
ANZIAM J. 55(2014), 267–288
doi:10.1017/S1446181114000078

MEMBRANE-COUPLED GRAVITY WAVE SCATTERING BY
A VERTICAL BARRIER WITH A GAP
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Abstract

We study the reflection of membrane-coupled gravity waves in deep water against a
vertical barrier with a gap. A floating membrane is attached on both sides of the barrier.
The associated mixed boundary value problem, which is not particularly well posed,
is analysed. We utilize an orthogonal mode-coupling relation to reduce the problem
to solving a set of dual integral equations with trigonometric kernel. We solve these
by using a weakly singular integral equation. The reflection coefficient is determined
explicitly, while having freedom to clamp the membrane with a spring of a certain
stiffness on only one side of the vertical barrier. The physical problem is of capillary–
gravity wave scattering by a vertical barrier with a gap, when the membrane density is
neglected. In this case, the reflection coefficient is known up to an undetermined edge
slope on either side of the barrier. The scattering quantity is computed and presented
graphically against a wave parameter for different values of nondimensional parameters
pertaining to the structures involved in the problem.
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1. Introduction

Scattering of free surface gravity waves in deep water by various vertical barrier
configurations has been the subject of interest for many researchers. Many interesting
methods of solution have been developed to tackle the mixed boundary value problems
associated with them in the literature [1, 7, 15, 19, 20]. One particular type of
scattering problem, that involved a vertical barrier with a gap, was first considered
by Tuck [18]. He found an approximate solution by making use of matched
asymptotic expansion. Porter [16] provided a complete analytical solution via a
reduction procedure as well as an integral equation formulation. Later, Chakrabarti
and Vijaya Bharati [4] revisited the problem with a reduction procedure of solving
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two independent Riemann–Hilbert problems. Chakrabarti et al. [3] provided a weakly
singular integral equation method with an aim to get the scattering quantities in a fairly
straightforward manner. More generally, gravity wave scattering by a vertical barrier
with a finite number of gaps in it was tackled by Mei [15] through complex variable
techniques.

Floating flexible structures received some attention for their utility as floating
breakwaters in ocean-engineering applications. These floating barriers can suppress
the vertical motion of water oscillation so strongly that the wave amplitude can be
reduced effectively. Among them, floating membranes enjoy desirable characteristics
of being transportable, relatively inexpensive, rapidly deployable, reusable and easily
detachable. In this context, wave scattering by a submerged horizontal membrane was
analysed by Cho and Kim [5]. They found that flexible membranes could enhance
overall wave reflection better than rigid plates. A few studies on the interaction of free
surface gravity waves with floating membrane structures can be found in the literature
[9, 10, 21].

The governing mixed boundary value problem is mathematically the same for
both the flexible membrane-covered surface and the free surface acting under surface
tension, except for the edge conditions that are to be specified at intersection points
of floating surface and piercing vertical barrier. These naturally arising physical
edge conditions are utilized to find the velocity at the mean surface on either side
of the vertical barrier, since this quantity is not the same across the barrier. In
fact, study of the surface tension effect on gravity waves is not of recent interest.
Evans [6] investigated surface gravity waves under surface tension in the presence of
partial vertical barriers in deep water. Later, Rhodes-Robinson [17] studied capillary–
gravity waves produced by incomplete wave-makers, such as surface-piercing and
submerged ones. However, numerical computation has not been carried out for
scattering quantities in their work. Perhaps these quantities were not in a suitable
form for computation. It was presumed that the edge-slope constants can be evaluated
at the edges of the barrier at the mean free surface [8]. Recently, Manam [12] has
provided an analytical solution for the scattering of capillary–gravity waves by partial
vertical barriers along with promising numerical results for the reflection coefficient.
The solution method involves the application of an orthogonal mode-coupling relation
[13] and the bounded solution of a weakly singular integral equation. The study
has been implemented to membrane-coupled gravity waves under the assumption that
the floating membrane can be attached with a spring of zero stiffness to the surface-
piercing vertical barrier [11].

In this paper, a two-dimensional linear water wave scattering problem involving
a thin vertical barrier with a gap is studied, when the free surface is either covered
with a flexible floating membrane or subject to surface tension. Membrane ends can
be attached with springs of certain specified stiffnesses, giving rise to suitable edge
conditions at the intersection of membrane and vertical barrier. For capillary–gravity
waves, the slope of the water surface on either side of the vertical barrier may not
be known, but the difference between both sides can be determined. The solution
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procedure is an extension to that of Manam [11]. The associated mixed boundary
value problem is formulated in Section 2. The method of solution is explained in
Section 3 with illustrations in appendices. Numerical computations are carried out
and the results are presented graphically in Section 4. Finally, some conclusions are
drawn in Section 5.

2. Mathematical formulation

A two-dimensional mixed boundary value problem that models membrane-coupled
gravity wave scattering by a rigid barrier with a gap is formulated under the
assumptions of linearized water wave theory and small-amplitude membrane response.
The fluid surface is covered with a floating membrane, which may be considered as
a one-dimensional string. A two-dimensional Cartesian coordinate system is used
in which the positive y-axis is pointed vertically downward and the region y > 0,
x ∈ IR is occupied by the fluid. The surface-piercing structure is located at x = 0, y ∈
(0, a) ∪ (b,∞) in the fluid region. An irrotational time-harmonic motion is assumed
in the incompressible inviscid fluid under the action of gravity. Hence, there exists a
velocity potential Φ(x, y, t) = Re(φ(x, y)e−iωt), whereω (> 0) denotes angular frequency
and t denotes time. Also, surface deflection is of the form ζ(x, t) = Re(η(x)e−iωt). The
time-dependent factor e−iωt is naturally suppressed throughout the analysis. Then, the
spatial velocity potential φ(x, y) satisfies

∂2φ

∂x2 +
∂2φ

∂y2 = 0, |x| > 0, y > 0. (2.1)

A linear boundary condition is derived on the membrane-covered region [11], by
balancing the hydrodynamic pressure at the interface and the effective pressure on the
membrane, as

M
∂3φ

∂y3 +
∂φ

∂y
+ Kφ = 0 on y = 0, x ∈ IR, (2.2)

where M = S/(ρg − msω
2) with S , ρ, g representing membrane tension, density of

water, acceleration due to gravity, respectively, and K = ρω2/(ρg − msω
2). When the

mass of the membrane is zero, that is, ms = 0, (2.2) represents the boundary condition
for water waves under surface tension S . In this case, the boundary value problem
governs scattering of capillary–gravity waves by the vertical barrier with a gap in it.

On the rigid vertical structure located at x = 0, y ∈ (0, a) ∪ (b,∞) with a < b, φ(x, y)
satisfies the Neumann boundary condition

∂φ

∂x
= 0. (2.3)

Since the fluid flow is continuous across the gap x = 0, y ∈ (a, b), φ(x, y) satisfies

φ(0−, y) = φ(0+, y), (2.4)

https://doi.org/10.1017/S1446181114000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000078


270 S. R. Manam and R. B. Kaligatla [4]

Membrane covered surface

x

a

b

y

Thin barrier
with a gap

Incident wave

Figure 1. Schematic diagram for the physical problem.

in the usual notation, and

φ,
∂φ

∂x
,
∂φ

∂y
→ 0 as y→∞, (2.5)

which represents no motion at larger depth.
The behaviour of φ(x, y) at the extremities in the horizontal direction is given by

φ(x, y)→
{

eiλx−λy + Re−iλx−λy as x→ −∞,
Teiλx−λy as x→∞, (2.6)

representing progressive waves. The unknown complex constants R and T are the
reflected and transmitted amplitudes of the incident wave eiλx−λy, where λ > 0. The
constant λ satisfies the dispersion equation Mx3 + x − K = 0. This equation also has
two complex conjugate roots λ1, λ̄1 with negative real parts.
The edge conditions, as required for the energy to be finite in the neighbourhood of all
edges associated with the flow [14], are given by

∂φ

∂x
(0, y) ∼ O(|y − t|−1/2) as y→ t, (2.7)

where t = a+ and b−, the edge points of thin vertical structure under consideration. A
schematic diagram for the physical problem is displayed in Figure 1.
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3. Method of solution

The unknown velocity potential φ(x, y) in the regions x < 0 and x > 0 may be
expanded as [13]

φ(x, y) =


eiλx−λy + Re−iλx−λy +

2
π

∫ ∞

0
A(ξ)[ξ(1 − Mξ2) cos ξy − K sin ξy]eξx dξ,

x < 0,

Teiλx−λy +
2
π

∫ ∞

0
B(ξ)[ξ(1 − Mξ2) cos ξy − K sin ξy]e−ξx dξ, x > 0,

where A(ξ) and B(ξ) are unknown functions along with the constants R and T . The
above potential function φ(x, y) automatically satisfies the partial differential equation
(2.1) and the conditions (2.2), (2.5) and (2.6) for an appropriate choice of the functions
A(ξ) and B(ξ).

Since the horizontal velocity component is continuous across the positive y-axis
except at the intersection point of the membrane and the rigid barrier, the difference in
the velocities on both sides of the interface x = 0 is obtained as

2
π

∫ ∞

0
ξ[A(ξ) + B(ξ)][ξ(1 − Mξ2) cos ξy − K sin ξy] dξ

=
(
φx(0−, y) − φx(0+, y)

)
+ iλ(T + R − 1)e−λy for y ≥ 0.

The functions [ξ(1 − Mξ2) cos ξy − K sin ξy] and e−λy satisfy the mode-coupling
relation [13]

〈 f , g〉 =

∫ ∞

0
f (y)g(y) dy +

M
K

f ′(0)g′(0),

where ′ denotes differentiation. Hence,

T = 1 − R +
2iM(µ+ − µ−)

1 + 3Mλ2 ; B(ξ) = −A(ξ) +
M(µ+ − µ−)

∆(ξ)
,

where ∆(ξ) = ξ2(1 − Mξ2)2 + K2 and µ± = φxy(0±, 0) are the unknown edge-slope
constants. It will be clear a little later that one of these edge-slope constants needs to
be prescribed mathematically for the unique solution. Physically, they are calibrated
slopes at the attached points of the floating membrane to the vertical barrier. For water
waves under surface tension, these edge-slope constants can be found experimentally,
as explained in Hocking [8].

Application of the conditions (2.3) and (2.4), after integration, provides a pair of
integral equations

2
π

∫ ∞

0
ξA(ξ) sin ξy dξ

=


B1eλy + B2eλ1y + B3eλ̄1y +

iλ(1 − R)
Q(λ)

e−λy ≡ f1(y) if y ∈ (0, a),

C1eλ1y + C2eλ̄1y + C3eλy +
iλ(1−R)

Q(λ) e−λy ≡ f2(y) if y ∈ (b,∞),
(3.1)
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2
π

∫ ∞

0
A(ξ) sin ξy dξ

= D1eλy + D2eλ1y + D3eλ̄1y +

[
R −

iM(µ+ − µ−)
1 + 3Mλ2

] e−λy

Q(λ)

+
M
π

(µ+ − µ−)
∫ ∞

0

sin ξy
∆(ξ)

dξ ≡ h(y) if y ∈ (a, b), (3.2)

where B1, B2, B3,C1,C2,C3, D1, D2, D3 are arbitrary constants, and Q(λ) = λ(1 +

Mλ2) + K. Clearly, the constant C3 in (3.1) must be zero. Otherwise, the function f2(y)
is unbounded as y→∞. Note that the function f1(y) must satisfy f1(0) = f ′′1 (0) = 0.
These conditions translate into

B1 + B2 + B3 −
iλ

Q(λ)
R = −

iλ
Q(λ)

(3.3)

and

λ2B1 + λ2
1B2 + λ̄2

1B3 −
iλ3

Q(λ)
R = −

iλ3

Q(λ)
. (3.4)

Suppose that
2
π

∫ ∞

0
ξA(ξ) sin ξy dξ = g1(y) for y ∈ (a, b),

where g1(y) is an unknown function. Then, by the inverse Fourier sine transform, one
can get

A(ξ) =
1
ξ

∫ ∞

0
P(y) sin ξy dy, (3.5)

where

P(y) =


f1(y) for y ∈ (0, a),

g1(y) for y ∈ (a, b),

f2(y) for y ∈ (b,∞).

It is routine to obtain a weakly singular integral equation, as in Manam [11], for the
unknown function g1(y), and it is given by

1
π

∫ b

a
g1(u) log

∣∣∣∣∣u + t
u − t

∣∣∣∣∣ du = h1(t) for t ∈ (a, b), (3.6)

where

h1(t) = h(t) −
1
π

∫ a

0
f1(u) log

∣∣∣∣∣u + t
u − t

∣∣∣∣∣ du −
1
π

∫ ∞

b
f2(u) log

∣∣∣∣∣u + t
u − t

∣∣∣∣∣ du.

On differentiating the relations (3.1) and (3.2) twice, again by the application of the
inverse Fourier sine transform, one can obtain

A(ξ) = −
1
ξ3

∫ ∞

0

d2P
dy2 sin ξy dy, (3.7)
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where

d2P
dy2 =


d2 f1
dy2 for y ∈ (0, a),

g2 for y ∈ (a, b),
d2 f2
dy2 for y ∈ (b,∞).

By substituting (3.7) into the twice-differentiated form of (3.2), we find that the
function g2 ≡ d2g1/dy2 satisfies the weakly singular integral equation

1
π

∫ b

a
g2(u) log

∣∣∣∣∣u + t
u − t

∣∣∣∣∣ du = h2(t) for t ∈ (a, b), (3.8)

where

h2(t) =
d2h
dt2 −

1
π

∫ a

0

d2 f1
du2 log

∣∣∣∣∣u + t
u − t

∣∣∣∣∣ du −
1
π

∫ ∞

b

d2 f2
du2 log

∣∣∣∣∣u + t
u − t

∣∣∣∣∣ du.

The edge condition (2.7) physically describes that the horizontal velocity
component ∂φ/∂x has an integrable singularity at the sharp barrier edges, as required
for the wave energy to be finite. We utilize this to show that the functions g1(y) and
d2g1/dy2 are bounded [11] at the end points y = a and y = b with the behaviour

d(2−2i)g1

dy2 ∼ O(|y − t|
1
2 +2i) as y→ a+, b− for i = 0, 1.

Hence, the bounded solutions [2] of the integral equations (3.6) and (3.8) are given by

g1(u) =
2
π

√
(u2 − a2)(b2 − u2)

∫ b

a

th′1(t)√
(t2 − a2)(b2 − t2)(u2 − t2)

dt, u ∈ (a, b),

provided that∫ b

a

th′1(t)√
(t2 − a2)(b2 − t2)

dt = 0, (3.9)

(aπ − J1)
J2

∫ b

a

h1(t)√
(t2 − a2)(b2 − t2)

dt +

∫ b

a

√
t2 − a2

b2 − t2 h1(t) dt

+

∫ b

a

√
t2 − a2

b2 − t2 th
′

1(t) dt = 0 (3.10)

and

g2(u) =
2
π

√
(u2 − a2)(b2 − u2)

∫ b

a

th′2(t)√
(t2 − a2)(b2 − t2)(u2 − t2)

dt, u ∈ (a, b),

https://doi.org/10.1017/S1446181114000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000078


274 S. R. Manam and R. B. Kaligatla [8]

provided that∫ b

a

th′2(t)√
(t2 − a2)(b2 − t2)

dt = 0, (3.11)

(aπ − J1)
J2

∫ b

a

h2(t)√
(t2 − a2)(b2 − t2)

dt +

∫ b

a

√
t2 − a2

b2 − t2 h2(t) dt

+

∫ b

a

√
t2 − a2

b2 − t2 th
′

2(t) dt = 0, (3.12)

where

J1 =

∫ b

a

√
t2 − a2

b2 − t2 log
∣∣∣∣∣a + t
a − t

∣∣∣∣∣ dt and J2 =

∫ b

a

1√
(t2 − a2)(b2 − t2)

log
∣∣∣∣∣a + t
a − t

∣∣∣∣∣ dt.

It may be noted that the function A(ξ) is expressed in two integral representations
(3.5) and (3.7). After equating these and integrating by parts, we obtain the conditions

f1(a) = g1(a), that is, eλaB1 + eλ1aB2 + eλ̄1aB3 −
iλ

Q(λ)
e−λaR = −

iλ
Q(λ)

e−λa, (3.13)

f2(b) = g1(b), that is, eλ1bC1 + eλ̄1bC2 −
iλ

Q(λ)
e−λbR = −

iλ
Q(λ)

e−λb, (3.14)

f
′

1(a) = g
′

1(a) (3.15)

and
f
′

2(b) = g
′

1(b). (3.16)

Using integrals in Appendix A, the conditions in (3.9) and (3.11) are expressed as
linear equations

I1(λ)B1 + I1(λ1)B2 + I1(λ̄1)B3 − I2(λ1)C1 − I2(λ̄1)C2 + λI3(λ)D1 + λ1I3(λ1)D2

+ λ̄1I3(λ̄1)D3 + [−iI1(−λ) + iI2(−λ) − I3(−λ)]
λ

Q(λ)
R

+

( M
π

∫ b

a

∫ ∞

0

tξ cos ξt√
(t2 − a2)(b2 − t2)∆(ξ)

dξ dt +
iMλ

(1 + 3Mλ2)Q(λ)
I3(−λ)

)
× (µ+ − µ−)

= [−I1(−λ) + I2(−λ)]
iλ

Q(λ)
(3.17)

and

λ2I1(λ)B1 + λ2
1I1(λ1)B2 + λ̄2

1I1(λ̄1)B3 − λ
2
1I2(λ1)C1 − λ̄

2
1I2(λ̄1)C2 + λ3I3(λ)D1

+ λ3
1I3(λ1)D2 + λ̄3

1I3(λ̄1)D3 + [−iI1(−λ) + iI2(−λ) − I3(−λ)]
λ3

Q(λ)
R
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+

(
−

M
π

∫ b

a

∫ ∞

0

tξ3 cos ξt√
(t2 − a2)(b2 − t2)∆(ξ)

dξ dt +
iMλ3

(1 + 3Mλ2)Q(λ)
I3(−λ)

)
× (µ+ − µ−)

= [−I1(−λ) + I2(−λ)]
iλ3

Q(λ)
, (3.18)

where

I1(x) =

∫ a

0

text√
(a2 − t2)(b2 − t2)

dt, I2(x) =

∫ ∞

b

text√
(a2 − t2)(b2 − t2)

dt

and

I3(x) =

∫ b

a

text√
(t2 − a2)(b2 − t2)

dt.

Also, the conditions (3.10) and (3.12) are simplified as

(aπ − J1)
J2

∫ b

a

h(t)√
(t2 − a2)(b2 − t2)

dt −
(aπ − J1)

J2

∫ a

0

∫ a

x

f1(u)√
(a2 − x2)(b2 − x2)

du dx

−
(aπ − J1)

J2

∫ ∞

b

∫ x

b

f2(u)√
(a2 − x2)(b2 − x2)

du dx +

∫ b

a

√
t2 − a2

b2 − t2 h(t) dt

+

∫ a

0

∫ a

x

√
a2 − x2

b2 − x2 f1(u) du dx +

∫ ∞

b

∫ ∞

x

√
a2 − x2

b2 − x2 f2(u) du dx

+

(
b −

J3

π

) ∫ ∞

b
f2(t) dt +

∫ b

a

√
t2 − a2

b2 − t2 th′(t) dt −
∫ a

0

√
a2 − t2

b2 − t2 t f1(t) dt

−

∫ ∞

b

√
a2 − t2

b2 − t2 t f2(t) dt = 0 (3.19)

and

(aπ − J1)
J2

∫ b

a

h
′′

(t)√
(t2 − a2)(b2 − t2)

dt −
(aπ − J1)

J2

∫ a

0

∫ a

x

f
′′

1 (u)√
(a2 − x2)(b2 − x2)

du dx

−
(aπ − J1)

J2

∫ ∞

b

∫ x

b

f
′′

2 (u)√
(a2 − x2)(b2 − x2)

du dx +

∫ b

a

√
t2 − a2

b2 − t2 h
′′

(t) dt

+

∫ a

0

∫ a

x

√
a2 − x2

b2 − x2 f
′′

1 (u) du dx +

∫ ∞

b

∫ ∞

x

√
a2 − x2

b2 − x2 f
′′

2 (u) du dx

+

(
b −

J3

π

) ∫ ∞

b
f
′′

2 (t) dt +

∫ b

a

√
t2 − a2

b2 − t2 th
′′′

(t) dt −
∫ a

0

√
a2 − t2

b2 − t2 t f
′′

1 (t) dt

−

∫ ∞

b

√
a2 − t2

b2 − t2 t f
′′

2 (t) du = 0, (3.20)
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where J3 =
∫ b

a

√
(t2 − a2/b2 − t2) log |(b + t/b − t)| dt. These equations are written

as linear equations for the unknown constants, whose coefficients are provided in
Appendix B.

Nevertheless, (3.15) and (3.16) are not in a readily computable form. In order to
make them suitable for computation, g2(u) is integrated on [a, b] by multiplying u and
u3 separately. Then,∫ b

a

[t3 − 1
2 (a2 + b2)t]h

′

2(t)√
(t2 − a2)(b2 − t2)

dt + bg
′

1(b) − ag
′

1(a) = 0

and ∫ b

a

[t5 − 1
2 (a2 + b2)t3 − 1

8 (a2 − b2)2t]h′2(t)√
(t2 − a2)(b2 − t2)

dt − 6
∫ b

a

[t3 − 1
2 (a2 + b2)t]h

′

1(t)√
(t2 − a2)(b2 − t2)

dt

−a3g
′

1(a) + b3g
′

1(b) = 0.

Solving the above equations for g
′

1(a) and g
′

1(b) and using these in (3.15), (3.16), we
get

−6
∫ b

a

t3h
′

1(t)√
(t2 − a2)(b2 − t2)

dt −
(3b2 + a2

2

) ∫ b

a

t3h
′

2(t)√
(t2 − a2)(b2 − t2)

dt

+

∫ b

a

t5h
′

2(t)√
(t2 − a2)(b2 − t2)

dt + (ab2 − a3) f
′

1(a) = 0 (3.21)

and

6
∫ b

a

t3h
′

1(t)√
(t2 − a2)(b2 − t2)

dt +

(3a2 + b2

2

) ∫ b

a

t3h
′

2(t)√
(t2 − a2)(b2 − t2)

dt

−

∫ b

a

t5h
′

2(t)√
(t2 − a2)(b2 − t2)

dt − (b3 − a2b) f
′

2(b) = 0. (3.22)

Further simplifying (3.21) and (3.22), we get∫ a

0

t3 f
′′

1 (t)√
(t2 − a2)(t2 − b2)

dt −
∫ ∞

b

t3 f
′′

2 (t)√
(t2 − a2)(t2 − b2)

dt

+

∫ b

a

t3h
′′′

(t)√
(t2 − a2)(b2 − t2)

dt = 0 (3.23)

and

6
∫ a

0

t3 f1(t)√
(t2 − a2)(t2 − b2)

dt +

(3a2 + b2

2

) ∫ a

0

t3 f
′′

1 (t)√
(t2 − a2)(t2 − b2)

dt

−

∫ a

0

t5 f
′′

1 (t)√
(t2 − a2)(t2 − b2)

dt − 6
∫ ∞

b

t3 f2(t)√
(t2 − a2)(t2 − b2)

dt
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−

(3a2 + b2

2

) ∫ ∞

b

t3 f
′′

2 (t)√
(t2 − a2)(t2 − b2)

dt +

∫ ∞

b

t5 f
′′

2 (t)√
(t2 − a2)(t2 − b2)

dt

+ 6
∫ b

a

t3h
′

(t)√
(t2 − a2)(b2 − t2)

dt +

(3a2 + b2

2

) ∫ b

a

t3h
′′′

(t)√
(t2 − a2)(b2 − t2)

dt

−

∫ b

a

t5h
′′′

(t)√
(t2 − a2)(b2 − t2)

dt = 0. (3.24)

The constraints in (3.23) and (3.24) are expressed as linear equations and their
coefficients are given in Appendix B.

Thus, the mixed boundary value problem has been reduced to solving a system
of 10 linear equations for 10 unknown constants. Then, the unknown function
A(ξ) may be obtained explicitly, but not in the best computable form, from either
(3.5) or (3.7). These equations are given by the relations (3.3), (3.4), (3.13),
(3.14), (3.17)–(3.20), (3.23) and (3.24). The linear system may be represented,
for clarity, in a matrix form UxT = vT , where U is a 10 × 10 matrix; x = (B1, B2,
B3,C1,C2, D1, D2, D3, R, (µ+ − µ−)) and v = (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10) are
1 × 10 vectors. The last four rows of the augmented matrix [U : vT ] are listed in
Appendix B.

Note that the solution of the mixed boundary value problem involves an arbitrary
constant in either µ+ or µ−. This needs to be prescribed for the unique solution.
Physically, for a floating membrane, it means that the membrane ends cannot be
elastically supported by springs of zero vertical stiffness, as is done for a partial
surface-piercing vertical barrier [10, 11]. This is supported by the argument that
the method of solution determines the constant (µ+ − µ−), and the constant may not
necessarily be zero in the problem involving a vertical barrier with a gap. In other
words, one may have freedom to clamp the membrane with a spring of zero stiffness
on only one side of the barrier, while the membrane edge on the other side of the
barrier must be supported with a spring of a certain stiffness for the existence of
the solution. The measure of spring stiffness can be determined from the constant
(µ+ − µ−). Obviously, this quantity depends on the frequency of an incident wave.

However, for capillary–gravity waves, the difference between the edge slopes on
both sides of the barrier is determined by the solution constant (µ+ − µ−). Note that
there is still an arbitrariness in the form of an edge-slope constant on one side of the
barrier.

Finally, we point out that the difference between membrane stiffness or edge slope
on both sides of the barrier, that is, (µ+ − µ−), should be prescribed for the unique
solution in the presence of a surface-piercing partial barrier. It essentially means that
there are two arbitrary physical constants involved in the problem. However, in the
present case of the barrier with a gap, there is only one arbitrary physical constant that
needs to be prescribed for the unique solution.

3.1. Limiting cases The following limiting cases are considered here and they are
fully in agreement with the known results.
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(i) S → 0 and a, b are fixed with 0 < a < b: it may be noted that membrane-coupled
gravity wave motion exists purely for nonzero tension, that is, when S , 0. In
other words, S → 0 is a singular limit of the boundary value problem, since the
coefficient of the highest derivative in the surface boundary condition becomes
zero. However, in the absence of tension S = 0, edge conditions and some of
the derived conditions in the solution method are no longer valid. Hence, the
required system of linear equations that are to be solved in this case are none
other than the ones given by Chakrabarti et al. [3].

(ii) a→ 0+ and b (> 0) is fixed: this is mathematically equivalent to the scattering of
membrane-coupled gravity waves by a submerged vertical barrier. In this case,
some of the linear equations become redundant. Hence, the required system
of equations that are to be solved for the scattering quantities become the ones
associated with the submerged vertical barrier case of Manam [11].

(iii) b→∞ and a > 0 is fixed: this is the case of the surface-piercing barrier problem
for membrane-coupled gravity waves. For similar reasons cited in the previous
case, the reduced conditions are associated with the piercing barrier case of
Manam [11].

In the presence of partial barriers, numerical results for membrane-coupled gravity
waves have been obtained for very small values of S , say of the order 10−7, although
these are physically unrealistic. However, results could converge exactly to those for
free surface gravity waves only in the case of a submerged barrier, while they could
show only signs of convergence in the case of a piercing barrier due to the singular
limit. One may expect such difficulties in the case of a vertical barrier with a gap as
well. In fact, coefficients in the linear system comprise singular as well as highly
oscillatory improper integrals when the value of the surface or membrane tension
is unrealistically small. Therefore, we consider only physically realistic values for
tension in the numerical computation that is carried out in the next section.

4. Numerical results

We solve the linear system numerically for the unknowns using MATHEMATICA.
A nondimensional quantity for the membrane tension is introduced by the parameter
β = MK2. The reflection coefficient |R| is plotted against the wave parameter Kh for
different values of the nondimensional structure parameters β and δ, where δ is the
ratio of gap width to its mean depth h. The parameter δ must satisfy a = h(1 − (δ/2))
and b = h(1 + (δ/2)), so that 0 < δ < 2 [16]. The values a and b are fixed for specific
values of δ and h, respectively. Consequently, a change in the value of δ makes a
uniform variation in the gap width around h.

Figure 2 shows the reflection coefficient |R| against the nondimensional
wavenumber Kh for different values of the membrane tension β when δ = 1.3, 1.5, 1.7.
Computations are carried out beyond the value δ = 1.0. This is justified for the reason
that the gap width becomes narrower for smaller values of δ. Consequently, the barrier
reflects most of the incident wave energy. The solid curve represents the reflection
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(a) (b)

(c)

Figure 2. Reflection coefficient |R| for different values of the membrane tension when (a) δ = 1.3,
(b) δ = 1.5, (c) δ = 1.7.

coefficient for free surface gravity waves, that is, when β = 0. It may be observed
from Figure 2(a)–(c) that |R| decreases with an increase in δ when the value of β is
fixed. It demonstrates that wave transmission rises as the barrier gap becomes wider.
The same observation was made by Porter [16] in the context of free surface gravity
waves. Variation in the membrane tension has hardly any effect on the reflection of
low-frequency membrane-coupled gravity waves. Reflection is observed to increase
negligibly with an increase in the membrane tension. This trend continues to apply for
waves up to intermediate frequencies at bigger gap widths. Beyond those frequencies,
an opposite trend is seen with the rate of increase being significantly higher. They
reveal, as one would expect, that the membrane with higher tension produces lower
reflection for relatively shorter waves. Short membrane-coupled gravity waves are
observed to reflect almost completely when the tension β = 0.1 and δ = 1.3. It can
be seen that the amount of reflection in shorter membrane-coupled gravity waves is
smaller than the same in free surface gravity waves when the membrane is under high
tension. This suggests that the tensional membrane spreads some amount of shorter
wave energy uniformly below the mean surface. Thus, highly tensional membrane-
coupled gravity waves with short wavelength transmit through a wider gap better than
long waves.

In Figure 3(a) and (b), the reflection coefficient |R| is depicted against the
wavenumber Kh for free surface and capillary–gravity waves, respectively, for

https://doi.org/10.1017/S1446181114000078 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181114000078


280 S. R. Manam and R. B. Kaligatla [14]

(a) (b)

Figure 3. Reflection coefficient |R| for different values of the parameter δ in the case of free surface with
surface tension (a) β = 0, (b) β = 0.074.

different values of the gap width parameter δ. It is well known that β = 0.074 is a
typical value for water at room temperature, and it is chosen in the computation of the
reflection coefficient for capillary–gravity waves. As expected, a narrow gap produces
higher overall reflection in both types of waves. Spreading of energy concentration for
long capillary–gravity waves is evident, as reflection is found to be less for these waves
than that for long free surface gravity waves. Also, it can be seen from Figure 3(b) that
capillary–gravity waves with intermediate wavelength reflect better than free surface
gravity waves of similar nature when the gap is relatively narrow. But, when the gap
becomes sufficiently wider, lower reflection of very short capillary–gravity waves is
seen, because the concentration of energy is more situated across the gap. This reveals
that energy concentration for shorter capillary–gravity waves also undergoes some
amount of wave energy spreading below the mean surface.

Finally, note that sharp rises or dips in the membrane-coupled gravity wave
reflection in the presence of partial barriers are no longer seen in the case of the
complete barrier with a gap. Perhaps this is due to the complementary nature of the
partial vertical barriers that are involved in the present problem.

5. Conclusions

A mixed boundary value problem for the Laplace equation with a higher-order
boundary condition has been tackled for an analytical solution. This is associated
with capillary as well as membrane-coupled gravity wave scattering in deep water
against a vertical barrier with a gap. The solution method involves the utilization of
an orthogonal mode-coupling relation and the bounded solution of a weakly singular
integral equation. We show limiting cases to produce known results in the problems
of scattering against vertical barriers. The degree of arbitrariness in the membrane
edge stiffness in the present problem is found to be different from the extent of that
arbitrariness for the case of a surface-piercing vertical barrier problem.

The reflection coefficient for capillary and membrane-coupled gravity waves is
plotted against a nondimensional wavenumber for different values of nondimensional
parameters involved. Results are justified while comparing with free surface gravity
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waves. We find that for moderate gap widths, membrane tension plays a significant
role in the reflection. In addition, membrane-coupled gravity waves with intermediate
wavelengths reflect better than free surface gravity waves of similar nature. Further,
uniform spreading of the long membrane coupled gravity wave energy below the mean
surface is greater than that of the free surface gravity wave energy to feel the barrier
gap. Moreover, there is also evidence that the membrane spreads some amount of
shorter wave energy below the mean surface so as to get better transmission.

Some amount of capillary gravity wave energy spreading is found, although it
appears insignificant. This is evident from the observation that capillary gravity
waves with intermediate to short wavelengths undergo higher reflection than free
surface gravity waves of similar nature, until the barrier gap becomes sufficiently
wider. Besides, shorter waves feel the barrier gap so much that they achieve higher
transmission.

Further extension of the solution method is possible for a mixed boundary value
problem associated with the scattering of capillary or membrane-coupled gravity
waves by a complete vertical barrier with a finite number of gaps in it. Also, the
general method of solution can be applied to similar kinds of problems in other areas
of wave structure interactions.

Appendix A. Evaluation of integrals
The following is a list of integrals that can be evaluated by standard contour

integration techniques:

(i)
∫ b

a

t√
(t2 − a2)(b2 − t2)(u2 − t2)

dt =


−π

2
√

(a2 − u2)(b2 − u2)
for u ∈ (0, a),

π

2
√

(a2 − u2)(b2 − u2)
for u ∈ (b,∞).

(ii)
∫ b

a

t
u2 − t2

√
t2 − a2

b2 − t2 dt =
π

2

(√a2 − u2

b2 − u2 − 1
)
, u ∈ (0, a) ∪ (b,∞).

(iii)
∫ b

a

t
√

(t2 − a2)(b2 − t2)
(t2 − u2)

dt = −
π

2

[
u2 −

1
2

(a2 + b2)
]
, a < u < b.

(iv)
∫ b

a

t3
√

(t2 − a2)(b2 − t2)
(t2 − u2)

dt = −
π

2

[
u4 −

1
2

(a2 + b2)u2 −
1
8

(a2 − b2)2
]
,

a < u < b,

(v)
∫ b

a

t3√
(t2 − a2)(b2 − t2)(u2 − t2)

dt =



−π

2

(
1 +

u2√
(a2 − u2)(b2 − u2)

)
for u ∈ (0, a),

−π

2

(
1 −

u2√
(a2 − u2)(b2 − u2)

)
for u ∈ (b,∞).
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(vi)
∫ b

a

t5√
(t2 − a2)(b2 − t2)(u2 − t2)

dt =

{
K1(u) for u ∈ (0, a),
K2(u) for u ∈ (b,∞),

where

K1(u) =
−π

2

(
u2 +

1
2

(a2 + b2) +
u4√

(a2 − u2)(b2 − u2)

)
,

K2(u) =
−π

2

(
u2 +

1
2

(a2 + b2) −
u4√

(a2 − u2)(b2 − u2)

)
.

Appendix B. Coefficients of linear equations

The coefficients in the linear equations (3.19), (3.20), (3.23) and (3.24) are
represented as the 7th, 8th, 9th and 10th rows of the augmented matrix [U : vT ],
respectively, and are listed here in a computable form:

a70 = −
(aπ − J1)
λJ2

∫ a

0

eλa − eλt

s2(t)
dt +

1
λ

∫ a

0
s4(t)(eλa − eλt) dt −

∫ a

0
s4(t)teλt dt,

a71 = −
(aπ − J1)
λ1J2

∫ a

0

eλ1a − eλ1t

s2(t)
dt +

1
λ1

∫ a

0
s4(t)(eλ1a − eλ1t) dt −

∫ a

0
s4(t)teλ1t dt,

a72 = ā71,

a73 = −
(aπ − J1)
λ1J2

∫ ∞

b

eλ1t − eλ1b

s2(t)
dt −

1
λ1

∫ ∞

b
(1 + λ1t)s4(t)eλ1t dt +

( J3

π
− b

)eλ1b

λ1
,

a74 = ā73, a75 =
(aπ − J1)

J2

∫ b

a

eλt

s1(t)
dt +

∫ b

a
(1 + λt)s3(t)eλt dt,

a76 =
(aπ − J1)

J2

∫ b

a

eλ1t

s1(t)
dt +

∫ b

a
(1 + λ1t)s3(t)eλ1t dt, a77 = ā76,

a78 =
(aπ − J1)
J2Q(λ)

∫ b

a

e−λt

s1(t)
dt +

i(aπ − J1)
J2Q(λ)

∫ a

0

e−λt − e−λa

s2(t)
dt

+
i(aπ − J1)

J2Q(λ)

∫ ∞

b

e−λb − e−λt

s2(t)
dt +

1
Q(λ)

∫ b

a
(1 − λt)s3(t)e−λt dt

−
i

Q(λ)

∫ a

0
s4(t)(e−λt − e−λa) dt −

i
Q(λ)

∫ ∞

b
(1 − λt)s4(t)e−λt dt

+
iλ

Q(λ)

∫ a

0
s4(t)te−λt dt +

i
Q(λ)

( J3

π
− b

)
e−λb,
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a79 = −
iM(aπ − J1)

J2Q(λ)(1 + 3Mλ2)

∫ b

a

e−λt

s1(t)
dt +

(aπ − J1)
J2

M
π

∫ b

a

∫ ∞

0

sin ξt
s1(t)∆(ξ)

dξ dt

−
iM

Q(λ)(1 + 3Mλ2)

∫ b

a
(1 − λt)s3(t)e−λt dt +

M
π

∫ b

a

∫ ∞

0

sin ξt
∆(ξ)

s3(t) dξ dt

+
M
π

∫ b

a

∫ ∞

0

tξ cos ξt
∆(ξ)

s3(t) dξ dt,

v7 =
i(aπ − J1)

J2Q(λ)

∫ a

0

e−λt − e−λa

s2(t)
dt +

i(aπ − J1)
J2Q(λ)

∫ ∞

b

e−λb − e−λt

s2(t)
dt

−
i

Q(λ)

∫ a

0
s4(t)(e−λt − e−λa) dt −

i
Q(λ)

∫ ∞

b
(1 − λt)s4(t)e−λt dt

+
iλ

Q(λ)

∫ a

0
s4(t)te−λt dt +

i
Q(λ)

( J3

π
− b

)
e−λb,

a80 = −
λ(aπ − J1)

J2

∫ a

0

eλa − eλt

s2(t)
dt + λ

∫ a

0
s4(t)(eλa − eλt) dt − λ2

∫ a

0
s4(t)teλt dt,

a81 = −
λ1(aπ − J1)

J2

∫ a

0

eλ1a − eλ1t

s2(t)
dt + λ1

∫ a

0
s4(t)(eλ1a − eλ1t) dt

−λ2
1

∫ a

0
s4(t)teλ1t dt,

a82 = ā81,

a83 = −
λ1(aπ − J1)

J2

∫ ∞

b

eλ1t − eλ1b

s2(t)
dt − λ1

∫ ∞

b
(1 + λ1t)s4(t)eλ1t dt +

( J3

π
− b

)
λ1eλ1b,

a84 = ā83, a85 =
λ2(aπ − J1)

J2

∫ b

a

eλt

s1(t)
dt + λ2

∫ b

a
(1 + λt)s3(t)eλt dt,

a86 =
λ2

1(aπ − J1)
J2

∫ b

a

eλ1t

s1(t)
dt + λ2

1

∫ b

a
(1 + λ1t)s3(t)eλ1t dt, a87 = ā86,

a88 =
λ2(aπ − J1)

J2Q(λ)

∫ b

a

e−λt

s1(t)
dt +

iλ2(aπ − J1)
J2Q(λ)

∫ a

0

e−λt − e−λa

s2(t)
dt

+
iλ2(aπ − J1)

J2Q(λ)

∫ ∞

b

e−λb − e−λt

s2(t)
dt +

λ2

Q(λ)

∫ b

a
(1 − λt)s3(t)e−λt dt

−
iλ2

Q(λ)

∫ a

0
s4(t)(e−λt − e−λa) dt −

iλ2

Q(λ)

∫ ∞

b
(1 − λt)s4(t)e−λt dt

+
iλ3

Q(λ)

∫ a

0
s4(t)te−λt dt +

iλ2

Q(λ)

( J3

π
− b

)
e−λb,
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a89 = −
iMλ2(aπ − J1)

J2Q(λ)(1 + 3Mλ2)

∫ b

a

e−λt

s1(t)
dt −

(aπ − J1)
J2

M
π

∫ b

a

∫ ∞

0

ξ2 sin ξt
s1(t)∆(ξ)

dξ dt

−
iMλ2

Q(λ)(1 + 3Mλ2)

∫ b

a
(1 − λt)s3(t)e−λt dt −

M
π

∫ b

a

∫ ∞

0

ξ2 sin ξt
∆(ξ)

s3(t) dξ dt

−
M
π

∫ b

a

∫ ∞

0

tξ3 cos ξt
∆(ξ)

s3(t) dξ dt,

v8 =
iλ2(aπ − J1)

J2Q(λ)

∫ a

0

e−λt − e−λa

s2(t)
dt +

iλ2(aπ − J1)
J2Q(λ)

∫ ∞

b

e−λb − e−λt

s2(t)
dt

−
iλ2

Q(λ)

∫ a

0
s4(t)(e−λt − e−λa) dt −

iλ2

Q(λ)

∫ ∞

b
s4(t)e−λt dt

+
iλ3

Q(λ)

∫ a

0
s4(t)te−λt dt +

iλ2

Q(λ)

( J3

π
− b

)
e−λb +

iλ3

Q(λ)

∫ ∞

b
s4(t)te−λt dt,

a90 = λ3
∫ a

0

t3eλt

s2(t)
dt, a91 = λ3

1

∫ a

0

t3eλ1t

s2(t)
dt, a92 = ā91, a93 = −λ2

1

∫ ∞

b

t3eλ1t

s2(t)
dt,

a94 = ā93, a95 = λ3
∫ b

a

t3eλt

s1(t)
dt, a96 = λ3

1

∫ b

a

t3eλ1t

s1(t)
dt, a97 = ā96,

a98 = −
iλ3

Q(λ)

∫ a

0

t3e−λt

s2(t)
dt +

iλ3

Q(λ)

∫ ∞

b

t3e−λt

s2(t)
dt −

λ3

Q(λ)

∫ b

a

t3e−λt

s1(t)
dt,

a99 =
iMλ3

Q(λ)(1 + 3Mλ2)

∫ b

a

t3e−λt

s1(t)
dt −

M
π

∫ b

a

∫ ∞

0

t3ξ3 cos ξt
∆(ξ)s1(t)

dξ dt,

v9 = −
iλ3

Q(λ)

∫ a

0

t3e−λt

s2(t)
dt +

iλ3

Q(λ)

∫ ∞

b

t3e−λt

s2(t)
dt,

a100 =

(
6 +

λ2(3a2 + b2)
2

) ∫ a

0

t3eλt

s2(t)
dt − λ2

∫ a

0

t5eλt

s2(t)
dt,

a101 =

(
6 +

λ2
1(3a2 + b2)

2

) ∫ a

0

t3eλ1t

s2(t)
dt − λ2

1

∫ a

0

t5eλ1t

s2(t)
dt, a102 = ā101,

a103 = −

(
6 +

λ2
1(3a2 + b2)

2

) ∫ ∞

b

t3eλ1t

s2(t)
dt + λ2

1

∫ ∞

b

t5eλ1t

s2(t)
dt, a104 = ā103,

a105 = λ
(
6 +

λ2(3a2 + b2)
2

) ∫ b

a

t3eλt

s1(t)
dt − λ3

∫ b

a

t5eλt

s1(t)
dt,
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a106 = λ1

(
6 +

λ2
1(3a2 + b2)

2

) ∫ b

a

t3eλ1t

s1(t)
dt − λ3

1

∫ b

a

t5eλ1t

s1(t)
dt, a107 = ā106,

a108 = −
iλ

Q(λ)

(
6 +

λ2(3a2 + b2)
2

) ∫ a

0

t3e−λt

s2(t)
dt +

iλ3

Q(λ)

∫ a

0

t5e−λt

s2(t)
dt

−
iλ3

Q(λ)

∫ ∞

b

t5e−λt

s2(t)
dt +

iλ
Q(λ)

(
6 +

λ2(3a2 + b2)
2

) ∫ ∞

b

t3e−λt

s2(t)
dt

−
λ

Q(λ)

(
6 +

λ2(3a2 + b2)
2

) ∫ b

a

t3e−λt

s1(t)
dt +

λ3

Q(λ)

∫ b

a

t5e−λt

s1(t)
dt,

a109 =
iMλ

Q(λ)(1 + 3Mλ2)

(
6 +

λ2(3a2 + b2)
2

) ∫ b

a

t3e−λt

s1(t)
dt

+
6M
π

∫ b

a

∫ ∞

0

t3ξ cos ξt
∆(ξ)s1(t)

dξ dt −
M(3a2 + b2)

2π

∫ b

a

∫ ∞

0

t3ξ3 cos ξt
∆(ξ)s1(t)

dξ dt

−
iMλ3

Q(λ)(1 + 3Mλ2)

∫ b

a

t5e−λt

s1(t)
dt +

M
π

∫ b

a

∫ ∞

0

t5ξ3 cos ξt
∆(ξ)s1(t)

dξ dt,

v10 = −
iλ

Q(λ)

(
6 +

λ2(3a2 + b2)
2

) ∫ a

0

t3e−λt

s2(t)
dt +

iλ3

Q(λ)

∫ a

0

t5e−λt

s2(t)
dt

−
iλ3

Q(λ)

∫ ∞

b

t5e−λt

s2(t)
dt +

iλ
Q(λ)

(
6 +

λ2(3a2 + b2)
2

) ∫ ∞

b

t3e−λt

s2(t)
dt,

where

s1(t) =
√

(t2 − a2)(b2 − t2), s2(t) =
√

(a2 − t2)(b2 − t2),

s3(t) =
√

(t2 − a2)/(b2 − t2) and s4(t) =
√

(a2 − t2)/(b2 − t2).

Appendix C. Reducing computational complexity of a double integral

The double integrals appearing in Appendix B are still numerically difficult to
handle. So, there is a need to reduce their computational complexity. Some of
the standard contour integration techniques can be applied to make the numerical
evaluation of these double integrals a little easier. The procedure is shown here for one
typical double integral, and the same is applied for the other 11 such double integrals.
The integral

I =

∫ b

a

∫ ∞

0

tx cos xt
s1(t)[x2(1 − Mx2)2 + K2]

dx dt, M,K > 0

is considered for its evaluation. The inner integral∫ ∞

0

x cos xt
[x2(1 − Mx2)2 + K2]

dx, a ≤ t ≤ b
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Figure 4. Contours (a) in the quarter plane and (b) around branch cut.

can be simplified by considering the function

f (z) =
zeizt

z2(1 − Mz2)2 + K2

over the contour shown in Figure 4(a). The function f (z) has four complex zeros
distributed in each of the quadrants and two purely imaginary zeros one each in the
upper and lower half planes. The only root that contributes inside the closed contour
is denoted as z1, as seen in Figure 4(a). It may be obtained that∫ ∞

0

x cos xt
x2(1 − Mx2)2 + K2 dx = Re

( i2πz1eiz1t

6M2z5
1 − 8Mz3

1 + 2z1

)
−

∫ ∞

0

ye−yt

K2 − y2(1 + My2)2 dy.

Hence, the double integral becomes

I =

∫ b

a

t
s1(t)

Re
( i2πz1eiz1t

6M2z5
1 − 8Mz3

1 + 2z1

)
dt −

∫ b

a

∫ ∞

0

tye−yt

[K2 − y2(1 + My2)2]s1(t)
dy dt.

The second term in the above is not so suitable for numerical computation. It may
be noted that the transformation yt = s and t2 = u makes it equivalent to∫ b2

a2

∫ ∞

0

u2se−s

2[u3K2 − s2(u + Ms2)2)]s1(
√

u)
ds du.

This can be further simplified by evaluating the following integral, by the aid of the
contour shown in Figure 4(b), as given by∫ b2

a2

t2

[t3K2 − s2(t + Ms2)2)]s1(
√

t)
dt

=
π(w1 − w2)x2

0s5(x0) + (w2 − x0)w2
1s5(w1) + (x0 − w1)w2

2s5(w2)
K2(w1 − w2)(w2 − x0)(x0 − w1)

,
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where

s5(t) =
exp[−i{Arg(ts2 − a2) + Arg(ts2 − b2)}/2]√

|(ts2 − a2)(ts2 − b2)|
;

x0 > 0 is a pole of the integrand that lies either inside or outside the branch cut, and
w1,w2 are the poles inside the closed contour.
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