
14 

The statistical mechanics connection 

Models from quantum mechanics can be converted into statistical mechanics 
systems through the Wick rotation t ~ -it. Within quantum field theory this 
technique has been very powerful, both in proving qualitative properties and as a 
computational tool. Besides these more practical aspects, the statistical mechanics 
formulation is an additional source of intuition which cannot so easily be extracted 
from the Schri:idinger differential equation. The price to pay is that, in essence only 
ground state properties can be handled. Truly time-dependent problems must be 
treated in physical time. For charges interacting with the Maxwell field the Wick 
rotation is equally attractive. There is one additional bonus: since the field Hamil­
tonian is quadratic and since the coupling to the field is linear, as first observed by 
Feynman, the Gaussian integration over the Maxwell field can be done explicitly. 
This results in a fairly concise statistical-mechanical description for the particles. 

In Euclidean language the possible paths of the charge and the fields become 
fluctuating quantities. To distinguish in notation we use t c--+ qt for a random path 
of the charge and t c--+ At (x) for a random history of the transverse vector field. 
IE.(-) refers to expectation with respect to the measure of integration, either spec­
ified through the context or indicated by a subscript. Sometimes we also use the 
statistical mechanics shorthand ( ·) for averages. 

14.1 Functional integral representation 

For a single particle, subject to the potential V (x), the imaginary time Schri:idinger 
equation is, setting It = 1 = m, 

(14.1) 

and its solution for t :=:: 0 is constructed through the Trotter product formula as 

(e-tHP1/f)(x) = lim (etl'>.j2ne-tV/n)n1/f(x). (14.2) 
n---+oo 

177 
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178 The statistical mechanics connection 

We recognize exp[~t 6.] as the transition probability for a Brownian motion, whose 
paths will be denoted here by t r-+ qt. Brownian motion is a Gaussian process and 
therefore defined through the mean and covariance. Explicitly, 

(14.3) 

If the Brownian motion starts at x, we indicate the start point as a subscript 
in the expectation and have lEx(qt) = x, lEx((q8 - x)a(qt- X)fJ) = Oaf1 min(s, t), 
a, f3 = I, 2, 3. In particular the transition probability is obtained as 

IP'x({qt E d3y}) = (2nt)- 312 exp[ -(y- x) 2 j2t]d3y = (etl1.f2)(x, y)d3 y. 

(14.4) 

Writing out (14.2) in position space representation, one infers the Feynman-Kac 
formula 

(e-tHP1/f)(x) =lEx( exp [-lot dsV(qs)]o/Cqt)). (14.5) 

The Brownian motion path has acquired a non-Gaussian weight, which is the ex­
ponential of the potential energy integrated along the path qt. 

The statistical mechanics connection becomes more obvious upon discretizing 
time in units of r. We set c/Jn = qn,, c/Jn E !Pi.3 . Then, in approximation, (14.5) reads 

I I I N-1 
- d3¢o ... d3¢N8(¢o -x)exp[-- L(¢J+l-¢J)2] 
Z 2r J=O 

N 

x exp [- r L V(¢J)]o/(¢N), 
j=l 

(14.6) 

N r = t. The statistical mechanics model lives on a one-dimensional lattice and 
has at each site a continuous "spin" with three components. The first exponen­
tial is a quadratic nearest-neighbor interaction and, except for the normalization, 
represents a discrete-time Gaussian random walk in !Pi.3 . The potential can be com­
bined with the Lebesgue measure as exp[ -rV(¢J)]d3¢J and thus provides a non­
Gaussian single-site measure. 

For (14.5) to make sense one needs some minimal conditions on V to en­
sure that the expectation is defined. An obvious sufficient condition is to have 
V ::::_ co > -oo. Equation (14.5) indicates that very roughly there are three families 
of potentials: (i) Binding, V increases at infinity. Under the measure in (14.5) qt 

has in essence bounded fluctuations. For t --+ oo the path measure for qt becomes 
a stationary diffusion process. (ii) No binding, e.g. a repulsive potential decay­
ing to zero at infinity or a bounded periodic potential. A typical path qt fluctuates 
and diffuses to infinity as a Brownian motion with some effective diffusion coeffi­
cient. (iii) Local binding, like an attractive square-well potential. For the purpose 
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14.1 Functional integral representation 179 

of discussion let us set the potential as A V with V attractive near the origin and 
decaying to zero at infinity. For large A the potential dominates and qt is con­
fined as a stationary diffusion process. As A decreases, qt makes longer and longer 
excursions until it unbinds at some critical Ac. For A < Ac the Brownian motion 
dominates. Since Brownian motion is recurrent in dimension d = 1, 2, one has 
Ac = 0, whereas ford = 3 generically Ac > 0. 

It is of use to translate the path properties of the particle to spectral properties 
of the particle Hamiltonian Hp = - ~ ~ + V. We denote by L the continuum edge 
of Hp and, if it exists, by 1/fo the unique ground state of Hp, i.e. Hpl/fo = Eol/fo. In 
case (i) the spectrum of Hp is purely discrete, formally L = oo. In the second case 
Hp has a purely continuous spectrum and no eigenvalues. For a locally binding 
potential which decays to zero at infinity, case (iii), the continuum edge is L = 0. 
For sufficient attraction there are bound states with an energy below L, in particu­
lar Eo < 0. In dimension d = 1, 2 an arbitrarily weak attraction results in a bound 
state, whereas for d :=:: 3 a minimal strength is required. As is well understood, 
there is more complicated spectral behavior around with various borderline cases. 
For our purposes the schematic classification above will suffice. 

Our goal is to extend the Feynman-Kac formula (14.5) to e-tH with H the 
Pauli-Fierz Hamiltonian. This will be done in two steps. Firstly we study a one­
particle Hamiltonian including an external vector potential, and secondly we write 
e-tHf in terms of a suitable Gaussian measure. Combining both elements yields 
the desired generalization. 

Let us assume then that the quantum particle is subject to a magnetic field and 
denote the corresponding vector potential by a(x ), to distinguish from the fluctu­
ating vector potential At used later on. The imaginary time Schrodinger equation 
becomes 

1 . 2 
otl/f = -Hpl/f, Hp = 2(-1\l- a) + V. (14.7) 

Then, as before, we represent e-tHr through the Trotter product formula. The vec­
tor potential yields a term proportional to q, as can be guessed from the corre-
sponding classical action. More precisely one obtains 

The stochastic integral appearing in (14.8) is defined as Ito integral, which means 
that the discretization of a (x) is evaluated at the left end point, 

lo t nt 

dqs · a(qs) = lim L a(%n-l)jn) · (qm;n - %n-l)jn). 
0 n---+oo 

m=l 

(14.9) 
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180 The statistical mechanics connection 

This limit exists almost surely with respect to Brownian motion. Through the 
Ito convention one picks up in (14.8) the additional term containing V' ·a. It 
disappears, if in (14.9) we were to use the, in our context perhaps more nat­
ural, Feynman-Stratonovich midpoint rule where a(%n-1)fn) is replaced by 
!Ca(qm;n) + a(%n-1)jn)). Note that in the Coulomb gauge the stochastic inte­
gral does not depend on the particular choice of the rule for the discretization, 
since V' · a = 0. 

On a purely formal level, following Feynman, the quantum propagator is written 
as a sum over all paths from x' to x in the time span t "weighted" by the exponential 
of the classical action, 

(e-iHrt)(x, x') =I fl d3qs8(qo- x')8(qt- x) exp [i lot dsL(qs, iJs) J 
O~s~t 0 

(14.10) 

with the classical Lagrangian L(q, q) = !iJ2 - V(q) + q · a(q). Note that com­
pared to the right side of (14.8) the role of x and x' has been interchanged. Upon 
Wick rotation t "--'+ -it and time reversal qs "--'+ qt-s (14.1 0) becomes 

(e-tHr)(x, x') =I fl d3qs8(qo- x)8(qt- x') 
O~sg 

X exp [-lot ds(~q,; + V(qs) + iqs · a(qs)) J. (14.11) 

One recognizes the potential term and the stochastic integral -i J~ dsqs · a(qs) 

with the mid point rule. The exponential of the kinetic term combines with the 
infinite-product Lebesgue measure to Brownian motion, denoted by lEx in (14.8), 
which starts at x according to the factor 8(qo- x). 

We turn to the functional integral for the Maxwell field, which we can think 
of as an infinite collection of harmonic oscillators. Let us first recall the single 
harmonic oscillator with Hamiltonian 

(14.12) 

as a differential operator acting on L 2 (JR, dx). It has the normalized eigenvectors 
In), n = 0, 1, ... , i.e. 

Hln) = Enln), En= wn. (14.13) 

10) is the ground state of H. In the position representation H o/o = 0 with 
o/o(x )2 = ,jWJiie-uJx2

• Thus, alternatively we can use the linear span of the 
In)' s as the Hilbert space of states. This corresponds to the Fock space :F over 
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14.1 Functional integral representation 181 

the one-particle space CC, which means 1/f E :F is of the form 1/f = (1/fo, o/1, ... ), 

1/f = ~~0 1/f n In). A further, as it will tum out natural, choice is the Hilbert space 
Ho = L 2 (JR, 1/fo (x )2dx) with weight given by the square of the ground state wave 
function. 

Of course, these Hilbert spaces are unitarily equivalent. Of interest is the uni­
tary map from :F to Ho which is achieved through the Wick ordering of poly­
nomials. We regard x as a random variable on lR equipped with the normalized 
Gaussian measure o/o(x)2dx. Then, denoting expectation by (-),the Wick order 
of x is defined recursively through :x0: = 1, ox:xn: = n:xn- 1:, and (:xn:) = 0, 
n = 1, 2, .... Note that the Wick order depends both on the random variable and 
on the underlying measure. Thus :1: = 1, : x: = x - (x) = x, : x 2: = x 2 - 2(x )x -
(x2 ) + 2(x )2 = x2 - (1 j2cv ), etc., in our case. Let Pn denote the n-th Hermite 
polynomial, 

[n/2] 1 
p (x) - "' n. (-l)i xn-2} 

n - L_.,; ( _ 2 .) 1 • 1 2 ' 
J=O n 1 .J. 

(14.14) 

with [ n] the integer part. Then the Wick -ordered mononomial of order n is given 
by 

(14.15) 

One has 

(14.16) 

By linearity Wick order extends to all finite polynomials. Let us also introduce 

* 1 1 
a = ;;:;-:-(cvx- ox), a= ;;:;-:-(cvx +Ox) 

v2cv v2cv 
(14.17) 

as creation and annihilation operators of the harmonic oscillator. Their Wick or­
der means that all annihilation operators are moved to the right, e.g. : aa*: = a* a. 

Then 

(14.18) 

Comparing with (14.16) the map U from :F to Ho should be defined through 

(14.19) 
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182 The statistical mechanics connection 

and extended by linearity. By the very construction the closure of U as a linear 
map :F--+ Ho is then unitary. Note that e-tH is implemented as 

(14.20) 

Through the Feynman-Kac formula (14.5) we boost (14.12) to a Gaussian 
stochastic process denoted by Xt. It takes real values, is stationary in time, has 
mean zero, and covariance 

I JE.(x X ) = -e-wlt-sl . 
t s 2w (14.21) 

We recognize Xt as the stationary Omstein-Uhlenbeck process governed by the 
stochastic differential equation 

dXt = -WXtdt + dbt , (14.22) 

where bt is standard one-dimensional Brownian motion. Note that 

IE.(f(xr)) = IE.(f(xo)) = (1/fo, !1/fo) = (1, fhio = J dx1/fo(x) 2 f(x), 

(14.23) 

where we used the similarity transformation 

1/f()le-tH 1/fo = etL' t ::::_ 0' 

with L the generator of the Omstein-Uhlenbeck process Xt, 

L = -wxox +~a;. 

(14.24) 

(14.25) 

(14.26) 

According to (14.23) the Ornstein-Uhlenbeck process Xt has 1/fo(x)2 as stationary 
measure. With probability one t r+ Xt is continuous and we may choose C(.!Pi., IR), 
the space of all continuous functions over IR, as path space. In fact, Xt has in 
essence bounded fluctuations and increases at most logarithmically for large t. 

The point of our exercise is that it carries over essentially verbatim to the 
infinite-dimensional setting, except for the flat Hilbert space L2 (IR, dx). Hf plays 
the role of the harmonic oscillator. The boson Fock space over the transverse 
vector fields L 3_ (JR3 , JR3) plays the role of the Fock space over CC. The Omstein­
Uhlenbeck process Xt is replaced by the infinite-dimensional Ornstein-Uhlenbeck 
process At (x). Let us start with the latter. At (x) is a Gaussian process with mean 
zero and covariance 
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14.1 Functional integral representation 183 

a, a'= I, 2, 3. Because of the transverse projection Q~ar(k) = 8aa 1 - kakar the 
covariance (14.27) implies that 

V' ·At= 0 (14.28) 

almost surely. At (x) becomes a proper Gaussian random variable once it is inte­
grated over the real test function f, 

3 

At(f) = L J d3xfa(x)Ata(x). 
a= I 

(14.29) 

From (14.27) we conclude that 

(14.30) 

Thus At (f) has a bounded variance provided II!/~~~~ < oo. 
In quantum field theory Lorentz invariance is of central importance; this be­

comes more evident by treating time and space on an equal footing. We thus 
Fourier transform in (14.27) also with respect to t and obtain 

which is more symmetric. However, fixing the Coulomb gauge spoils full rotation 
invariance in IR4 . 

In our context time is singled out and we prefer to think oft c--+ At as a stochas­
tic process with values in the transverse vector fields. Most conveniently, we regard 
At as the element of a Hilbert space JC', which is chosen such that t c--+ At is con­
tinuous in t. At (x) is somewhat singular in x, which has to be balanced by defining 
the norm of the Hilbert space JC' through the inner product 

(f, g)Jcr = L J d3kfck, A)*u}/2 ( -/:::,.k + k2)-Kw112g{k, A) (14.32) 
A=L2 

with some K :::: 0. The predual Hilbert space is denoted by /C. It has the inner 
product 

(f, g)K = L J d3kj(k, A)*w-112( -/:::,.k + k2 )K w- 112g{k, A). (14.33) 
A=L2 

Lemma 14.1 (Regularity properties for sample paths of the Omstein-Uhlenbeck 
process). We regard the Ornstein-Uhlenbeck process At(x) with covariance 

(14.27) as taking values in the Hilbert space JC' with K > ~· Then t c--+ At E JC' 
is almost surely (norm) continuous. The path space of the Ornstein-Uhlenbeck 
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184 The statistical mechanics connection 

process can be taken as C (.!Pi., JC'), the space of continuous functions with values 

in JC'. 

Proof: The Omstein-Uhlenbeck process At is Markov and time reversible. A gen­
eral estimate for such processes gives 

lE( sup At(J)2) :::; 3lE(Ao(f)2) + 72TD(Ao(J), Ao(J)), 
Og~T 

where D is the Dirichlet form defined through 

(14.34) 

1 
D( Ao(J), Ao(f)) = lim - (lE( At (f)Ao(f)) - lE( Ao(f)2)) . (14.35) 

t-+0 t 

Therefore 

(14.36) 

The eigenfunctions of ( -~k + k2) are the Hermite functions hn, n E N\ with 
eigenvalue An = 1 + 2 2:::;= 1 n 01 • Therefore 

lE( sup II At II~J = lE( sup L_)An) -KAt ( v'Whn)2) 
Og~T O~t~T nEN3 

:::; coL (An)-K J d3klhn(k)l 2 (1 + w). (14.37) 
nEN3 

Using operator monotonicity as (k2) 112 :::; (- ~k + k2 ) 112 yields the bound 

which is finite provided K > ; . 

co L (An) -K+~ , 
nEN3 

(14.38) 

The inequality (14.37) establishes that At lies in JC' with probability one. Con­
tinuity is proved by a similar argument. The complete details can be found, e.g., in 
Giacomin et al. (2001 ), Lemma 5.5. D 

The path measure for At (x), as a probability measure on C (]Pi., JC'), is denoted 
by dP. The time-zero field is Ao(x). Ao(x) has the distribution dP 0 as a proba­
bility measure on JC'. According to (14.30) dP 0 is Gaussian with mean zero and 
covariance 

lEctpo(Ao(f)Ao(g)) = J d3k(2w)- 1 j* · Qj_g. (14.39) 

As in the case of a single oscillator, there is a natural unitary map U from 
Fock space :F to L 2 (JC', dP0) which is achieved through Wick order. The Wick 
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14.1 Functional integral representation 185 

order for operators on :F is defined by moving all creation operators to the left. 
The Wick-ordered polynomials on JC' are defined through a multilinear exten­
sion of the orthogonalization scheme for a single oscillator. Let X 1, ... , Xk be 
k random variables. Their Wick order, relative to (·), is defined recursively by 
:(XJ)0 ... (Xk)0: = 1, (:(X1)n 1 ••• (Xk)nk:) = 0, and ojoXr(X1)n 1 ••• (Xk)nk:= 
n1 :(XJ)ni ... (Xj)ni- 1 ... (Xk)nk:. Clearly, for a single degree of freedom, i.e. 

JC' = IR, dP 0 = ,JW7J[e-u}x2 dx, the Wick order agrees with the construction in 
(14.15). The unitary map U : :F ---+ L 2 (JC', dP 0) is then given by 

UQ = 1, U:A(JI) ... A(fn): Q = :Ao(f1) ... Ao(fn): (14.40) 

Here Q denotes the Fock vacuum of :F. A UJ) is the quantized vector potential 
(13.35) smeared by fJ as A(JJ) = J d3xfJ(x) · A(x), whereas to the right stands 
the Wick order of polynomials as functions on JC'. We note that the dynamics is 
implemented as 

Ue-tHtu- 1 :Ao(fl) ... Ao(fn): = :Ao(e-wt fl) ... Ao(e-uJt fn): (14.41) 

fort :::: 0. U HtD- 1, a linear operator acting on L 2 (1C', dP 0), is referred to as the 
Schrodinger representation of Hf. 

Next we couple the charge and the Maxwell field. According to (14.39) the 
natural Hilbert space is 

(14.42) 

the subscript 's' standing for Schrodinger. The particle Hamiltonian reads 
Hp = -! ~ + V, with the shorthand V (q) = e¢ex (q ), and the field Hamiltonian 

U Hfu- 1 is defined through (14.41). Let us denote by lEctwxctP expectation with 
respect to the path measure dW x dP, where dP is the path measure for the 
Ornstein-Uhlenbeck process At (x) and dW the Wiener measure for q, i.e. the 
path measure of Brownian motion with starting distribution d3 x. Let F, G E Hs. 
Then, combining (14.5) and the infinite-dimensional analog of (14.24), we con­
clude that for the uncoupled system 

lEctwxctP(F(qo, Ao)*exp [-lot dsV(qs)]G(qt, At)) 

= (1@ u-1 F, e-t(Hp<S11+1<S!Ht)1@ u-1G)Hs' (14.43) 

t :::: 0. In the following, the somewhat pedantic 1@ will be omitted, in particular U 

acts on L2 (IR\ d3x)@ :F as 1 on the first and as (14.40) on the second factor. 
The missing step is to include the minimal coupling to the field through the 

vector potential. For this purpose we note that in the Hilbert space L 2 (JC', dP 0) 

of the Schrodinger representation the transverse vector potential A (x) acts as a 
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186 The statistical mechanics connection 

multiplication operator, compare with (14.40), and in the functional integral the 
operator A (x) becomes a fluctuating vector potential At (x ), which is to be inserted 
in the minimal coupling as ~(p- eAt<p(q))2. Thus one can use (14.7) and (14.8), 
properly adapted to time-dependent vector potentials respecting the Coulomb 
gauge V · At = 0. For later convenience let us reintroduce the mass of the quantum 
particle, which amounts to replacing (p- eAt<p(q))2 /2 by (p- eAt<p(q))2 j2m 
and hence taking the Wiener process dW with diffusion coefficient 1 I m instead 
of 1, i.e. Eo(qsaqtf3) = m- 18af3 min(s, t). As a result we obtain the functional in­
tegral representation for the semigroup e -t H, t :::: 0, of the spinless Pauli-Pierz 
Hamiltonian (13.39) for a single particle as 

(F Ue-tH u-1G) 
' 'Hs 

= EctwxctP(F(qo, Ao)* exp [-lot dsV(qs)- ie lot dqs · As<p(qs)]G(qr, Ar)). 

(14.44) 

Recall that Ar<p(q) = J d3x<;?(q- x)At(x). Equation (14.44) is the basic result of 
this section. It says that the measure on paths is weighted by the exponential of the 
classical action. The quadratic terms yield dW x dP and constitute the Gaussian 
a priori measure of the uncoupled system. The external potential and the minimal 
coupling to the quantized transverse vector potential are displayed explicitly. 

We still have to check that the random variable in the exponential of (14.44) 
remains finite almost surely. The function q, s c--+ As<p(q) is (almost surely) con­
tinuous in both variables, which makes the stochastic integral well defined. To 
compute the variance, one notes 

(14.45) 

W is the transverse photon propagator, 

(14.46) 

which is bounded by our assumption on (if. The average of (14.45) with respect to 
Brownian motion yields 

( r )2 2 I 3 2 EctwxctP(o(qo) Jo dqs · As<p(qs) ) = t 3m d kl$1 j2w, (14.47) 

since one of the two stochastic differentials points in the future except at the diag­
onal where dqtadqtf3 = m -lOaf3dt. Thus the action appearing in the exponential of 
(14.44) has a bounded variance. 
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14.2 Integrating out the Maxwell field 187 

14.2 Integrating out the Maxwell field 

We return to the basic formula (14.44) and assume that F, G are of the special 
form F(q, A)= G(q, A)= 1/f(q) with 1/f 2::: Oandofrapiddecrease. The Gaussian 
integration over dP can then be carried out with the result 

(1/f Q9 Q, e-tH 1/f Q9 Q)H 

= lEctw( 1/f(qo) exp [-fotds V (qs) - ~e2fotfotdqs · W (qs - qs', s - s')dqsJ 1/f(qt)) . 

(14.48) 

Since dqu1 dqtf-! = m-18afJdt almost surely, we may remove the diagonal cut in the 
double stochastic integral at the expense ofthe factor t(2j3m) J d3kliPP j2w. W is 
the transverse photon propagator (14.46), written more traditionally 

W(x, t) = 2~ J d3kdkolcp(k)l 2(k2 + k6)- 1ei(k·x-kot) Qj_(k) (14.49) 

as a 3 x 3 matrix. If one removes the ultraviolet cutoff by replacing cp(k) by 
(2rr) - 312 , then (14.49) can be computed explicitly. For our purpose it suffices that 
qualitatively 

(14.50) 

with some modifications due to the transverse projection. Reintroducing (if smooths 
this function at (x, t) = 0, but keeps the slow t-2 decay. For massive photons, 

w (k) = (k2 + m~h) 112, this decay would switch to an exponential. 
Equation (14.48) looks like the partition function of an equilibrium statistical 

mechanics system. We regard dW as the a priori measure on continuous paths in 
three-dimensional space. The time interval [0, t] corresponds to the volume. From 
the point of view of statistical mechanics it is more natural to place it symmetric 
relative to the origin, i.e. as [ -t, t]. Configurations are paths qs, Is I _:::: t. The fac­
tors 1/f (q -t), 1/f (qt) constrain their end points to be most likely close to the origin. 
The paths have a Boltzmann weight consisting of two contributions, a single time 
integral from the external potential and a double time integral induced through the 
Maxwell field. Our observation suggests that the basic object must be the Gibbs 
measure for paths qs, Is I _:::: t, as given through 

f t 1 ft ft 
x exp[- dsV(qs)- -e2 dqs · W(qs -qs',s -s')dqs']dW 

-t 2 -t -t 

(14.51) 
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188 The statistical mechanics connection 

relative to the Wiener measure dW with Z(2t) the normalizing constant (14.48). 
The average with respect to the probability measure (14.51) is denoted below by 

Ot and by o? fore= o. 
The relationship to usual spin systems becomes even more evident upon dis­

cretizing time in steps of r; compare with (14.6). Then, setting qnr = ¢n, ¢n E IPi.3, 

Nr = t, (14.51) becomes 

1 N 1 N-1 N - n d3¢no/(o/-N )1/r(c/JN) exp [--m L (¢J+l- c/lj) 2 - r L V(c/Jj) 
z n=-N 2 r j=-N j=-N 

I N-1 

- 2e2 L (¢J+I - ¢J) · W(c/Ji- ¢}, i- j)(¢i+I - c/Ji) J, 
i,j=-N 

(14.52) 

which is the Gibbs measure for a three-component continuous spin system with 
external potential V, a quadratic nearest-neighbor interaction, and a long-range 
interaction W. The spin configurations are over a one-dimensional lattice. Alter­
natively, we may interpret ¢J as the position of the j-th monomer of an elastic 
string (polymer) curling in three-dimensional space. The term (¢J+I - ¢J)2 is the 
usual nearest-neighbor elastic energy. Integrating over the Maxwell field results in 
an additional long-range elastic interaction between the monomers. 

In the picture of an elastic string, cf. figure 14.1, it is natural to distinguish 
between the case V = 0 and a confining potential. Let us first discuss V = 0 and 
for definiteness pin the polymer at both end points, i.e. q_t = 0 = qt. If e = 0, 
then the mean square displacement at the midpoint, given by 

(14.53) 

reflects the stiffness of the free string. We expect that the interaction renormalizes 
the stiffness as 

(14.54) 

for large t, which defines the (effective) stiffness rr. The expectation in ( 14.54) is 
with respect to the interacting measure (14.51). The long-range interaction should 
make the polymer stiffer as compared to the free case e = 0, which means that the 
effective stiffness should be increasing with increasing coupling e2 . 

To gain a crude idea whether such a picture is at least qualitatively correct we 
replace W(q, t) by W(O, t) in (14.51). Going back to (14.44) this is equivalent 
to replacing A.Hp(q8 ) by Asrp(O) which is the dipole approximation. By rotation 
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Figure 14.1: Elastic string with end points pinned at the origin. 

invariance 

(14.55) 

and we recall that w(t) ~ ljt2 for large t. In the dipole approximation the Gibbs 
measure (14.51) is Gaussian and (14.54) can be computed explicitly. One obtains 

~ = I (dqr · dqo), (14.56) 

where (-) is the infinite-time limit in the dipole approximation, which is Gaussian 
and has the covariance 

(14.57) 

Therefore, 

a = m + e2w(O) = m + ~e2 I d3kliPP ~2 , (14.58) 

which as anticipated is increasing, in fact linearly in e2 . We remark that if w(t) 

decays like 1 It or even slower, the interaction is so strong that the stiffness is 
infinite, in the sense that the typical fluctuations of qo are no longer of the order 
vft but grow more slowly with t. 
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If one pins only the left end point, q_t = 0, one may think of qt as a random 
walk with mean square displacement (qr) = 3D(2t) for large t. Dis the diffusion 
coefficient and D = rr -I in our units. Thus (14.56), written as 

D = J dt(qr · qo), (14.59) 

is the standard Green-Kubo formula, which expresses D as a time integral over 
the velocity autocorrelation function. From (14.57) one concludes 

1 1 f 2 ~ ( 2 ~ ) -1 ik t (qt · qo) = -8(t)-- dkoe w(ko) m(m + e w(ko)) e 0 , 
m 2rr 

(14.60) 

which is regular except for the 8-function at t = 0. The structure (14.60) turns out 
to be general. For the full Pauli-Fierz Hamiltonian one obtains 

(14.61) 

with a notation which will be explained in section 15.2. Here we just state that 
with the Definition 15.3 of the effective mass one has the identity 

1 f . . 1 - = dt(qt · qo) = D =-. 
meff rr 

(14.62) 

Thus the stiffness of the polymer in the Euclidean framework equals the effective 
mass of the charge coupled to the Maxwell field. Note that the regular part of 
(14.61) is negative, which means that the stiffness is increased as compared to 
the bare value m. With this background the result (14.58) looks familiar. It is the 
effective mass of the Abraham model in the nonrelativistic limit; compare with 
(4.24). The true effective mass of the Pauli-Fierz model has a more complicated 
dependence on the bare parameters e and m, however. 

The second case of interest is a confining potential. For large t the partition 
function is dominated by the ground state of H, provided it exists at all. In fact, as 
we will see, ground state expectations can be computed through the limit t --+ oo. 
Thus, as for thermodynamic systems, the infinite-volume limit is of direct physical 
interest. If the ground state exists, it should be unique and independent of the 
particular limit procedure. Translated to (14.51) uniqueness means that the limit 
t --+ oo exists and is independent of the boundary conditions q_t and qt, at least 
if they are not allowed to increase too fast. Since t is one-dimensional, such a 
property will hold, if the energy across the origin is bounded uniformly in the 
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1° (XJ dqs · W (qs - qs', S - s')dqs' :S co . 
-oo lo 

191 

(14.63) 

Because of the stochastic integration, (14.63) cannot be true literally, but only in 
the sense that there is a small probability for the interaction across the origin to 
take large values. Stochastic integrals like (14.63) are not easily estimated, but if 
we set qs - qs' = 0, which is reasonable since V is supposed to be confining, then 
the interaction energy is 

(14.64) 

Note that from the stochastic integration we obtain two extra derivatives, which 
means that w"(t) ~ t-4 for large t. If the path qs does not make too wild ex­
cursions, the interaction energy in (14.63) is essentially bounded, which implies 
uniqueness of the Gibbs measure in (14.51). To have a phase transition for a Gibbs 
measure in one dimension the interaction has to decay as t-2 or slower, which is 
avoided by two powers in our context. 

The statistical mechanics intuition applied to (14.51) suggests that if Hp has a 
ground state tfro(x ), i.e. if the ground state for the uncoupled system is tfro Q9 Q, 

then, as the coupling is turned on, the ground state will persist and remain unique 
at any coupling strength. For large e2 fluctuations are suppressed and the ground 
state must be essentially classical. 

14.3 Some applications 

(i) Positivity improvement 

Let us consider a general measure space (M, /-1) and the corresponding Hilbert 
space L 2(M, /-1) of square integrable functions on M. In addition, we have 
the semigroup e-tH, t :=:: 0, acting on L 2 (M, /-1) with (e-tH)* = e-tH and 
inf a (H) = 0, i.e. II e -t H II = 1 fort :=:: 0. We say that e -t H is positivity preserving, 
if for f :=:: 0 we have e-tH f :=:: 0. e-tH is positivity improving iff:=:: 0 implies 
e-tH f > 0 fort > 0. We remark that positivity is not a Hilbert space notion, it 
depends on the choice of M. Positivity means that, up to normalization, e-tH is 
a Markov semigroup and some sort of stochastic model is lurking behind. Our 
interest in the notion of positivity improvement comes from the fact that it im­
plies uniqueness of the ground state. In essence, positivity improvement is the 
only general criterion available. The reason for uniqueness is simple. Let tfr be an 
eigenfunction of H with eigenvalue 0. Then by positivity le-tH tfr I :::; e-tH ltfr I and 
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thus 

As a consequence, since e -t H is a contraction, one has e -t HI tfr I = I tfr I and, since 
e-tH ispositivityimproving,e-tHio/1 = ltfrl > O.Butthenalsoe-tH(Io/1- tfr) = 

I tfr I - tfr. Either I tfr I - tfr = 0 in which case tfr > 0 or else I tfr I - tfr > 0 in which 
case tfr < 0. We conclude that a second eigenvector with eigenvalue zero could not 
be orthogonal to tfr. 

In view of this technique, it is desirable to prove that U e -t H U -l, where H is the 
spinless Pauli-Pierz Hamiltonian (13.39) with Aex = 0, is positivity improving on 
IR3 x }('with measure d3x x dP 0 . A look at (14.44) makes positivity an unlikely 
fact because of the fluctuating phase. The trick to achieve the desired property is 
to interchange the role of A and E 1_ through the unitary transformation e -irr Nt/2 

with 

Nf = L J d3ka*(k, A)a(k, A) 
A=L2 

the total number of photons. 

(14.66) 

Theorem 14.2 (Positivity improving). Let H = ~(p- eArp(x))2 + Hf + V(x) 
be the spinless Pauli-Fierz Hamiltonian with external potential V. Then the semi­
group U eirr Nf12e-tH e-irr Nf!2u-1 is positivity improving on IR3 x JC' with measure 

d3x x dP 0. 

Proof Hiroshima (2000a). 

Corollary 14.3 (Uniqueness of the ground state). If the spinless Pauli-Fierz 
Hamiltonian has a ground state, then the ground state is necessarily unique. 

The actual proof of Theorem 14.2 is somewhat technical. But there is a simple 
heuristic reason to see that it should be correct. We have 

eirrNt/2 He-irrNt/2 = ~(p- eE1_q;(x))2 + Hf + V(x), (14.67) 

where the smoothing function cp is replaced by (j5 with I$= cpjw. We formally 
discretize the Maxwell field in (14.67) as 

1 ( ) 2 1 I - P-eL (/5(j- x)pj +- L PJ +- L (qi- qj)2 + V(x) (14.68) 
2 . 2 . 2 I .. I 1 J J l-j= 

up to a constant. Here (qj, p J) are a canonical pair of position and momentum 
operators and the sum is over a discrete lattice in position space. We employ the 
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usual Feynman-Kac formula. The first two terms define a multidimensional Brow­
nian motion. It has a position-dependent diffusion matrix, which by inspection is 
strictly positive. Thus the "free" measure is positivity improving, a property which 
is preserved when adding the potential. 

( ii) Diamagnetic inequality 

In (14.44) the fluctuating magnetic field appears as a phase, which leads immedi­
ately to the diamagnetic inequality 

(14.69) 

As one application we derive a bound on the electronic charge density in the 
ground state. We assume the existence of a ground state, Hlj!g = Ego/g, with 
ground state energy Eg. Then the electronic charge density is 

Pg(X) = llo/g(X, ·)II}= f L I d3nklo/gn(X, k1, )q, ... , kn, An)l 2 . (14.70) 
n=O Jc 

We choose F = f(x)Ulj!g, f ::::_ 0 and bounded, G = Ulj!g. Since e-tHo/g = 
e-tEgo/g and since e-tHt is a contraction, one concludes from the diamagnetic 

inequality that 

e-(t+r)Eg I d3 xf(x)pg(x) :S (fpi/2, e-(t+r)Hp Pi/2) L2 

( -tHpj 1/2 -rHp 1/2) = e Pg , e Pg £2 . (14.71) 

From the Feynman-Kac formula (14.5) it follows that (e-r Hr p~ 12)(x) ::: q. Using 
this bound in (14.71) and letting f shrink to a 8-function at x we obtain 

(14.72) 

with 1 the constant function. Inequality (14.72) is the desired bound on the elec­
tronic charge density. 

To make this bound explicit we rewrite 

(14.73) 

according to ( 14.5) for the particular choice 1jJ (x) = 1. If the potential has a lower 
bound as V(x) ::::_ co+ q lxiY, q > 0, y > 1, then for fixed t the weight in (14.73) 
is dominated by the potential and one has Pg (x) ::: ce- v (x). On the other hand if 
V(x)---+ 0 as lxl ---+ oo, then the expression in (14.73) tends to 1 as x---+ oo. Thus 
we should optimize in t for fixed x. Very crudely this means minimizing the action 
J~ ds ( ~q} + V (q8 )) for a fixed initial condition qo = x and then to optimize in t. 
In this variation one has to include the contribution from the exponentially growing 
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factor eEgt. To have a bound state at all, Vmin = minx V (x) < 0. For sufficiently 
small e also Vmin- Eg < 0 and the variational bound decays exponentially in x, 
i.e. Pg(x)::: ce-ylxl. For larger e one can no longer balance Eg and the bound 
(14.72) becomes vacuous. 

The diamagnetic inequality suggests that the decay of the electronic charge den­
sity in the ground state does not worsen by the coupling to the Maxwell field. If one 
imagines, rather crudely, the effective mass of the electron to be increased through 
the interaction with the field, then the electron density should become even better 
localized for larger e and point-like as e ---+ oo. 

(iii) Photon expectations 

We discovered in section 14.2 that, through integrating over the Maxwell field, 
one obtains a path integral (functional measure) for the electron paths which has 
the structure of an equilibrium measure relative to an a priori weight given by the 
Wiener measure. Here we expand on this observation by computing averages for 
the photon field in the ground state. Let 1/fo be the ground state of Hp and let us 
introduce the approximate ground state 

(14.74) 

of H, which is normalized to one and, if the limit does not vanish, converges as 
T ---+ oo to the unique ground state 1jf g of H. For observables of the form f (x) the 
same argument as for (14.48) leads to 

(1/fT, f(x)o/Thi (14.75) 

= (o/o ® Q, e-2TH o/o ® Q)}/ (o/o ® Q, e-T H f(x)e-T H o/o ® Q)H 

= lEY-T.TJ(!Cqo)). 

The "volume" [-T, T] is arranged symmetrically relative to the origin. lEY-T.T] 
refers to the normalized expectation 

with the normalizing partition function 

Z(2T) = lEctw(o/o(q-T)o/o(qT) exp [- i: dtV(qt)- S[-T,TJ]) (14.77) 

and with the effective action 

1 !T !T S[-T,T] = -e2 dqt · W(qt- qs, t- s)dqs. 
2 -T -T 

(14.78) 
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Clearly, in the infinite-volume limit 

lim (o/T, f(x)o/Thi = (o/g, f(x)o/g)H = J d3xf(x)pg(x) = (f(qo)). 
T --+oo 

(14.79) 

Thus the electronic charge density is the distribution of qo, the position of the 
path at time t = 0, under the infinite-volume Gibbs measure (-), i.e. under the 
probability measure obtained in the limit T ---+ oo in (14.76) which we denote by 
(.). 

With (14.79) we have opened the first page in the dictionary for the translation 
from Fock space expectations to Gibbs averages. We plan to expand the dictionary 
by considering a bounded operator 1 0 B referring only to the photons and want 
to compute the expectation 

(14.80) 

which for large T goes over to the ground state expectation (o/g, 1 0 Bo/g)Ji. 

Using the basic identity (14.44) one can write 

(U e-TH 1/fo 0 Q)(q, A) 

= lEqlEA(o/o(qt)exp [-loT dtV(qt)- ie loT dqt · Atrp(qt)]), (14.81) 

where lEA refers to the Omstein-Uhlenbeck process At (x) with fixed initial field 
Ao = A. The Gaussian expectation lEA can be carried out with the result 

(14.82) 

where 

!~ (k) -loT d ~ -ik·q1 -wt + - qtcpe e , 
0 

(14.83) 

which depends on the path q, 0 ::::; t ::::; T. 
We have to take the expectation of 1 0 B with respect to the wave function 

(14.81 ), for which it is convenient to regard the adjoint wave function as coming 
from an integration relative to a Brownian motion running from 0 to - T. For 
this purpose one time-reverses the Brownian motion, which starts then at q_T and 
ends at q. Upon integrating over dqo one obtains the Wiener measure for Brownian 
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paths t r-+ q, It I ::: T. The expectation lEA for the adjoint wave function yields an 
expression as in (14.82) where f+ is replaced by f- and 

!~ (k) _ 1° d ~ -ik·q1 -wltl - -- qtcpe e 
-T 

(14.84) 

with a minus sign, since dqt is odd under time-reversal. The expectation for B is 
most easily written in Fock space. Then 

(tfro Q9 Q, e-TH (I Q9 B)e-TH t/fo Q9 Q)H 

= lEctw ( tfro(q_ T )t/fo(qr )e- !'I'T V(q, )dt (Q, eieA(.f_) Be -ieA(f+) Q) :F 

x exp [- ~e2 (1° 1° + {T {T) J d3klqJJ 2dqt · Ql_dqseik·(q,-q,) 
2 -T -T lo lo 

X _l_(e-wlt-sl _ e-wltle-wlsl)]). 
2cv 

(14.85) 

To make further progress we have to choose particular observables. One exam­
ple is the generating function for the photon number density in momentum space, 
i.e. 

with JL ::::_ 0. Then 

B = exp [- L J d3kJL(k)a*(k, A.)a(k, A.) J 
A.=l,2 

(Q, eieA(f_) Be-ieA(f+)Q):F = exp [ _ ~c(:_, cv-l/2Ql_w-112 j_)fJ 

(14.86) 

_ ~(~-, cv-l/2Ql_w-1!2 h)fJ _ ~(j_, cv-l/2Ql_e-tlw-1!2 h)fJJ. 
4 2 

Collecting all terms yields 

(tfrr,exp[- L J d3kJL(k)a*(k,A.)a(k,A.)]tfrr)H 
A.=l,2 

= JEf-r.TJ( exp [- e2 j_OT loT J d3kliPPdqt · Ql_dq8 eik·(q,-q,) 

x _I_e-wltle-wlsl(e-11 _ t)]). 
2cv 

(14.87) 

(14.88) 
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We differentiate with respect to JL(k) and obtain the ground state photon number 
density in momentum space, 

(14.89) 

the average with respect to the infinite-volume Gibbs measure. In particular one 
has the remarkable identity that (1/fg. Nfl/fg)H equals the average interaction energy 
between the right and left half-line in the statistical mechanics system. By the same 
technique, the photon density in physical space is given by 

where 

L (1/fg, a*(x, A.)a(x, A.)l/fg)H 
A=l.2 

= -e2 I: tXJ fo (dqt. J;_(x- qt. t)dqs . J;,_(x- qs, s)), (14.90) 
A=I,2 lo -oo 

(14.91) 

Equations (14.89) and (14.90) are only partially useful, since there is too lit­
tle information on the dqt · Qj_dqs correlations, except for the soft photon bound 
(15.9), (15.14) from which one concludes that 

with some positive constant co. The interaction energy between right and left is 
bounded and negative on the average. One would expect also its exponential mo­
ments to be bounded. If so, (1/fg, e-ANfl/fg)H < oo for all A by (14.88), which im­
plies that in the ground state the number of photons has a super-exponential decay. 

Our method may be applied to other observables of interest. For example the 
ground state expectation and variance of the vector potential is given by 

(14.93) 

(1/fg, A(x)21/fg)H = (Q, A(x)2Q)F- ;,_~2 ( ( /_: dqt · JA;,_(x -qt. t)) 2}, 

(14.94) 
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where 

f~ ~ 1 -wltl 
AA. = e;,.cp-e . 

2w 
(14.95) 

Similarly for the transverse electric field one has 

(14.96) 

(o/g, Ej_(x)2o/g)H = (Q, Ej_(x)2Q)F + ;,.~2 ((/_: dqr · fE;..(x- qr, t)) 2
) 

(14.97) 

with !EA. = at fAA.. In fact, the vacuum variances are infinite but become finite 
when the fields are slightly smeared out. Through the presence of a bound electron 
the electric field fluctuations are increased whereas the vector field fluctuations are 
suppressed. Their product remains constant, as required by the uncertainty rela­
tion. 

We recall that (E) = (Ell) + (Ej_), the second term being zero by (14.96). From 
the equations of motion, \7 · (o/g, E(x)t/fg)H = e(cp(x- qo)) = ecp * Pg(x), Pg be­
ing the electron ground state density of (14. 70). Thus, at large distances the average 
electric field generated by a charge bound in the ground state is the Coulomb field 
with a strength determined through the bare charge e, from which we conclude 
that in the Pauli-Fierz model there is no charge renormalization. 

Notes and references 

Section 14.1 

Gentle introductions to path integrals are Schulman (1981) and Kleinert (1995) 
emphasizing statistical mechanics aspects. Roepstorff (1994) treats in detail the 
quantized Maxwell field. Path integrals with a focus on relativistic quantum field 
theory are explained in the advanced textbook of Huang (1998). Simon (1979) is 
a beautiful discussion on the connection between functional integration and the 
Schrodinger equation. In particular, he explains the Feynman-Kac-Ito formula 
used in (14.8). Gaussian processes, Wick ordering, and the Schrodinger represen­
tation are exhaustively covered in Simon (1974) and Glimm and Jaffe (1987). The 
functional measure for the Pauli-Fierz Hamiltonian is discussed by Hiroshima 
(1997b). A standard reference on infinite-dimensional Ornstein-Uhlenbeck pro­
cesses is Holley and Stroock (1978). In Giacomin et al. (2001) martingale-type 
estimates are explained. 

Functional integration has two historical roots which developed apparently 
completely independently. Feynman (1948), cf. also the textbook by Feynman and 
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Hibbs (1965), uses space-time histories to visualize quantum processes. This led 
to quantum propagators as a "sum over histories". On the other hand, Wiener, 
Levy, and many other probabilists developed the theory of probability measures 
on function space ( = the space of trajectories) to have a mathematical framework 
for Brownian motion and diffusion processes. Kac (1950) realized that the two 
approaches are related through the Wick rotation. The extension to models of 
quantum fields is achieved by Nelson (1966, 1973). With his insights functional 
integration became the "secret weapon" and is at the heart of the technical devel­
opment in constructive quantum field theory through the hands of Glimm, Jaffe, 
Spencer, Simon, and many, many others. I refer to Glimm and Jaffe (1987). 

Section 14.2 

The integration over field degrees of freedom is discussed in Feynman and Hibbs 
(1965) and in Feynman (1948). He tackled a variety of physical problems with 
this technique. The most widely known is the ground state energy of the polaron 
(Feynman 1955) for which the analog of (14.48) is estimated through a variational 
method with a result which covered both the intermediate and strong coupling 
regime for the first time. To view the effective mass as the stiffness of a polymer 
is proposed in Spohn (1987). If the Maxwell field is replaced by a scalar field, cf. 
section 19.2, the double stochastic integral becomes a double Riemann integral, 
which is much easier to handle. In particular, one obtains reasonable bounds on the 
effective stiffness with a technique borrowed from Brascamp, Lieb and Lebowitz 
(1976). To view the path measure (14.51) as a Gibbs measure relative to Brownian 
motion is stressed in L6rinczi and Minlos (2001), Betz et al. (2002), and L6rinczi 
et al. (2002a, 2002b ). 

Section 14.3 

Positivity-improving semigroups are treated in Reed and Simon (1978), Chapter 
XIII.12. For the existence of the ground state we refer to section 15.1. Whenever 
magnetic fields are involved, the diamagnetic inequality is very helpful; compare 
for example with Cycon, Froese, Kirsch and Simon (1987). Carmona (1978) uses 
Brownian motion to estimate ground state properties of - ~ + V. His techniques 
extend to a charge coupled to a scalar field as discussed in Betz et al. (2002). There 
is also a functional analytic proof of exponential localization, which is patterned 
after Agmon (1982) in the case of the SchrOdinger equation, see Theorem 20.1. 

https://doi.org/10.1017/9781009402286.015 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402286.015



