Hepcidin expression in the liver of rats fed a magnesium-deficient diet

Natsumi Ishizaki, Megumi Kotani, Masayuki Funaba and Tohru Matsui

Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitasirakawa Oiwakecho, Kyoto 606-8502, Japan

(Received 18 October 2010 – Revised 9 February 2011 – Accepted 27 February 2011 – First published online 18 May 2011)

Abstract

Mg deficiency accelerates Fe accumulation in the liver, which may induce various metabolic disturbances. In the present study, we examined the gene expression of Hepcidin, a peptide hormone produced in the liver to regulate intestinal Fe absorption negatively, in Mg-deficient rats. Although liver Fe concentration was significantly higher in rats fed an Mg-deficient diet for 4 weeks than in rats fed a control diet, Hepcidin expression in the liver was comparable between the dietary groups. Previous studies revealed that Fe overload up-regulated Hepcidin expression through transcriptional activation by Fe-induced bone morphogenetic protein (Bmp) 6, a growth/differentiation factor belonging to the transforming growth factor-β family, in the liver. Mg deficiency up-regulated the expression of Bmp6 but did not affect the expression of inhibition of DNA binding 1, a sensitive Bmp-responsive gene. In addition, the expression of Bmp receptors such as activin receptor-like kinase 2 (Alk2), activin receptor type IIA (Actr2a), activin receptor type IIB (Actr2b) and Bmp type II receptor (Bmpr2) was lower in the liver of Mg-deficient rats than in that of control rats. The present study indicates that accumulation of hepatic Fe by Mg deficiency is a stimulant inducing Bmp6 expression but not Hepcidin expression by blunting Bmp signalling possibly resulting from down-regulation of the receptor expression. Unresponsive Hepcidin expression may have a role in Mg deficiency-induced changes related to increased liver Fe.

Key words: Magnesium deficiency; Hepcidin; Liver iron content; Bone morphogenetic protein

Mg is a cofactor of numerous enzymes and plays an essential role in a wide range of fundamental cellular reactions. Insufficient Mg intake therefore induces numerous abnormalities in rodents. Mg deficiency induced oxidative stress, which was evaluated by lipid peroxidation, and apoptosis in rat liver. In addition, TAG and total cholesterol concentrations were increased in the liver and serum of Mg-deficient rats. These features resemble the altered metabolism in the liver of rats fed a high-Fe diet; Fe overload enhanced lipid peroxidation, increased apoptotic cell number and elevated liver fat concentration and serum lipid concentrations, including TAG and total cholesterol. In view of the accumulation of hepatic Fe in Mg-deficient rats, increased hepatic Fe content may cause various Mg-deficiency-related abnormalities in the liver.

Hepcidin was originally isolated from human urine as an anti-microbial peptide and is currently recognised as a hormone secreted from the liver in response to the Fe overload; it negatively regulates intestinal Fe absorption through internalisation and degradation of an Fe transporter, ferroportin. Considering that hepatic Hepcidin transcription is triggered by excess Fe, Mg deficiency is expected to increase Hepcidin expression in the liver; however, a previous study revealed an increase in the intestinal absorption of Fe in Mg-deficient rats, suggesting the failure of regulatory Fe metabolism by Hepcidin. The present study examined the expression of hepatic Hepcidin in Mg-deficient rats.

Materials and methods

Animals and diets

A total of twelve 5-week-old male Sprague–Dawley rats were purchased from SLC Japan (Shizuoka, Japan) and cared for according to the Guide for the Care and Use of Laboratory Animals (Animal Care Committee, Kyoto University, Kyoto, Japan). They were individually housed in stainless-steel cages in a temperature-, humidity- and light-controlled room (24°C, 60%, 12 h light–12 h dark cycle). All rats were fed a control diet (American Institute of Nutrition-93G diet) for a 5 d adaptation period, followed by feeding either the control diet or an Mg-deficient diet (American Institute of Nutrition-93G-based diet with Mg-free mineral mixture). The Mg content

Abbreviations: Actr2, activin receptor type II; Alk, activin receptor-like kinase; Bmp, bone morphogenetic protein; Bmpr2, bone morphogenetic protein type II receptor; Hfe, haemochromatosis; Id1, inhibition of DNA binding 1; Tfr, transferrin receptor.

* Corresponding author: T. Matsui, fax +81 75 753 6344, email matsui@kais.kyoto-u.ac.jp
Measurement of dietary magnesium and calcium, serum magnesium, liver iron and liver thiobarbituric acid-reactive substances

Dietary sample, and serum and liver samples were digested with trace element-grade HNO₃ and H₂O₂ (Wako, Osaka, Japan), and dietary and serum Mg and liver Fe were determined by atomic absorption spectrophotometry (AA-6600F; Shimadzu, Kyoto, Japan). Analytical accuracy of liver Fe was confirmed by analysis of a certified reference material of bovine liver (Standard Reference Material 1577b; National Institute of Standards and Technology, Gaithersburg, MD, USA). The liver samples were also homogenised in chilled saline by Polytron (PT1600E; Kinematica, Lucerne, Switzerland), and the homogenate was centrifuged at 105 000 g for 30 min at 4°C. The concentration of thiobarbituric acid-reactive substances in the supernatant was determined using a commercial kit (OXI-TEK TBARS Assay Kit; ZeptoMetrix, Buffalo, NY, USA) according to the manufacturer’s instructions.

RNA isolation and quantitative RT-PCR

Total RNA was isolated from the liver samples using TRIzol (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions. Absorbance at 260 nm was measured to quantify RNA concentration, and simultaneously the ratio of absorbance at 260 nm to that at 280 nm was monitored to assess the purity of RNA. Quantitative RT-PCR was carried out as described previously[16–17]. The following oligonucleotides were used as PCR primers: 5′-gagccagagacgacttcgc-3′ and 5′-tcagacatccgaagacggtt-3′ for Hepcidin (GenBank accession no. NM_053469.1); 5′-gcggcgcctgctgcgtt-3′ and 5′-tgccagcttgaggtcagct-3′ for bone morphogenetic protein (Bmp) 6 (GenBank accession no. NM_013107); 5′-ggcagactcgtgcgtgg-3′ and 5′-tttctctgctgctctgaa-3′ for the inhibition of DNA binding 1 (Id1) (GenBank accession no. NM_012797.2); 5′-actctgtgagaggtgactc-3′ and 5′-acttactcctngaaggttgc-3′ for haemochromatosis (Hfe, GenBank accession no. NM_001105916). PCR primers for activin receptor-like kinase 2 (Alk2), activin receptor-like kinase 3 (Alk3), activin receptor type IIA (Actr2a), activin receptor type IIB (Actr2b), Bmp type II receptor (Bmpr2) and glyceraldehyde-3-phosphate dehydrogenase (G3pdh) were described previously[18]. The relative mRNA level is expressed as a ratio of the G3pdh mRNA level.

Statistical analyses

Data are expressed as means with their standard errors. Differences between the treatments were examined by Student’s t test. Differences of P<0.05 were considered significant.

Results and discussion

Consistent with the previous results[12,19,10], the serum concentration of Mg was significantly lower in rats fed the Mg-deficient diet (Table 1). In addition, liver concentrations of Fe and thiobarbituric acid-reactive substances, an index of oxidative stress, were higher in the Mg-deficient group. Expression of hepatic Tfr1 was significantly lower in Mg-deficient rats than in control rats, whereas that of hepatic Tfr2 was comparable between the groups. These results were consistent with the results of Fe-overloaded mice[19,20]. Fe-responsive elements within the untranslated region are present for Tfr1 but not for Tfr2 mRNA, which explains why the mRNA level of Tfr1 but not Tfr2 was negatively regulated by Fe status[21]. Thus, effects of Mg deficiency on the expression of Tfr1 and Tfr2 could reflect Fe status in the liver.

Mg deficiency did not affect the gene transcript level of Hepcidin in the liver (Table 2). Hepcidin is a hormone that regulates intestinal Fe absorption negatively[12]. Hepcidin expression is transcriptionally induced in response to the elevation of hepatic Fe[12]. The present study revealed that the expression of Hepcidin in the liver is not up-regulated by Mg deficiency, irrespective of the enhanced accumulation of hepatic Fe. Thus, it is suggested that the lack of response of the Hepcidin expression is at least partly responsible for Mg-deficiency-induced dysregulation of Fe homeostasis.

Expression of Bmp6 was significantly higher in Mg-deficient rats than in control rats, but Id1 expression was not different between the dietary groups (Table 2). In the liver, Hepcidin is transcriptionally regulated by Bmp6[22,23], and Id1 is a representative Bmp-responsive gene regulated at the transcription level[24]. Previous studies revealed that Fe overload up-regulated the expression of Bmp6 and Id1 in the liver[14,25]. Exogenous Bmp6 increased Hepcidin expression in Hep3B cells[22] as well as in the liver[25]. Furthermore, targeted disruption of the Bmp6 gene decreased the expression of

Table 1. Effect of magnesium deficiency on the serum concentration of magnesium, liver concentration of iron and thiobarbituric acid-reactive substances (TBARS), and hepatic expression of iron-related molecules (Mean values with their standard errors, n = 6)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Mg deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>Serum Mg (mg/l)</td>
<td>22.1</td>
<td>1.7</td>
</tr>
<tr>
<td>Liver Fe (µg/g)</td>
<td>87.8</td>
<td>5.8</td>
</tr>
<tr>
<td>Liver TBARS (nmol/g)</td>
<td>35.9</td>
<td>2.4</td>
</tr>
<tr>
<td>Fe-related molecules</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tfr1</td>
<td>1.00</td>
<td>0.18</td>
</tr>
<tr>
<td>Tfr2</td>
<td>1.00</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Trf. transferrin receptor.

Mean values were significantly different from those of the control group: *P<0.05, **P<0.01.
Hepcidin and accumulated Fe in the liver\(^{(25,26)}\). Thus, Bmp6 is a signal mediator linking Fe accumulation and Hepcidin expression, although transcriptional activation of the Bmp6 gene by excess Fe accumulation is currently unclear at the molecular level\(^{(27)}\). In the present study, the expression of Bmp6 was increased 2.2-fold in rats fed the Mg-deficient diet. The extent of the response was comparable with a previous result; feeding a high-Fe diet for 7 weeks resulted in a 1.66**-fold increase in Bmp6 expression and sevenfold increase in Hepcidin expression in DBA/2 mice\(^{(14)}\). Mg deficiency may blunt the Bmp pathway by altering the function of factors involved in hepatic Hepcidin induction.

The gene transcript level of Hfe was significantly lower in Mg-deficient rats than in control rats, whereas that of Hemojuvelin was higher in Mg-deficient rats (Table 2). Upon Bmp binding to the two types of receptors, i.e. type I and type II serine/threonine receptors, the receptor complex phosphorylates and activates Smad1/5/8, leading to transcriptional activation of the target genes such as Id1\(^{(28)}\). The strength and duration of the Bmp signal are regulated at multiple steps; expression of co-receptors for Bmp is involved in the fine-tuning of Bmp signalling\(^{(29)}\). Previous studies revealed that Hemojuvelin, which is a gene product of Hfe2 and a co-receptor of Bmp, including Bmp6, enhances Hepcidin expression both in vitro and in vivo\(^{(22,29,30)}\). In view of the up-regulation of Hemojuvelin expression in Mg-deficient rats, the co-receptor is unlikely to be involved in the unresponsiveness to Bmp6.

Recently, Kautz et al.\(^{(25)}\) revealed that the expression of Bmp6 was enhanced in Hfe-null mice, but hepatic Bmp signalling, such as phosphorylation of Smad1/5/8 and Id1 expression, was not accelerated. Similar results were also recently obtained in patients with hereditary haemochromatosis with mutation of the HFE gene\(^{(31)}\). In the liver of Fe-overloaded mice, both Hfe and Hemojuvelin expressions were increased\(^{(20)}\). Therefore, the blunting of Bmp signalling at the gene transcript level of Hepcidin may be explained by the result that Mg deficiency down-regulated Hfe expression in the liver, although up-regulation of Hepcidin expression in response to Bmp2, Bmp4 and Bmp9 in primary hepatocytes from wild-type mice was comparable with those from Hfe-null mice\(^{(32)}\).

Down-regulation of the expression of Bmp receptors is possibly related to blunting of Bmp signalling in Mg-deficient rats. Among Bmp receptors, expression of hepatic Actr2a, Actr2b and Bmpr2 was significantly lower in Mg-deficient rats than in control rats (Table 2); expression of activin receptor-like kinase 6 (Alk6), a Bmp type I receptor, was not significant (data not shown). Receptor expression level also determines the strength of Bmp signalling\(^{(28,33)}\).

In conclusion, the accumulation of hepatic Fe by Mg deficiency is a stimulant inducing Bmp6 expression but not Hepcidin expression by blunting Bmp signalling possibly resulting from down-regulation of the receptor expression. Unresponsive Hepcidin expression may have a role in Mg-deficiency-induced changes related to increased liver Fe.

References

Table 2. Effect of magnesium deficiency on the hepatic expression of Hepcidin, bone morphogenetic protein (Bmp) 6, inhibition of DNA binding 1 (Id1), haemochromatosis (Hfe), Hemojuvelin and Bmp receptors

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Mg deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SEM</td>
</tr>
<tr>
<td>Hepcidin</td>
<td>1.00</td>
<td>0.13</td>
</tr>
<tr>
<td>Bmp6</td>
<td>1.00</td>
<td>0.29</td>
</tr>
<tr>
<td>Id1</td>
<td>1.00</td>
<td>0.41</td>
</tr>
<tr>
<td>Hfe</td>
<td>1.00</td>
<td>0.05</td>
</tr>
<tr>
<td>Hemojuvelin</td>
<td>1.00</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Type I receptors

<table>
<thead>
<tr>
<th></th>
<th>Type I receptors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actr2a</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>0.55**</td>
</tr>
</tbody>
</table>

Type II receptors

<table>
<thead>
<tr>
<th></th>
<th>Tkpr2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>0.51**</td>
</tr>
</tbody>
</table>

Mean values were significantly different from those of the control group: *P = 0.05, **P = 0.01.

