3 shows two simple examples of CSPs that are useful for illustrating

different search strategies. The n-queens problem looks for a way to put n queens

on a n× n chess board such that no queen is threatening another. Our definition of

queens is parameterized by the board size and uses the standard optimization that

we only try to place one queen in each column (Nadel, 1990). The CSP variables are

the columns, the values are the rows, and each assignment represents the placement

of a single queen; the oracle function replies True on a pair of queen positions

provided that the queens are on different rows and on different diagonals. We make

heavy use of this example in the remainder of the paper.

The graphcoloring function constructs an instance of a graph coloring prob-

lem (Kempe, 1879), specified by a number of nodes, a set of edges between nodes

(represented by a characteristic function on pairs of nodes), and a number of colors.

The CSP variables are the graph nodes, the values are the possible colors, and the

oracle function returns True on a pair of color assignments provided that the colors

are different or there is no edge between the nodes.

Given the definition of a CSP, we can apply the general-purpose CSP machinery

to solve it; for example, the expression solver (queens 5) generates a list of

solutions to the 5-queens problem.

4 Backtracking and tree search

The most obvious defect of the naive solver is that it can duplicate a tremendous

amount of work by repeatedly checking the consistency of assignments that are

common to many complete states. A fundamental fact about CSPs is that no

extension to an inconsistent state can ever be consistent, so there is no point in

searching such extensions for a solution. This observation immediately suggests a

better solver algorithm. A backtracking solver searches for solutions by constructing

and checking partial states, beginning with the empty state and extending with

one assignment at a time. Whenever the solver discovers an inconsistent state, it

immediately backtracks to try a different assignment, thus avoiding the fruitless

exploration of that state’s extensions. Moreover, consistency of each new state can
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data Tree a = Node a [Tree a]

mkTree :: a -> [Tree a] -> Tree a
mkTree a ts = Node a ts

label :: Tree a -> a
label (Node a _) = a

initTree :: (a -> [a]) -> a -> Tree a
initTree f a = Node a (map (initTree f) (f a))

mapTree :: (a -> b) -> Tree a -> Tree b
mapTree f (Node a ts) = Node (f a) (map (mapTree f) ts)

foldTree :: (a -> [b] -> b) -> Tree a -> b
foldTree f (Node a ts) = f a (map (foldTree f) ts)

zipTreesWith :: (a -> b -> c) -> Tree a -> Tree b -> Tree c
zipTreesWith f (Node a ts) (Node b us) =

Node (f a b) (zipWith (zipTreesWith f) ts us)

prune :: (a -> Bool) -> Tree a -> Tree a
prune p = foldTree f

where f a ts = Node a (filter (not . p . label) ts)

leaves :: Tree a -> [a]
leaves = foldTree f

where f leaf [] = [leaf]
f _ ts = concat ts

inhTree :: (b -> a -> b) -> b -> Tree a -> Tree b
inhTree f b (Node a ts) = Node b’ (map (inhTree f b’) ts)

where b’ = f b a

distrTree :: (a -> [b]) -> b -> Tree a -> Tree b
distrTree f b (Node a ts) = Node b (zipWith (distrTree f) (f a) ts)

Fig. 4. Trees in Haskell.

be tested just by comparing the newly added assignment to all previous assignments

in the state, since any inconsistency involving only the previous assignments would

have been discovered earlier. If the solver manages to reach a complete state without

encountering an inconsistency, it records a solution; if multiple solutions are wanted,

it backtracks to find the others.

Backtracking solvers can be viewed very naturally as searching a tree, in which

each node corresponds to a state and the descendents of a node correspond to

extensions of its state. In conventional imperative implementations of backtracking,

the tree is not explicit in the program; if a recursive implementation is used, the tree

is isomorphic to the dynamic activation history tree of the program, but usually the

tree is little more than a metaphor for helping the programmer reason informally

about the algorithm. In the lazy functional paradigm it is natural to treat search

trees as explicit data structures; programs are constructed as pipelines of operations

that build, label, manipulate, and prune actual trees. As before, we rely on laziness

to avoid actually building the entire tree.

As the remainder of this paper deals exclusively with tree-based searches, it will
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mkSearchTree :: CSP -> Tree State
mkSearchTree csp = initTree (extensions csp) (emptyState csp)

earliestInconsistency:: CSP -> State -> Maybe Var
earliestInconsistency CSP{rel=rel} st =

case assignments st of
[] -> Nothing
(a:as) -> case filter (not . rel a) (reverse as) of

[] -> Nothing
(b:_) -> Just(var b)

labelInconsistencies :: CSP -> Tree State -> Tree (State,Maybe Var)
labelInconsistencies csp = mapTree f

where f s = (s,earliestInconsistency csp s)

btsolver0 :: CSP -> [State]
btsolver0 csp =

(filter complete . map fst . leaves . prune ((/= Nothing) . snd)
. (labelInconsistencies csp) . mkSearchTree) csp

Fig. 5. Simple backtracking solver for CSPs.

prove convenient to blur the distinction between a node and its associated state.

Thus we will freely use terms such as inconsistent node (meaning a node whose

associated state is inconsistent) and the children of a state (meaning its extensions

by a single assignment).

Figure 4 gives Haskell definitions for an abstract tree datatype and associated

utility functions. A Tree is a node containing a label and a list of children, themselves

Trees. Function initTree generates a tree from a function that computes the

children of a node (Hughes, 1989). Functions mapTree, foldTree, and zipTreesWith

are the analogues of the familiar functions on lists. The application (prune p t)

removes all subtrees of t whose root labels match p. However, the root node of the

overall tree is always retained; in our applications this is always appropriate, and

it avoids the awkward possibility of an empty result, which is not expressible as a

Tree. The leaves operator extracts the labels of the leaves of a tree into a list in

left-to-right order. The inhTree function is a variant of map that propagates a value

down the tree much like an inherited attribute calculation in an attribute grammar,

and distrTree is another map variant that transforms the value at each node to a

list whose elements are distributed to the children.

The code in figure 5 uses trees of states to implement a backtracking solver,

btsolver0, using a lazy pipeline. The generator mkSearchTree builds a tree con-

taining all possible states, using a fixed variable ordering in which all nodes at level

i of the tree (counting the root as level 0) extend their parent by an assignment to a

fixed vi. Each node describes an entire (partial) state, but sharing of list tails (in any

reasonable Haskell implementation) guarantees that it actually stores only a single

assignment, together with a pointer to the remainder of the state embedded in its

parent node.

The application (labelInconsistencies csp) returns a tree transformer: it adds

an annotation to each node recording the index of an earlier variable with which the
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Fig. 6. Portion of search tree for queens 6. Nodes at level i show assignments to vi; the

assigned values are shown in bold; the earliest variable, if any, with which the node is

inconsistent is shown below it. Children of inconsistent nodes are not shown because, under

lazy evaluation, they are never constructed. The diagram at the top right shows the board

position corresponding to the node at level 3. Each placed queen is marked by a Q in the

corresponding square. If a square is numbered, then it is threatened by a placed queen; the

number is the column of the left-most queen that threatens that square.

most recent assignment conflicts, if any. In fact, earliestInconsistency returns

the earliest such variable (i.e. the one least recently assigned); the point of choosing

this variable will become apparent in section 7. The tree function prune is used to

remove all subtrees rooted at inconsistent nodes. Any nodes representing complete

states that are still left in the tree must be solutions; the remaining pipeline stages

extract these using the tree function leaves and the standard list functions map

and filter. Figure 6, taken from Kondrak (1994), illustrates a part of the tree

for queens 6 just prior to pruning. It is essential to note that this pipeline is

demand driven: each stage executes only when demanded by the following stage. In

particular, inconsistency calculations will not be performed on descendents of the

nodes of the tree excised by prune, because the values of these nodes will never

be demanded. Thus we get the desired effect of backtracking without any explicit

manipulation of control flow. Also, as before, only a small part of each intermediate
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tree is ever “live” (non-garbage data) when a particular node is being operated

upon, namely the node’s own label and thunks both for its descendents and for right

siblings of its ancestors—essentially what would be stored in activation records for

a recursive imperative implementation. (In particular, the ancestors of the node and

their left siblings do not remain live.) So our lazy algorithms pay at worst a constant

factor more space than their imperative counterparts. We do, however, pay some

overhead for building, storing, and garbage collecting each tree node, and, unless

our Haskell implementation performs effective deforestation (Gill et al., 1993), this

cost will be repeated for each intermediate tree in the pipeline. For these reasons,

the modular, lazy implementation of backtracking is an order of magnitude slower

than a conventional recursive implementation in Haskell (see section 12).

5 Conflict sets and generic search

The utility of the backtracking solver is based on its ability to prune subtrees rooted

at inconsistent nodes; it does nothing with consistent nodes. Of course, just because

a state is consistent does not mean it can be extended to a solution; the assignments

already made may be inconsistent with any possible choices for future variables.

Figure 6 shows several examples; for instance, the state with last assignment 4 := 1

is consistent, but cannot be extended to a solution.

If a solver could identify such conflicted states, it could prune their extensions

too. To make precise the exact conditions under which such pruning is possible, we

introduce the notion of conflict set.

Definition 2

Let s = {vik:=yk, . . . , vi1:=y1} be a state. A conflict set CS for s is a non-empty subset

of {i1, i2, . . . , ik} such that, for any solution {vim:=xm, . . . , vi1:=x1}, ∃i ∈ CS such that

yi 6= xi.

In other words, a conflict set for a state identifies a subset of assignments in the

state such that any solution must assign a different value to at least one member of

the subset. (Thinking imperatively, we might say a conflict set contains variables at

least one of which ‘must be changed’ to reach a solution.) Although use of conflict

sets is very common in the literature, a precise definition is difficult to achieve;

we base ours on that of Caldwell et al. (1997). If a conflict set exists for a state,

then evidently no extension of that state can be a solution. Note that a conflict

set for a given state is not, in general, uniquely defined. In particular, if a state

s = {vik:=xk, . . . , vi1:=x1} has a conflict set CS, then every subset of {i1, . . . , ik} that is

a superset of CS is also a conflict set for s.

It is obviously not possible to identify a conflicted, but consistent, state without

exploring some of its extensions; the trick is to avoid exploring all of them, and save

effort by pruning the remainder. We address algorithms with this property beginning

in section 7. For the moment, note that any inconsistent state has a conflict set. In

particular, if a state whose last assigned variable is vi has an earliest inconsistent

variable vj , then it has {i, j} as a conflict set, which we call the earliest conflict set.

A conflict set labeling is a state tree in which each node has been annotated with
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type ConflictSet = OrderedSet Var

isConflict :: ConflictSet -> Bool
isConflict = not . isEmptySet

solutions :: Tree (State, ConflictSet) -> [State]
solutions = filter complete . map fst . leaves . prune (isConflict . snd)

type Labeler = CSP -> Tree State -> Tree (State, ConflictSet)

search :: Labeler -> CSP -> [State]
search labeler csp = (solutions . (labeler csp) . mkSearchTree) csp

bt :: Labeler
bt csp = mapTree f

where f s = (s, case earliestInconsistency csp s of
Nothing -> emptySet
Just a -> listToSet [var (lastAssignment s),a])

btsolver :: CSP -> [State]
btsolver = search bt

Fig. 7. Conflict-directed solving of CSPs.

emptySet :: Ord a => OrderedSet a
isEmptySet :: Ord a => OrderedSet a -> Bool
memberSet :: Ord a => OrderedSet a -> a -> Bool
unionSet :: Ord a => OrderedSet a -> OrderedSet a -> OrderedSet a
intersectSet :: Ord a => OrderedSet a -> OrderedSet a -> OrderedSet a
removeFromSet :: Ord a => a -> OrderedSet a -> OrderedSet a
listToSet :: Ord a => [a] -> OrderedSet a
evalSet :: Ord a => OrderedSet a -> OrderedSet a

Fig. 8. Signature for ordered set ADT.

a (non-empty) conflict set for that node’s state, or with the empty set, signifying that

the conflict set for that node’s state is unknown. To be useful for search, a conflict

set labeling must reflect basic consistency information.

Definition 3

A conflict set labeling is a searchable labeling if, for every inconsistent node s, s or

some ancestor of s is labeled with a (non-empty) conflict set.

One searchable labeling is given by annotating each node with its earliest conflict

set if it has one, and with the empty set otherwise.

Using searchable labelings, we can subsume backtracking search in a more gen-

eral algorithm we call conflict-directed search, shown in figure 7. We define a

generic routine search, parameterized by a labeler function that generates search-

able labelings. By applying search to the labeler function bt we obtain a simple

backtracking solver btsolver that behaves just like btsolver0. All the more sophis-

ticated search algorithms discussed in the remainder of the paper, except those of

section 11, can be obtained by using fancier labeler functions while leaving search

itself unchanged.
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Fig. 9. Portion of search tree for queens 6 annotated with earliest conflict sets. Nodes at

level i show assignments to vi; the assigned value xi is shown in bold. Children of nodes with

conflict sets are not shown because, under lazy evaluation, they are never constructed.

Conflict sets are represented using an abstract data type of ordered sets, with

the signature shown in figure 8 and the usual semantics. Our implementation (not

shown here) uses ordered lists; it turns out that common operations on conflict

sets are most efficient if the lists are held in decreasing numeric order. Function

evalSet forces strict evaluation of a set’s contents; it can be implemented by forcing

evaluation of the representation list’s length.

The structure of search is straightforward. The full tree of possible states is

generated and fed to the labeler. If the labeler can determine a conflict set CS for a

node, it annotates the node with CS; otherwise, it annotates it with ∅. (In general, we

also permit the labeler to rearrange or prune its input tree, so long as its output is a

searchable labeling and still contains all solution states.) The output of the labeling

stage is fed to a pruner, which removes subtrees rooted at nodes labeled with conflict

sets. Again, demand-driven execution guarantees that the excised subtrees never need

to be labeled. This is why a searchable labeling need not attach conflict sets to the

descendents of inconsistent nodes, which allows simpler and less expensive labeler

code. After pruning, the solution nodes are just the complete leaves of the remaining

tree; the remainder of the pipeline simply collects these. Figure 9 shows the conflict

set labeling for the same (queens 6) subtree as in figure 6.
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hrandom :: Int -> Tree a -> Tree a

hrandom seed t = foldTree g t seed
where g a ts seed =

mkTree a (randomizeList seed’ (zipWith ($) ts (randoms seed’)))
where seed’ = random seed

btr :: Int -> Labeler
btr seed csp = bt csp . hrandom seed

Fig. 10. A randomization heuristic.

6 Heuristics and search order

As with the naive solver, if we are interested in only the first solution rather than

all solutions, we can still use search unchanged, by demanding just the head of the

solution list. Since solutions are always extracted in left-to-right order, this implies

that the time required to find the first solution will be very sensitive to the order

in which values are tried for each variable. The use of value-ordering heuristics is

well-established in the imperative search literature (Kumar, 1992). Such heuristics

could be implemented using specialized generator functions that produce the initial

tree in the desired order. A more modular approach, however, is to view these

heuristics as ways to rearrange existing trees; this keeps the initial generator simple

and allows multiple heuristics to be readily composed.

Such rearrangement heuristics can be easily expressed in our framework by

incorporating them into the labeler function. For example, in solutions to the

n-queens problem, queens seldom end up near the corners of the board. Therefore,

queens search can be speeded up by considering row values in random order rather

than in the usual generated order, which tends to consider corner positions first.

Function hrandom in figure 10 transforms a tree by randomizing the order of its

children (using a random number generator not shown here). The randomization

transformation is expressed as a higher-order fold.2 The application (btr seed)

returns a labeler that combines randomization with standard backtracking search.

7 Conflict-directed backjumping

The bt algorithm annotates inconsistent nodes with conflict sets, but most internal

nodes remain unannotated. If we could somehow compute conflict sets for internal

nodes closer to the root of the tree, we could prune larger subtrees and so speed up

search.

One approach to computing internal node conflict sets is to construct them

bottom-up from the conflict sets of a subset of their children. To do this, we make

use of two key lemmas about conflict sets. Intuitively, the first lemma says that if no

child of a node s can be extended to a solution, then neither can s, and any solution

must differ from s on the value of at least one of the variables in the conflict set

2 The operator ($):(a->b)->a->b represents explicit application in Haskell, i.e. ($) f x = f x.
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of one of the children. The second lemma says that if a node s has conflicts that

do not depend on the value of the last assignment in s, then the same conflicts

must apply to its parent. To avoid cumbersome notation, we state and prove the

lemmas assuming a fixed variable order v1, . . . , vm, but analogous results hold for the

dynamically ordered trees of section 11.

Lemma 1

Consider a fixed-variable-order search tree for a CSP with m variables and n values.

Let

s = (vl := yl , . . . , v1 := y1)

be a node at level l (1 6 l < m) with children s1, . . . , sn, such that each child si has a

(non-empty) conflict set CSi. Then

CS = (CS1 ∪ CS2 ∪ · · · ∪ CSn)− {l + 1}
is a conflict set for s.

Proof

Without loss of generality, assume that the children are ordered so that si assigns

the value i to vl+1, that is,

si = (vl+1 := yl+1 = i, vl := yl , . . . , v1 := y1) (1 6 i 6 n)

Now consider any CSP solution

(vm := xm, . . . , vl+1 := xl+1 = k, . . . , v1 := x1)

where we write k for xl+1. Consider the conflict set CSk associated with child sk . By

the definition of conflict set, ∃i ∈ CSk ⊆ {1, . . . , l+1} such that yi 6= xi. However, since

sk assigns k to vl+1, we cannot have i = l+ 1. Hence we must have i ∈ CSk −{l+ 1}.
Hence i ∈ CS, so CS is indeed a conflict set for s. q

Lemma 2

Consider a fixed-variable-order search tree for a CSP with m variables. Let

s = (vl := yl , . . . , v1 := y1)

be a node at level l (1 6 l 6 m) with a conflict set CS such that l 6∈ CS ⊆ {1, . . . , l}.
Then CS is also a conflict set for the parent of s, namely

p = (vl−1 := yl−1, . . . , v1 := y1)

Proof

Consider any CSP solution (vm := xm, . . . , v1 := x1). By definition of conflict set,

∃i ∈ CS such that xi 6= yi. Since l 6∈ CS, it must be the case that i 6 (l − 1). Hence

CS fulfills the definition of a conflict set for p as well. q

Function bj0 in figure 11 is a lazy bottom-up algorithm that applies the two

lemmas to compute internal node conflict sets from a tree that has been (lazily)

annotated with an initial labeling. At each parent node that does not already have

a conflict set, bj0 calls combine to build one. Function combine inspects the conflict

sets of the children in turn. If it finds a child to which Lemma 2 applies it immediately
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bj0bt :: Labeler
bj0bt csp = bj0 csp . bt csp

bj0 :: CSP -> Tree (State, ConflictSet) -> Tree (State, ConflictSet)
bj0 csp = foldTree f

where f (s, cs) ts
| isConflict cs = mkTree (s, cs) ts
| otherwise = mkTree (s, cs’) ts

where cs’ = combine (map label ts) []

unionCS :: [ConflictSet] -> ConflictSet
unionCS css = foldr unionSet emptySet css

combine :: [(State, ConflictSet)] -> [ConflictSet] -> ConflictSet
combine [] acc = unionCS acc
combine ((s, cs):ns) acc

| not (memberSet cs lastvar) = cs
| isEmptySet cs = emptySet
| otherwise = combine ns ((removeFromSet lastvar cs):acc)

where lastvar = var (lastAssignment s)

bjbt :: Labeler
bjbt csp = bj csp . bt csp

bj :: CSP -> Tree (State, ConflictSet) -> Tree (State, ConflictSet)
bj csp = foldTree f

where f (s, cs) ts
| isConflict cs = mkTree (s, cs) ts
| isConflict cs’ = mkTree (s, cs’) [] -- plug first leak
| otherwise = mkTree (s, cs’) ts

where cs’ = evalSet (combine (map label ts) []) -- plug second leak

Fig. 11. Two implementations of conflict-directed backjumping.

returns this child’s conflict set for use in the parent. If no such child is found, but

every child has a conflict set, it applies Lemma 1. Under lazy evaluation, the subtrees

corresponding to the remaining children are never explored. The combination of

bj0 with bt is commonly referred to as conflict-directed backjumping (CBJ) (or just

backjumping) in the literature.

As an example, consider again the subtree of (queens 6) shown in figure 6 after

queens have been placed in columns 1–3. Inspection of the corresponding board

position shows that this state cannot be extended to a solution, because the queens

in columns 5 and 6 are already constrained to lie in the same row, regardless of

which row we choose for the queen in column 4. Figure 12 shows how backjumping

takes advantage of this fact to avoid repeated placement attempts for columns 5

and 6. After all conflict sets in the left-hand subtree at level 6 have been calculated,

Lemma 1 can be applied to calculate a conflict set of {1, 2, 3, 5} for the parent node

with last assignment 5 := 4. After the other conflict sets of this node’s siblings are

computed, Lemma 1 can be applied again to calculate a conflict set of {1, 2, 3} for

its parent node, which has last assignment 4 := 1. Since 4 6∈ {1, 2, 3}, Lemma 2 can

be applied, to give the same conflict set to the parent node, which has assignment 3

:= 3. The remaining children of this last node need not be explored.

This algorithm works correctly for any initial conflict set labeling, but it is
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Fig. 12. Same portion of search tree for queens 6 as in figure 9, annotated with conflict sets

as computed by bj. Nodes to the right of 4 := 1 have been pruned away.

most effective when the conflict sets are small and contain low-numbered variables,

because this increases the number of levels for which Lemma 2 can be applied.

This is why we use earliest inconsistent pairs to represent consistency conflicts.

CBJ is the cornerstone of many newly-developed algorithms (Frost, 1997). In its

usual imperative formulation this algorithm is notoriously difficult to understand

or prove correct. We have relied on the analysis of Caldwell et al. (1997) for our

understanding of conflict sets, but we are unaware of any previous description of

the algorithm as a form of labeling.

Although search bj0bt behaves just like imperative CBJ in the sense that it

performs the same number of consistency checks, it has two unfortunate space

leaks. The first leak occurs because the pruning phase must keep a pointer to each

node’s list of children until that node’s conflict set has been computed, but that

computation may generate a substantial part of the subtree rooted at the node.

Even if most of the subtree is eventually pruned, its transient memory requirements

can be exponentially large. We can plug this leak, at the cost of some loss in

modularity, by adding additional pruning into the labeler itself: if a conflict set is

computed for a node, we immediately remove the node’s children. The second leak

occurs because the thunk returned by combine at a given node may retain pointers
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Table 1. Fully-evaluated cache table corresponding to node at level 3 of queens 6

search tree in figure 9

Variable Value

:= 1 := 2 := 3 := 4 := 5 := 6

4 {} {1,4} {2,4} {3,4} {1,4} {}
5 {3,5} {1,5} {3,5} {} {2,5} {1,5}
6 {2,6} {1,6} {3,6} {} {2,6} {3,6}

to a substantial part of the subtree rooted at that node. Since the resulting conflict

set will definitely be demanded further up in the tree, we can plug this leak in a

straightforward way by forcing evaluation of combine’s result. Function bj shows

the final code after both leaks have been plugged.

8 Backmarking

Ordinary backtracking provides one way to generate conflict sets, but it is not

necessarily the best way. The bt labeler works by checking each assignment against

all previous assignments in its state. Although this approach checks the overall

consistency of each partial state only once, it can still perform many duplicate

pairwise consistency checks because all the subtrees of a given node are identical

except for the assignments at their roots. Consider a node s at level l, and consider

any descendent s′ of s other than an immediate child. In checking the consistency of

s′, pairwise checks will be made between its last assignment and all the assignments

in s at levels less than or equal to l. These checks will be duplicated for the

corresponding descendents of every sibling of s (unless, of course, they had an

inconsistent ancestor and have been pruned away). For an example, compare the

two nodes shown on level 6 of figure 9 having last assignment 6 := 6. To generate

their conflict sets, bt makes the same three comparisons in each case, namely with

1 := 2, 2 := 5, and 3 := 3, before encountering a conflict.

An alternative approach is to cache the results of such consistency checks so they

can be reused for each sibling; this should reduce the total number of consistency

checks at the cost of the space needed for caching. We annotate each node with

a cache to store information about inconsistencies between that node’s state and

the assignments made in its descendents. Each cache is organized as a table having

an entry for every possible assignment of the thus-far unassigned variables. If the

assignment would cause a conflict with an already-assigned variable, the cache entry

contains a conflict set; otherwise, it contains the empty set. Each node’s cache is a

refinement of its parent’s cache, with a cache at any given level containing complete

consistency information about assignments at the next level, and partial information

about assignments at lower levels. As an example, Table 1 shows the cache contents

for the node at level 3 of figures 6 and 9. The non-empty entries in the cache can
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bm :: Labeler
bm csp = extractConflicts . storeConflicts csp

storeConflicts :: CSP -> Tree State -> Tree (State,Cache ConflictSet)
storeConflicts csp = inhTree f (undefined,undefined)

where f (_,tbl) s = (s,augmentConflicts csp tbl s)

augmentConflicts :: CSP -> Cache ConflictSet -> State -> Cache ConflictSet
augmentConflicts csp@CSP{rel=rel} parentTbl s

| isEmptyState s = initCache csp emptySet
| otherwise = mapCache extendCS tbl

where tbl = thinCache parentTbl (var lasta)
extendCS :: Assignment -> ConflictSet -> ConflictSet
extendCS a cs

| isConflict cs = cs
| rel lasta a = emptySet
| otherwise = listToSet [var lasta, var a]

lasta = lastAssignment s

extractConflicts :: Tree (State,Cache ConflictSet) -> Tree (State,ConflictSet)
extractConflicts t = zipTreesWith g t t’

where t’ = distrTree f emptySet t
f (s,tbl) = lookupCache tbl (nextVar s)
g (s,_) cs = (s,cs)

Fig. 13. Backmarking.

be used to generate all the conflict set annotations in figure 9 that involve variable

1, 2 or 3; that includes all the annotations at level 4, and most of those at levels

5 and 6. Note also how the rows of the cache table correspond with columns 4–6

of the inset diagram in figure 6; in effect, caches for the n-queens problem describe

threatened positions in unassigned columns.

Figure 13 shows an algorithm implementing cache-based labeling, based on an

implementation of caches shown in figure 14. Function augmentConflicts computes

the cache contents for a node based on the node’s assignment and the node’s parent’s

cache. To do this, it maps extendCS over each cache entry. If the parent’s cache

already records a conflict set for the future assignment, that set is inherited by the

current cache; otherwise a conflict check is performed and the result (an earliest

conflict set or ∅) is recorded. Function storeConflicts applies augmentConflicts

to each node in a tree in top-down fashion. Once the tree has been annotated with

cache tables, extractConflicts is used to extract the conflict sets for the next

unassigned variable at each node and distribute them over the node’s children; the

resulting tree of conflict sets is then zipped together with the state labels from the

original tree. The final annotated tree is identical to that produced by bt.

Caches are implemented as lists of lists.3 As usual, we rely on lazy evaluation to

avoid building the tables or their contents unless they are needed. So most of the

tables remain unbuilt, and the actual order in which consistency checks is performed

3 A two-dimensional array or an array of arrays would be more obvious implementations, but they turn
out not to not perform as well under the ghc compiler.
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data Cache a = Cache [(Var,[a])]

initCache :: CSP -> a -> Cache a
initCache CSP{vars=vars,vals=vals} i = Cache (zip [1..vars] (repeat row))

where row = take vals (repeat i)

thinCache :: Cache a -> Var -> Cache a
thinCache (Cache cache) var0 = Cache [(var,row) | (var,row) <- cache, var /= var0]

mapCache :: (Assignment -> a -> a) -> Cache a -> Cache a
mapCache f (Cache cache) =

Cache [(var, newRow var row) | (var,row) <- cache]
where newRow var row = [ f (var := val) a | (val, a) <- zip [1..] row ]

lookupCache :: Cache a -> Var -> [a]
lookupCache (Cache cache) var = val

where Just val = lookup var cache

getCache :: Cache a -> [(Var,[a])]
getCache (Cache cache) = cache

Fig. 14. Caches.

is similar to bt. The important point is that, because many of a node’s table entries

are inherited from its parent’s table, all duplicate consistency checks are avoided.

As before, we obtain a complete solver by using bm as the labeler parameter

to search. Bacchus and Grove (1995) made the somewhat surprising discovery that

this lazy caching algorithm is equivalent (in terms of consistency checks made) to a

standard imperative algorithm called backmarking.

Of course, the decrease in checks comes at the cost of increased space requirements.

For a problem with m variables and n values, each cache requires up to nm entries,

each of which records at most 2 conflicting variables; since there can be up to m

caches live at any one time, the total cost is O(m2n) cells. However, even for large

problems, this is unlikely to be a significant limitation.

9 Forward checking

The cache tables built for backmarking can be further exploited to avoid still

more consistency checks. Suppose that the table for some node s contains a row,

corresponding to an as yet unassigned variable, in which every entry contains a

conflict set. Then it is evident that node s can never be extended to a solution,

because the assignments in s rule out all possible values for the future variable. (As

an example, consider the inset diagram in figure 6; if we add a queen at position 4

:= 6, this will rule out the sole remaining possible assignment for column 6, namely

6 := 3, regardless of what happens in column 5.) Therefore, there must exist a non-

empty conflict set for s. By labeling s with such a set, we can avoid further search

in the subtree rooted at s. This technique has been called domain wipeout (Bacchus

& Grove, 1995). The combination of domain wipeout with bm labeling corresponds

to the well-known imperative algorithm called forward checking. Because our cache

table construction is lazy, we have actually rediscovered (‘for free’) minimal (or
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mfc :: Labeler
mfc csp = mfc’ csp . storeConflicts csp

mfc’ :: CSP -> Tree (State,Cache ConflictSet) -> Tree (State,ConflictSet)
mfc’ csp t = zipTreesWith f (extractConflicts t) (mapTree (wipedDomain csp) t)

where f (s,cs) cs’ | isConflict cs = (s,cs)
| otherwise = (s,cs’)

wipedDomain :: CSP -> (State, Cache ConflictSet) -> ConflictSet
wipedDomain CSP{vars=vars} (s,tbl)

| null wipedDomains = emptySet
| otherwise = intersectSet (unionCS (head wipedDomains))

(listToSet (map var (assignments s)))
where wipedDomains :: [[ConflictSet]]

wipedDomains = [css | (v,css) <- getCache tbl, all isConflict css]

Fig. 15. Minimal forward checking.

lazy) forward checking, itself a recent discovery in the imperative literature (Dent &

Mercer, 1994).

Figure 15 shows code for implementing domain wipeout in combination with

back marking. The use of storeConflicts and extractConflicts is just as

in backmarking, but we also keep the cache-annotated tree to use as input to

wipedDomain. Because of laziness, the search for an empty domain is only performed

if backmarking fails to find a conflict set.

To gather a list of wipedDomains and test whether it is non-empty is straightfor-

ward. The interesting question is what conflict set to assign to the node s if domain

wipeout has occurred. Since it is always valid to throw additional variables into a

non-empty conflict set, we could just use the complete set of variables assigned by

s. But it is better to use the smallest available conflict sets based on the available

information, because this can increase their utility for other algorithms (e.g. back-

jumping). In this case, the cache table row for a wiped-out domain records which

existing assignment rules out each possible value for that domain. The union of the

variables in these assignments (restricted to the variables assigned by s) is a valid

conflict set for s, since any solution must assign a different value to at least one of

them. If there is more than one wiped-out domain, we could compute a conflict set

from any one of them; for simplicity and to limit computation, domainWipeOut just

chooses the first.

10 Mixing and matching

A major advantage of our declarative approach is that we can trivially combine

algorithms using function composition, so long as they take a consistent view of

conflict set annotations. For example, we can describe a labeler that combines

minimal forward checking and backjumping in a single line:

bjmfc csp = bj csp . mfc csp

Imperative forward checking is traditionally described as filtering out all the con-

flicting values from the domains of future variables; this makes it hard to explain
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type DVOParams a = (CSP -> Tree (State,a) -> Tree (State,ConflictSet),
CSP -> a -> State -> Var,
CSP -> a -> State -> a)

searchDVO :: DVOParams a -> CSP -> [State]
searchDVO (relabeler,selector,prelabeler) csp =

(solutions . (relabeler csp) .
mkSearchTreeDVO (prelabeler csp) (selector csp)) csp

mkSearchTreeDVO :: (a -> State -> a) -> (a -> State -> Var) -> CSP -> Tree (State,a)
mkSearchTreeDVO prelabeler selector csp = initTree mk (root_s,root_a)

where mk (s,a) = [(newNextVar s’ (selector a’ s’),a’) |
s’ <- extensions csp s,
let a’ = prelabeler a s’]

root_a = prelabeler undefined root_s
root_s = emptyState csp

Fig. 16. Dynamic variable ordering.

how it can be profitably combined with backjumping, since the latter would seem to

have no information on which to base backjumping decisions. Our viewpoint is that

forward checking is just a more (time-)efficient way of generating conflict sets, which

makes the combination perfectly reasonable. Although backjumping has previously

been combined with strict forward checking (Prosser, 1993b), to our knowledge it

has never been combined with minimal forward checking.

Similarly, the combination of backmarking and backjumping

bjbm csp = bj csp . bm csp

is tricky to implement correctly in an imperative setting (Kondrak, 1994), but is

simple for us, and turns out to do fewer consistency checks on queens than any of

our other fixed-variable-order algorithms (see Table 2 in section 12).

Once problem-specific value ordering heuristics are introduced, many more possi-

bilities for new algorithm design open up. Since the best combination of algorithm

features tends to depend on the particular problem at hand, it is important to be

able to experiment with different combinations; our framework should make this

extremely easy.

11 Dynamic variable ordering

All the algorithms described so far have used a fixed order for choosing the next

variable to assign to at each tree level. We might hope to do a better job in choosing

that variable by using information gathered during the search. Techniques for doing

this are known as Dynamic Variable Ordering (DVO) heuristics. Such heuristics

can be implemented by feeding information from later stages of the search pipeline

back into the generation of the search tree. A lazy framework that supports this

approach is shown in figure 16. Since the generation of the search tree is now

dependent on later stages of the pipeline we have to be careful not to demand nodes

in the tree before they are generated. The laziness issues involved are subtle, but by
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encapsulating them in the implementation of the generator function, we have made

it easy to add new heuristics.

The search tree generator mkSearchTreeDVO is parameterized by a prelabeler

transform and a selector function. The prelabeler is applied to the state tree to

produce an annotated tree; the selector uses the states and annotations to choose

the next variable to search on from among those still unassigned. In order to avoid

cyclic dependencies, the prelabeler is required to operate in top down fashion: it

must compute the annotation for a node based solely on the node’s state and its

parent’s annotation. The result of the selection step is recorded by reordering the

list of unassigned variables using the newNextVar function from figure 1.

The searchDVO function is essentially similar to ordinary search, except that

it uses mkSearchTreeDVO, and it allows the search labeling function, here called

a relabeler, to make use of the annotations built by the prelabeler. A complete

solver is obtained by applying searchDVO to a triple DVOParams, consisting of a

relabeler, selector, and prelabeler.

One common and practical DVO heuristic is called fail first; it always picks the

variable with the smallest remaining domain (i.e. the smallest number of possible

value assignments). In the event of a tie, the domain with lowest-numbered variable

is picked. For example, in the state shown in the inset diagram in figure 6, after the

assignment 3 := 3, the domain for column 4 contains two values, and the domains

for 5 and 6 contain one value each; the fail first heuristic will therefore pick column

5 as the next variable to try. The rationale for this heuristic is that it encourages

earlier identification and pruning of conflicted nodes.

Figure 17 shows a number of possible implementations of this heuristic. All of

them use augmentConflicts (figure 13) as the prelabeling function, which annotates

each node with a cache of future conflict set information, just as in backmarking. We

show three different possible selector functions for calculating the smallest remaining

domain. Although all three selectors compute the same answer, and are about equally

efficient in practice, they exhibit subtle differences in laziness, which are reflected

in the numbers of consistency checks they perform. The first selector, failFirst0,

scans each row of the cache table annotation, calculating the integer representing

the size of the corresponding domain (i.e. the number of values for which no

conflict set is recorded), and selecting the smallest domain accordingly. Although

failFirst0 calculates the correct result in a straightforward fashion, searches that

use it perform more consistency checks (see Table 2 in section 12) than imperative

implementations of fail first described in the literature (Bacchus & Grove, 1995).

This is because the published algorithms determine the smallest remaining domain

without actually determining the exact size of that domain. We can achieve the same

effect by calculating domain sizes using an implementation of natural numbers that

supports lazy comparisons, as shown in figure 18. Changing failFirst0 to use Nat

instead of int requires only that we change the functions used to compute and

compare lengths; the result is shown as failFirst. The resulting consistency check

counts match the literature.

Fail first uses the cache table in much the same way as domain wipeout does.

This similarity between forward checking and fail first is not coincidental; forward
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failFirst0 :: Cache ConflictSet -> State -> Var
failFirst0 tbl _ = var

where (var,_) = foldr1 smallerDomain sizedDomains
smallerDomain a@(_,asize) b@(_,bsize) = if asize <= bsize then a else b
sizedDomains = [(var,length (filter (not . isConflict) css))

| (var,css) <- getCache tbl]

ff0 :: DVOParams (Cache ConflictSet)
ff0 = (const extractConflicts,const failFirst0,augmentConflicts)

ff0solver :: CSP -> [State]
ff0solver = searchDVO ff0

failFirst :: Cache ConflictSet -> State -> Var
failFirst tbl _ = var

where (var,_) = foldr1 smallerDomain sizedDomains
smallerDomain a@(_,asize) b@(_,bsize) = if asize ‘nleq‘ bsize then a else b
sizedDomains = [(var,nlength (filter (not . isConflict) css))

| (var,css) <- getCache tbl]

ff :: DVOParams (Cache ConflictSet)
ff = (const extractConflicts,const failFirst,augmentConflicts)

failFirst1 :: Cache ConflictSet -> State -> Var
failFirst1 tbl _ = var

where (var,_) = smallestDomain sizedDomains
smallestDomain domains =

case emptyDomains of
d:_ -> d
[] -> smallestDomain (map f domains)

where f (var,n) = (var,npred n)
where emptyDomains = filter (isZ . snd) domains

sizedDomains = [(var,nlength (filter (not . isConflict) css))
| (var,css) <- getCache tbl]

ff1 :: DVOParams (Cache ConflictSet)
ff1 = (const extractConflicts,const failFirst1,augmentConflicts)

Fig. 17. Three different implementations of fail-first ordering.

data Nat = Z | S Nat

nleq :: Nat -> Nat -> Bool
nleq Z _ = True
nleq _ Z = False
nleq (S n1) (S n2) = nleq n1 n2

isZ :: Nat -> Bool
isZ Z = True
isZ _ = False

npred :: Nat -> Nat
npred (S n) = n
npred Z = error "npred"

nlength :: [a] -> Nat
nlength [] = Z
nlength (a:as) = S(nlength as)

Fig. 18. Natural numbers.
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checking is essentially a limited form of fail first that deviates from the fixed variable

ordering only when the smallest remaining domain is completely empty. We might

expect, therefore, that adding forward checking to ff, by using the DVOParams

mfcff = (mfc’,const failFirst,augmentConflicts)

would not lower the number of consistency checks required. However, as Table 2

shows, this is not true: the combination mfcff performs slightly fewer checks than

plain ff. The reason for this is subtle: mfc performs only enough consistency

checks to find an empty domain, whereas failFirst may also perform checks in

order to determine which of two non-empty domains is smaller, even if there is a

completely empty domain further down the list. Function failfirst1 is a variant

of failFirst that finds the smallest domain by first looking for an empty domain;

if none is found, it decrements the size of each remaining (non-empty) domain,

and tries again. The resulting ff1 search incorporates all the behavior of forward

checking, and performs exactly the same number of checks as the the combined

algorithm

mfcff1 = (mfc’,const failFirst1,augmentConflicts)

Moreover, ff1 performs fewer consistency checks on queens than any fail-first

variant we have discovered in the literature.

We can also combine fail first with backjumping:

bjff1 = (\csp -> bj csp . extractConflicts,

const failFirst1,augmentConflicts)

This algorithm shows only tiny improvement over ff1, which is not surprising. We

can view backjumping as a mechanism for compensating for a poor fixed variable

order, in which heavily constrained variables appear late in the order; thus, it has

little left to do after an effective dynamic ordering heuristic has been applied.

12 Experimental results

We have investigated the performance of the various algorithms on a number of

simple problems. These include finding all solutions to the n-queens problem for

n ∈ {8, . . . , 13}; finding the first solution to the 16-queens problem; and finding

the first solution to the graph coloring problem on each of four graphs – Anna,

Miles250, Miles500, Miles1000 – drawn from the Stanford Graph Base (Knuth,

1994).4

We tried the all-solutions queens problems using many different algorithms, mea-

suring the number of consistency checks performed. We tried the other problems

(and the all-solutions 12-queens problem) using a smaller selection of algorithms,

measuring the number of consistency checks performed, elapsed execution time in

user mode, and maximum heap memory use. The measurements were taken on

4 For each of the graph coloring problems, we set the number of available colors (i.e. the domain of
allowed values) to the minimum possible number, as obtained from the literature.
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Table 2. Number of consistency checks performed by various algorithms on the

all-solutions n-queens problem. Algorithms are identified by their labeler function

or DVO parameter triple name

Queens 8 9 10 11 12 13

bt 46752 243009 1297558 7416541 45396914 292182579

bjbt 41128 214510 1099796 6129447 36890689 233851850

bm 12308 50866 220052 1026576 5224512 28405086

mfc 12276 51642 220745 1038129 5297651 28817439

bjbm 11928 49369 210210 975198 4938324 26709008

bjmfc 12229 51314 218907 1026826 5231284 28387767

ff0 12502 51856 214244 980640 4869822 25627720

ff 11934 49317 202593 924150 4590577 24183989

mfcff 11726 48487 197420 898096 4446851 23388513

ff1 11579 47385 191813 868409 4281753 22479211

mfcff1 11579 47385 191813 868409 4281753 22479211

bjff1 11579 47375 191776 868066 4280093 22468711

Solutions 92 352 724 2680 14200 73712

a lightly loaded 400MHz UltraSPARC-II with 4GB of memory, using ghc (the

Glasgow Haskell compiler) version 4.08, with optimization flags -O2 -O2-for-C

and a 64MB target heap size, and gcc version 2.95.2, with optimization flag

-O2.

As noted in section 1, the number of consistency checks is a widely used metric

for comparing algorithm efficiency in a machine- and implementation-independent

fashion. Moreover, for the all-solutions n-queens problem, consistency check counts

are often used to confirm that code actually implements the algorithm that it

purports to. Table 2 gives precise counts for those problems. For the remaining

problems, figure 19 shows consistency check counts and normalized execution times,

both on a logarithmic scale. Each problem/algorithm combination was allowed to

run for up to 24 hours; many did not terminate.

It is clear that choice of algorithm can have a significant impact on the time

and number of checks required to solve these problems. Check counts correlate

only moderately well with times, but the ranking of algorithms from fastest to

slowest for each particular problem is roughly the same for both metrics. Perhaps

the most obvious point to be made about these data is that the results vary widely

among the different problems, confirming the need for experimentation to find the

best algorithm for a particular problem, or even problem instance. However, a few

general conclusions can be drawn. Fail-first dynamic variable ordering (ff1 and its

variants) is usually the best algorithm, whether measured by time or check count,

sometimes by orders of magnitude. On the queens problems, the algorithms based

on caching (bm, mfc, ff1, and their variants) make significantly fewer checks than
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Fig. 19. Consistency checks and relative runtimes of various problem/algorithm combinations.

Algorithms are identified by their labeler function or DVO parameter triple name. Runtimes

for each problem are relative to the fastest algorithm for that problem, whose absolute time

is indicated in parentheses. Vertical scales are logarithmic. Bars reaching to the top of the

graph correspond to combinations that failed to complete within 24 hours.

those that are not; they do not always run faster, however, because of the overhead

of maintaining the cache. On the graph problems, caching is not particularly useful,

but backjumping (bj) makes a highly worthwhile addition to the fixed variable order

algorithms; for example, bjbt, bjbm, and bjmfc all find solutions to Anna in under

a second, whereas bt, bm, and mfc fail to find a solution in 24 hours! Finally, a good

heuristic can be very helpful; the version of simple backtracking that randomizes its

value ordering (btr) performs fewer checks than any other algorithm for finding the

first solution to 16-queens, and five orders of magnitude fewer than unrandomized

backtracking (bt).
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Table 3. Maximum heap memory (in kilobytes) used by problem/algorithm experi-

ments. Algorithms are identified by their labeler function or DVO parameter triple

name. Missing entries correspond to experiments that failed to complete within 24

hours.

Algorithm All First Anna Miles250 Miles500 Miles1000

12-queens 16-queens

bt 4 7 - - - -

btr 23 74 - - - -

bjbt 20 80 229 180 535 -

bm 27 140 - - - -

mfc 25 131 - - - -

bjbm 44 218 1496 1390 2227 -

bjmfc 43 214 1501 1414 2233 -

ff1 24 138 2190 1497 3082 6088

variables 12 16 138 128 128 128

values 12 16 11 8 20 42

Table 3 shows the maximum heap used by each problem/algorithm combination

that completed within 24 hours. As expected, the only significant memory require-

ments are due to caching in large problems. For the graph problems, memory use

is roughly proportional to the product (number of variables)× (number of values).

As best we can tell, none of the algorithms leak memory.

Relative to conventional imperative implementations, our code is slow. To estimate

the time cost of modularity and laziness, we wrote a conventional recursive version

of backtracking search to report the number of solutions for the n-queens problem in

Haskell, and compared the runtime with that of bt. On the 12-queens problem, the

modular version runs almost ten times slower than the recursive formulation (117.3

s vs. 12.3 s). Further, informal experiments suggest that most of this slowdown is due

to the need to build, read, and eventually garbage-collect tree nodes at each stage of

the pipeline. To further estimate the overhead of using Haskell, we also coded the

conventional recursive search algorithm in idiomatic C. The Haskell code is about

three times slower than the C code (which runs in 4.4 s), probably because it displays

much less locality of reference. However, even a constant factor slowdown of 30 due

to implementation technology is not very significant for search problems, where a

small change in algorithm can affect performance by many orders of magnitude.

13 Related work

Hughes (1989) gives a lazy development of minimax tree search. Bird & Wad-

ler (1988) treat the n-queens problem using generate-and-test and lazy lists. Oege

de Moor (1995) describes a Gofer program that solves a certain class of optimization
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problems using dynamic programming; like ours, his code is structured as a lazy

pipeline, but his primary aim is to demonstrate the broad applicability of a single

fixed algorithm rather than to exploit easy functional composition of pipeline

elements as we do.

Laziness (not in the context of lazy languages) has been used for improving the

efficiency of existing CSP algorithms (Dent & Mercer, 1994; Schiex et al., 1996), but

as far as we know laziness has not previously been used to modularize any of the

CSP algorithms presented here.

Many reformulations of standard CSP algorithms into uniform frameworks exist

in the literature (Ginsberg, 1993; Tsang, 1993; Bacchus & van Run, 1995; Frost,

1997), but the frameworks typically are not modular; at best, the differences between

two algorithms are highlighted by showing which lines of code have changed (Kon-

drak, 1994). Algorithms have been classified according to the amount of arc con-

sistency they maintain (Kumar, 1992) or the number of nodes they visit (Kondrak,

1994). These classifications have shown that the backmarking and forward check-

ing algorithms, which were previously thought of as being fundamentally different,

actually share the same foundation (Bacchus & Grove, 1995), as we independently

rediscovered (section 9). Despite these efforts, there often remains confusion, even

among experts in the field, about which algorithm a given description really imple-

ments.

Considering how long the standard algorithms have existed and how widely

they are used, there have been surprisingly few published proofs of correctness. A

correctness criterion for search algorithms based on soundness and completeness is

presented in Kondrak (1994) and an automatic theorem prover is used to derive the

algorithms in Caldwell et al. (1997).

As noted in section 1, typical real-world search problems are often best handled

by performing domain-specific constraint simplification before resorting to CSP-

solving. A number of uniform frameworks have been developed for expressing

and simplifying common kinds of constraint problems; notable examples include

the family of constraint logic programming (CLP) languages (Marriott & Stuckey,

1998), the OPL language (Van Hentenryck, 1999), and Smith’s algebraic theory

of global search (Pepper & Smith, 1996). For problems on discrete domains, these

systems ultimately rely on brute-force enumeration and testing of candidate solutions

to a residual CSP, so an efficient CSP solver is an important system component.

Integrating our Haskell-based solver library into one of these broader constraint-

solving frameworks might therefore be quite useful, but we have not yet explored

the practicality of doing so.

14 Conclusion

Expressing algorithms in a lazy functional language often clarifies what an algorithm

does and what invariants it depends on. We can modularize code that traditionally

has been expressed in monolithic, imperative form. Experimentation is also very easy.

New combinations of algorithms, such as minimal forward checking plus conflict-

directed backjumping, can be expressed in a single line of code; the equivalent
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algorithm in the imperative literature requires many lines of (mysterious) C or

pseudocode. Despite the overheads introduced by laziness and use of Haskell, we

can conduct large experiments.

The major problem of working with lazy code is difficulty in predicting run-

time behavior, particularly for space. Very minor code changes can often lead to

asymptotic differences in space requirements, and the profiling tools available for

investigating such problems in Hugs and ghc are inadequate.

For future work, we plan to investigate further dynamic variable-reordering and

value-ordering heuristics, which are at the core of current work in the AI search

literature.
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