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Abstract
We study open-closed orbifold Gromov-Witten invariants of 3-dimensional Calabi-Yau smooth toric Deligne-
Mumford stacks (with possibly nontrivial generic stabilisers K and semi-projective coarse moduli spaces) relative
to Lagrangian branes of Aganagic-Vafa type. An Aganagic-Vafa brane in this paper is a possibly ineffective 𝐶∞

orbifold that admits a presentation [(𝑆1×R2)/𝐺𝜏], where𝐺𝜏 is a finite abelian group containing K and𝐺𝜏/𝐾 � 𝝁𝔪
is cyclic of some order 𝔪 ∈ Z>0.

1. We present foundational materials of enumerative geometry of stable holomorphic maps from bordered orbifold
Riemann surfaces to a 3-dimensional Calabi-Yau smooth toric DM stack X with boundaries mapped into an
Aganagic-Vafa brane L. All genus open-closed Gromov-Witten invariants of X relative to L are defined by torus
localisation and depend on the choice of a framing 𝑓 ∈ Z of L.

2. We provide another definition of all genus open-closed Gromov-Witten invariants in (1) based on algebraic
relative orbifold Gromov-Witten theory, which agrees with the definition in (1) up to a sign depending on the
choice of orientation on moduli of maps in (1). This generalises the definition in [57] for smooth toric Calabi-
Yau 3-folds and specifies an orientation on moduli of maps in (1) compatible with the canonical orientation on
moduli of relative stable maps determined by the complex structure.

3. WhenX is a toric Calabi-Yau 3-orbifold (i.e., when the generic stabiliser K is trivial), so that𝐺𝜏 = 𝝁𝔪 , we define
generating functions 𝐹X , (L, 𝑓 )

𝑔,ℎ
of open-closed Gromov-Witten invariants of arbitrary genus g and number h of

boundary circles; it takes values in 𝐻∗
CR (B𝝁𝔪;C)⊗ℎ , where 𝐻∗

CR (B𝝁𝔪;C) � C𝔪 is the Chen-Ruan orbifold
cohomology of the classifying space B𝝁𝔪 of 𝝁𝔪 .

4. We prove an open mirror theorem that relates the generating function 𝐹X , (L, 𝑓 )
0,1 of orbifold disk invariants to

Abel-Jacobi maps of the mirror curve of X . This generalises a conjecture by Aganagic-Vafa [6] and Aganagic-
Klemm-Vafa [5] (proved in full generality by the first and the second authors in [33]) on the disk potential of a
smooth semi-projective toric Calabi-Yau 3-fold.
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1. Introduction

Open Gromov-Witten (GW) invariants of toric Calabi-Yau 3-folds have been studied extensively by both
mathematicians and physicists. They correspond to ‘A-model topological open string amplitudes’ in the
physics literature and can be interpreted as intersection numbers of certain moduli spaces of holomorphic
maps from bordered Riemann surfaces to the 3-fold with boundaries in a Lagrangian submanifold. The
physics prediction of these open GW invariants comes from string dualities: mirror symmetry relates
the A-model topological string theory of a Calabi-Yau 3-fold X to the B-model topological string theory
of the mirror Calabi-Yau 3-fold �̌�; the large- N duality relates the A-model topological string theory on
Calabi-Yau 3-folds (of complex dimension three) to the Chern-Simons theory on 3-manifolds (of real
dimension three).

1.1. Open GW invariants of smooth toric Calabi-Yau 3-folds

Aganagic-Vafa [6] introduce a class of Lagrangian submanifolds in smooth semi-projective toric Calabi-
Yau 3-folds, which are diffeomorphic to 𝑆1 × R2. By mirror symmetry, Aganagic-Vafa and Aganagic-
Klemm-Vafa [6, 5] relate genus-zero open GW invariants (disk invariants) of a smooth toric Calabi-Yau
3-fold X relative to such a Lagrangian submanifold L to the classical Abel-Jacobi map of the mirror
Calabi-Yau 3-fold �̌� , which can be further related to the Abel-Jacobi map to the mirror curve of X. This
conjecture is proved in full generality in [33].

By the large-N duality, Aganagic-Klemm-Mariño-Vafa propose the topological vertex [4], an
algorithm of computing all genera generating functions 𝐹𝛽′,𝜇1 ,...,𝜇ℎ of open GW invariants of (𝑋, 𝐿)
obtained by fixing a topological type of the map (determined by the degree 𝛽′ ∈ 𝐻2(𝑋, 𝐿;Z) and wind-
ing numbers 𝜇1, . . . , 𝜇ℎ ∈ 𝐻1(𝐿;Z) = Z) and summing over the genus of the domain. The algorithm of
the topological vertex is proved in full generality in [60].

Bouchard-Klemm-Mariño-Pasquetti propose the Remodeling Conjecture [8], an algorithm for con-
structing the B-model topological open string amplitudes in all genera of �̌� following [58], using
Eynard-Orantin’s topological recursion from the theory of matrix models [30]. Combined with the mir-
ror symmetry prediction, this gives an algorithm for computing generating functions 𝐹𝑔,ℎ of open GW
invariants of (𝑋, 𝐿) obtained by fixing a topological type of the domain (determined by the genus g
and number h of boundary circles) and summing over the topological types of the map. Eynard-Orantin
studied the Remodeling Conjecture for any smooth symplectic toric Calabi-Yau threefolds [31].

1.2. Open GW invariants for 3-dimensional Calabi-Yau smooth toric DM stacks

There have been attempts to generalise some of the above results to 3-dimensional Calabi-Yau smooth
toric Deligne-Mumford (DM) stacks. The closed GW theory of orbifolds has been studied for a long
time. The physics literature dates back to the early 1990s, such as [17, 74], which studies the quantum
cohomology ring of orbifolds. The mathematical definition is given by Chen-Ruan [22] for symplectic
orbifolds and by Abramovich-Graber-Vistoli [2, 3] for smooth DM stacks. Toric varieties are defined by
a fan, while smooth toric DM stacks are defined by a stacky fan [7]. The coarse moduli of a smooth toric
DM stack X is a toric variety 𝑋Σ defined by a simplicial fan Σ. A toric orbifold is a smooth toric DM
stack with a trivial generic stabiliser. Any smooth toric DM stack X is a K-gerbe over its rigidification
X rig, where K is the generic stabiliser (which is a finite abelian group) and X rig is a toric orbifold.

The definition of Aganagic-Vafa branes can be extended to the setting of 3-dimensional Calabi-Yau
smooth toric DM stacks with semi-projective coarse moduli spaces. These branes are diffeomorphic
to [(𝑆1 × R2)/𝐺𝜏], where 𝐺𝜏 is a finite abelian group containing the generic stabiliser K. The open
GW invariants of 3-dimensional Calabi-Yau smooth toric DM stacks are defined via localisation [66],
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generalising the methods in [49]. By localisation, open and closed GW invariants of a smooth toric
Calabi-Yau 3-fold can be obtained by glueing the GW vertex, a generating function of open GW invariants
of C3, which can be reduced to a generating function of certain cubic Hodge integrals [29]. Similarly,
open and closed orbifold GW invariants of a 3-dimensional Calabi-Yau smooth toric DM stack can be
obtained by glueing the orbifold GW vertex, a generating function of open GW invariants of [C3/𝐺]
(where G is a finite abelian subgroup of 𝑆𝐿(3,C)), which can be reduced to a generating function of
certain cubic abelian Hurwitz-Hodge integrals [66]. The GW vertex has been evaluated in the general
case [57, 60]. The orbifold GW vertex has been evaluated for [C2/Z𝑛] × C, where C2/Z𝑛 is the 𝐴𝑛−1
surface singularity [77, 68, 69, 67], but not in the general case.

As for mirror symmetry, a mirror theorem for disk invariants of [C3/Z4] is proved in [11]. The
Remodeling Conjecture is also expected to predict higher genus open GW invariants of toric Calabi-Yau
3-orbifolds via mirror symmetry [8, 9].

1.3. Summary of results

In this paper, we study open-closed orbifold GW invariants of a 3-dimensional Calabi-Yau smooth toric
DM stack X relative to an Aganagic-Vafa A-brane L at all genera.

Open GW invariants of the pair (X ,L) count holomorphic maps from orbicurves to X with bound-
aries mapped to L. Open-closed orbifold GW invariants of the pair (X ,L) depend on the following
discrete data:

(i) topological type (𝑔, ℎ) of the domain orbicurve (Σ, 𝜕Σ), where g is the genus and h is the number
of boundary holes;

(ii) number of interior marked points n;
(iii) topological type of the map 𝑢 : (Σ, 𝜕Σ =

∐ℎ
𝑖=1 𝑅𝑖) → (X ,L) given by the degree 𝛽′ =

𝑢∗ [Σ] ∈ 𝐻2(X ,L;Z) and each [𝑢∗(𝑅𝑖)] ∈ 𝐻1(L;Z) � Z × 𝐺𝜏 , collectively denoted by
�𝜇 = ([𝑢∗(𝑅1)], . . . , [𝑢∗(𝑅ℎ)]);

(iv) framing 𝑓 ∈ Z of the Aganagic-Vafa A-brane L.
Let M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇) be the moduli space parametrising holomorphic maps with discrete data (i)-
(iii). We use the evaluation maps ev𝑖 , 𝑖 = 1, . . . , 𝑛 at interior points to pull back classes in the orbifold
Chen-Ruan cohomology𝐻∗

CR (X ) ofX to obtain open-closed GW invariants. More precisely,L intersects
a unique 1-dimensional orbit 𝔬𝜏 � C∗ × B𝐺𝜏 . Given 𝛾1, . . . , 𝛾𝑛 ∈ 𝐻∗

CR (X ;Q), we define open-closed
orbifold GW invariant 〈𝛾1, . . . , 𝛾𝑛〉X , (L, 𝑓 )

𝑔,𝛽′, �𝜇 via localisation using a circle action determined by the
framing 𝑓 ∈ Z; this is a rational number depending on f and can be viewed as an equivariant invariant.
We also provide another definition based on algebraic relative Gromov-Witten theory, which agrees
with the above definition up to a sign depending on the choice of orientation on M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇).
This generalises the definition in [57] for smooth toric Calabi-Yau 3-folds and specifies an orientation
on M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇) compatible with the canonical orientation on moduli of relative stable maps
determined by the complex structure.

When X is a symplectic toric Calabi-Yau 3-orbifolds (i.e., when the generic stabiliser K is trivial),
𝐺𝜏 � 𝝁𝔪 is cyclic. In this case, for each topological type (𝑔, ℎ) of the domain bordered Riemann
surface, we define a generating function 𝐹X , (L, 𝑓 )

𝑔,ℎ of open-closed GW invariants that takes value in
𝐻∗

CR (B𝐺;C)⊗ℎ , where 𝐻∗
CR (B𝐺;C) = ⊕𝜆∈𝐺C1𝜆.

In particular, the disk potential 𝐹X , (L, 𝑓 )
0,1 takes values in 𝐻∗

CR(B𝐺;C). When L is an outer brane,1
the A-model disk potential is

𝐹
X , (L, 𝑓 )
0,1 (𝝉2, 𝑋) =

∑
𝛽′,𝑛≥0

∑
(𝜇,𝜆) ∈𝐻1 (L;Z)�Z×𝐺𝜏

〈(𝝉2)𝑛〉X , (L, 𝑓 )
0,𝛽′, (𝜇,𝜆)

𝑛!
· 𝑋𝜇 (𝜉0)�̄�1𝜆−1

1We work with both inner and outer branes. See Section 3.3 for the definition.
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where 𝝉2 is certain equivariant second Chen-Ruan cohomology class of X , 𝜉0 is an 𝔪th root of −1,
and �̄� ∈ {0, 1, . . . ,𝔪 − 1} corresponds to 𝜆 ∈ 𝐺 under a group isomorphism 𝐺𝜏 � Z/𝔪Z. The
precise definition of 𝝉2 and 𝐹X , (L, 𝑓 )

(0,1) will be given in Section 3.13. (Throughout the paper, 𝛽′ denotes a
relative homology class in 𝐻2(X ,L;Z), whereas 𝛽 denotes an absolute homology class in 𝐻2 (X ;Z).)
In this paper, we prove a mirror theorem regarding the disk potential 𝐹X , (L, 𝑓 )

0,1 when X is a semi-
projective toric Calabi-Yau 3-orbifold. Mirror symmetry relates the A-model topological string theory
on a Calabi-Yau 3-fold to the B-model topological string theory on the mirror Calabi-Yau 3-fold. The
mirror of a semi-projective toric Calabi-Yau 3-fold is a Calabi-Yau hypersurface in C2 × (C∗)2 defined
by an equation 𝑢𝑣 = 𝐻 (𝑥, 𝑦, 𝑞), where (𝑢, 𝑣) ∈ C2, (𝑥, 𝑦) ∈ (C∗)2 and q is the complex moduli
parametrising the B-model. The function 𝐻 (𝑥, 𝑦, 𝑞) is determined by both the combinatorial toric data
of X and the framed brane (L, 𝑓 ). The affine curve 𝐶𝑞 = {𝐻 (𝑥, 𝑦, 𝑞) = 0} in (C∗)2 is called the
mirror curve. We can fix a labelling of the 𝔪 points with 𝑥 = 0 on the mirror curve by the elements
in 𝐺∗

𝜏 = Hom(𝐺,C∗) � Z/𝔪Z. For each 𝜂 ∈ 𝐺∗
𝜏 , there is a small open neighbourhood 𝑈 𝜖

𝜂 in the
(compactified) mirror curve of the 𝑥 = 0 point labelled by 𝜂 and a branch (log 𝑦)𝑈 𝜖

𝜂
of log 𝑦 defined on

𝑈 𝜖
𝜂 , where 𝑦 = 𝑦(𝑥, 𝑞) is defined implicitly by the equation 𝐻 (𝑥, 𝑦, 𝑞) = 0. When L is an outer brane, the

closure of the 1-dimensional orbit intersectingL contains a unique torus fixed (stacky) point𝔭𝜎 = B𝐺𝜎 ,
where 𝐺𝜎 is the inertia group of 𝔭𝜎 . With the above convention, we state our open mirror theorem
as follows.

Theorem 1.1. Under the closed mirror map 𝝉2 = 𝝉2(𝑞) and the open mirror map 𝑋 = 𝑥𝑒𝐴(𝑞) (the
explicit formula of 𝝉2(𝑞) and 𝐴(𝑞) will be given in Section 4),

𝑥
𝜕

𝜕𝑥

���
∑
𝜂∈𝝁∗

𝔪

(log 𝑦)𝑈 𝜖
𝜂
(𝑞, 𝑥)𝜙𝜂

��	 =
𝜕2

𝜕𝑥2 𝐹
X , (L, 𝑓 )
0,1 (𝝉2, 𝑋),

where {𝜙𝜂}𝜂∈𝐺 is the canonical basis of 𝐻∗
CR(B𝐺𝜏 ;C).

Remark 1.2. The definition of the disk function 𝐹X , (L, 𝑓 )
0,1 and the formulation of the above Theorem

1.1 are slightly different from those in the first version of this paper in 2012 [34], but the above Theorem
1.1 implies [34, Theorem 1.1], which is used to prove an open version of Ruan’s Crepant Resolution
Conjecture for disk invariants of toric Calabi-Yau 3-orbifold relative to an effective outer Aganagic-Vafa
brane [50].

1.4. Similar results for compact Lagrangian tori

There are other open GW invariants relative to different types of Lagrangian submanifolds. C.-H. Cho
[15] and J. Solomon [70] define disk invariants of a compact symplectic manifold in real dimensions four
and six relative to a Lagrangian submanifold that is the fixed locus of an anti-symplectic involution. The
mirror theorem for disk invariants for the quintic 3-fold relative to the real quintic is conjectured in [72]
and proved in [63]. It has been generalised to compact Calabi-Yau 3-folds that are projective complete
intersections [64], where a mirror theorem for genus one open GW invariants (annulus invariants) is
also proved.

Open orbifold GW invariants of compact toric orbifolds with respect to Lagrangian torus fibres of
the moment map are defined in [24], which generalises the work of [38] on compact toric manifolds.
The third author and collaborators prove mirror theorems on disk invariants in this context [20, 18].
The third author and collaborators also prove mirror theorems on disk invariants of toric Calabi-Yau
manifolds/orbifolds (which must be noncompact) with respect to Lagrangian torus fibres of the Gross
fibration [21, 19].
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1.5. Applications

The main theorem (Theorem 1.1) of this paper has several applications. Here we mention two important
applications:

◦ As mentioned in Remark 1.2 above, Theorem 1.1 has been applied to prove an open version of
Ruan’s Crepant Resolution Conjecture for disk invariants of a toric Calabi-Yau 3-orbifold relative to
an effective outer Aganagic-Vafa brane [50]. Using Theorem 1.1, S. Yu [73] proves an open version
of Crepant Transformation Conjecture (and in particular the Crepant Resolution Conjecture) for disk
invariants of a semi-projective toric Calabi-Yau 3-orbifold relative to a general (effective or
ineffective, inner or outer) Aganagic-Vafa brane defined in Section 3.3 of this paper. This generalises
the Open Crepant Resolution Conjecture (OCRC) for disk invariants of [C2/Z𝑛] × C relative to
possibly ineffective Aganagic-Vafa branes proved in [12].

◦ Recently, the first two authors and Zong prove the BKMP Remodeling Conjecture for all semi-
projective toric Calabi-Yau 3-orbifolds [36]. Theorem 1.1 is one of the key ingredients of this proof.

1.6. Overview of the paper

The rest of the paper is organised as follows. In Section 2, we review the necessary materials concerning
smooth toric DM stacks. In Section 3, we apply localisation to relate open-closed GW invariants and
descendant GW invariants of 3-dimensional smooth Calabi-Yau toric DM stacks. In Section 4, we prove
a mirror theorem for orbifold disk invariants.

2. Smooth toric DM stacks

In this section, we follow the definitions in [47, Section 3.1], with slightly different notation. We work
over C.

2.1. Definition

Let N be a finitely generated abelian group, and let 𝑁R = 𝑁 ⊗Z R. We have a short exact sequence of
(additive) abelian groups:

0 → 𝑁tor → 𝑁 → �̄� = 𝑁/𝑁tor → 0,

where 𝑁tor is the subgroup of torsion elements in N. Then 𝑁tor is a finite abelian group and �̄� = Z𝑛,
where 𝑛 = dimR 𝑁R. The natural projection 𝑁 → �̄� is denoted 𝑏 ↦→ �̄�. A smooth toric DM stack is an
extension of toric varieties [39, 7]. A smooth toric DM stack is given by the following data:

◦ 𝑏1, . . . , 𝑏𝑟 ′ ∈ 𝑁 that generate a subgroup of N of finite index, and
◦ a simplicial fan Σ in 𝑁R such that the set of 1-cones is

{𝜌1, . . . , 𝜌𝑟 ′ },

where 𝜌𝑖 = R≥0�̄�𝑖 , 𝑖 = 1, . . . , 𝑟 ′.

The datum 𝚺 = (Σ, (𝑏1, . . . , 𝑏𝑟 ′ )) is a stacky fan in the sense of [7]. The vectors 𝑏1, . . . , 𝑏𝑟 ′ may or may
not generate N; if they do not, we choose additional vectors 𝑏𝑟 ′+1, . . . , 𝑏𝑟 such that 𝑏1, . . . , 𝑏𝑟 generate
N. There is a surjective group homomorphism

𝜙 : 𝑁 := ⊕𝑟
𝑖=1Z�̃�𝑖 −→ 𝑁,

�̃�𝑖 ↦→ 𝑏𝑖 .
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Define L := Ker(𝜙) � Z𝑘 , where 𝑘 := 𝑟 −𝑛. Then we have the following short exact sequence of finitely
generated abelian groups:

0 → L
𝜓

−→ 𝑁
𝜙

−→ 𝑁 → 0. (1)

Applying − ⊗Z C∗ to equation (1), we obtain an exact sequence of abelian groups

1 → 𝐾 → 𝐺 → T̃→ T→ 1, (2)

where

T := 𝑁 ⊗Z C∗ = �̄� ⊗Z C∗ � (C∗)𝑛,
T̃ := 𝑁 ⊗Z C∗ � (C∗)𝑟 ,
𝐺 := L ⊗Z C∗ � (C∗)𝑘 ,
𝐾 := TorZ1 (𝑁,C

∗) � 𝑁tor.

The action of T̃ on itself extends to a T̃-action on C𝑟 = SpecC[𝑍1, . . . , 𝑍𝑟 ]. The torus G acts on C𝑟 via
the group homomorphism 𝐺 → T̃ in equation (2), so 𝐾 ⊂ 𝐺 acts on C𝑟 trivially. The isomorphism
𝐾 � 𝑁tor is not canonical.

With the above preparation, we are now ready to define a smooth toric DM stack X . Let

A = {𝐼 ⊂ {1, . . . , 𝑟} :
∑
𝑖∉𝐼

R≥0�̄�𝑖 is a cone of Σ}

be the set of anti-cones; note that {𝑟 ′ + 1, . . . , 𝑟} ⊂ 𝐼 for any anti-cone 𝐼 ⊂ A. Given 𝐼 ⊂ {1, . . . , 𝑟}, let
C𝐼 be the subvariety of C𝑟 defined by the ideal in C[𝑍1, . . . , 𝑍𝑟 ] generated by {𝑍𝑖 | 𝑖 ∉ 𝐼}. Define the
smooth toric DM stack X as the quotient stack

X := [𝑈A/𝐺],

where

𝑈A := C𝑟\
⋃
𝐼∉A
C𝐼 =

⋂
𝐼∉A

(
C𝑟\C𝐼

)
.

Note that for 𝑖 = 𝑟 ′ + 1, . . . , 𝑟 , R≥0𝑏𝑖 is not a cone in Σ, so {𝑖}′ := {1, . . . , 𝑟}\{𝑖} ∉ A. Therefore,

𝑈A ⊂
𝑟⋂

𝑖=𝑟 ′+1

(
C𝑟\C{𝑖 }′

)
= C𝑟

′ × (C∗)𝑟−𝑟 ′ .

The stackX contains the DM torus T := [T̃/𝐺] as a dense open subset, and the T̃-action on𝑈A descends
to a T -action on X . The smooth toric DM stack X is a toric orbifold if the G-action on T̃ is free.

Let 𝐺rig = 𝐺/𝐾 . Then 𝐺rig acts freely on T̃ and T̃/𝐺rig = T. The rigidification of the smooth toric
DM stack X is the toric orbifold

X rig = [𝑈A/𝐺rig] .
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The coarse moduli space of the stack X is the simplical toric variety 𝑋Σ defined by the simplicial fan Σ
in 𝑁R � R𝑛. By [37, Theorem I], the morphism X → 𝑋Σ factors canonically via toric morphisms

X −→ X rig −→ X can −→ 𝑋Σ, (3)

where

◦ X −→ X rig is a K-gerbe over X rig;
◦ X rig −→ X can is a fibred product of roots of toric divisors;
◦ X can −→ 𝑋Σ is the minimal orbifold having 𝑋Σ as coarse moduli space.

Restricting equation (3) to the open substack T ⊂ X , one obtains T � T × B𝐾 −→ T −→ T −→ T,
where T × B𝐾 −→ T is the projection to the first factor and T −→ T is the identity map.

Remark 2.1. The purpose of introducing additional vectors 𝑏𝑟 ′+1, . . . , 𝑏𝑟 is to ensure that G is connected.
The stacky fan 𝚺 together with the extra vectors 𝑏𝑟 ′+1, . . . , 𝑏𝑟 is an extended stacky fan in the sense of
Jiang [48]. It follows from the definition that {𝑟 ′ + 1, . . . , 𝑟} ⊂ 𝐼 for any 𝐼 ∈ A.

Let M, 𝑀 , and L∨ be the character lattices of the tori T, T̃ and G, respectively:

𝑀 = Hom(𝑁,Z) = Hom(T,C∗),
𝑀 = Hom(𝑁,Z) = Hom(T̃,C∗),
L∨ = Hom(L,Z) = Hom(𝐺,C∗).

Applying Hom(−,Z) to equation (1), we obtain the following exact sequence of (additive) abelian
groups:

0 −→ 𝑀
𝜙∨

−→ 𝑀
𝜓∨

−→ L∨ −→ Ext1 (𝑁,Z) −→ 0. (4)

Therefore, the group homomorphism 𝜓∨ : 𝑀 −→ L∨ is surjective if and only if 𝑁tor = 0.
We now consider a class of examples of 3-dimensional Calabi-Yau smooth toric DM stacks of the

form [C3/Z3]. Let 𝜔 = 𝑒
2𝜋

√
−1

3 be the generator of Z3. Given 𝑖, 𝑗 , 𝑘 ∈ {0, 1, 2} such that 𝑖 + 𝑗 + 𝑘 ∈ 3Z,
we define X𝑖, 𝑗 ,𝑘 to be the quotient stack of the following Z3-action on C3:

𝜔 · (𝑍1, 𝑍2, 𝑍3) = (𝜔𝑖𝑍1, 𝜔
𝑗𝑍2, 𝜔

𝑘𝑍3).

In the following example, we consider

X1,1,1, X1,2,0 = [C2/Z3] × C, X0,0,0 = C3 × BZ3.

Example 2.2.

1. X = X1,1,1 (see Figure 1). The toric data are given as follows:

𝑁 = Z3, 𝑁tor = 0;
𝑏1 = (1, 0, 1), 𝑏2 = (0, 1, 1), 𝑏3 = (−1,−1, 1), 𝑏4 = (0, 0, 1);

𝑟 = 4, 𝑟 ′ = 3, 𝑘 = 1;
Σ = {the 3-cone spanned by {𝑏1, 𝑏2, 𝑏3}, and its faces, and faces of faces, etc.};

A = {𝐼 ⊂ {1, 2, 3, 4} : 4 ∈ 𝐼};
L � Z, L∨ � Z;
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Figure 1. X1,1,1 and its crepant resolution OP2 (−3).

Figure 2. X1,2,0 and its (partial) crepant resolutions.

2. X = X1,2,0, transversal 𝐴2-singularity (see Figure 2). The toric data are given as follows:

𝑁 = Z3, 𝑁tor = 0;
𝑏1 = (1, 0, 1), 𝑏2 = (0, 3, 1), 𝑏3 = (0, 0, 1), 𝑏4 = (0, 1, 1), 𝑏5 = (0, 2, 1);

𝑟 = 5, 𝑟 ′ = 3, 𝑘 = 2;
Σ = {the 3-cone spanned by {𝑏1, 𝑏2, 𝑏3}, and its faces, and faces of faces, etc.};

A = {𝐼 ⊂ {1, 2, 3, 4, 5} : {4, 5} ⊂ 𝐼};
L � Z2, L∨ � Z2.

3. X = X0,0,0. The toric data is given as follows:

𝑁 = Z3 ⊕ Z3 𝑁tor = Z3;
𝑏1 = (1, 0, 0, 0), 𝑏2 = (0, 1, 0, 0), 𝑏3 = (0, 0, 1, 0), 𝑏4 = (1, 0, 0, 1);

𝑟 = 4, 𝑟 ′ = 3, 𝑘 = 1;
Σ = {the 3-cone spanned by {𝑏1, 𝑏2, 𝑏3}, and its faces, and faces of faces, etc.};

A = {𝐼 ⊂ {1, 2, 3, 4} : 4 ∈ 𝐼};
L � Z, L∨ � Z.

2.2. Equivariant line bundles and torus-invariant Cartier divisors

A character 𝜒 ∈ 𝑀 gives a T̃-action on C𝑟 × C by

(𝑡1, . . . , 𝑡𝑟 ) · (𝑍1, . . . , 𝑍𝑟 , 𝑢) = (𝑡1𝑍1, . . . , 𝑡𝑟𝑍𝑟 , 𝜒(𝑡1, . . . , 𝑡𝑟 )𝑢),

where

(𝑡1, . . . , 𝑡𝑟 ) ∈ T̃ � (C∗)𝑟 , (𝑍1, . . . , 𝑍𝑟 ) ∈ C𝑟 , 𝑢 ∈ C.
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Therefore C𝑟 × C can be viewed as the total space of a T̃-equivariant line bundle �̃�𝜒 over C𝑟 . If

𝜒(𝑡1, . . . , 𝑡𝑟 ) =
𝑟∏
𝑖=1

𝑡𝑐𝑖𝑖 ,

where 𝑐1, . . . , 𝑐𝑟 ∈ Z, then

�̃�𝜒 = OC𝑟 (
𝑟∑
𝑖=1

𝑐𝑖D̃𝑖),

where D̃𝑖 is the T̃-divisor in C𝑟 defined by 𝑍𝑖 = 0. We have

𝑀 � Pic
T̃
(C𝑟 ) � 𝐻2

T̃
(C𝑟 ;Z),

where the first isomorphism is given by 𝜒 ↦→ �̃�𝜒 and the second isomorphism is given by the T̃-
equivariant first Chern class (𝑐1)T̃. Define

𝐷T
𝑖 := (𝑐1)T̃(OC𝑟 (D̃𝑖)) ∈ 𝐻2

T̃
(C𝑟 ;Z) � 𝐻2

T ([C𝑟/𝐺];Z).

Then {𝐷T
1 , . . . , 𝐷

T
𝑟 } is a Z-basis of 𝐻2

T̃
(C𝑟 ;Z) � 𝑀 dual to the Z-basis {�̃�1, . . . , �̃�𝑟 } of 𝑁 . We have a

commutative diagram

Pic
T̃
(C𝑟 )

𝜄∗T−−−−−−→ Pic
T̃
(𝑈A)

�−−−−−−→ PicT (X )

(𝑐1)T̃
⏐⏐� (𝑐1 )T̃

⏐⏐� (𝑐1 )T
⏐⏐�

𝐻2
T̃
(C𝑟 ;Z)

𝜄∗T−−−−−−→ 𝐻2
T̃
(𝑈A;Z) �−−−−−−→ 𝐻2

T (X ;Z),

where 𝜄∗T is a surjective group homomorphism induced by the inclusion 𝜄 : 𝑈A ↩→ C𝑟 , and

Ker(𝜄∗T ) =
𝑟⊕

𝑖=𝑟 ′+1
Z𝐷T

𝑖 .

Therefore,

PicT (X ) � 𝐻2
T (X ;Z) � 𝑀/⊕𝑟

𝑖=𝑟 ′+1Z𝐷
T
𝑖 .

Let �̄�T
𝑖 := 𝜄∗T 𝐷

T
𝑖 . Then

�̄�T
𝑖 = 0, 𝑖 = 𝑟 ′ + 1, . . . , 𝑟,

and

𝐻2
T (X ;Z) =

𝑟 ′⊕
𝑖=1
Z�̄�T

𝑖 � Z
𝑟 ′ .

For 𝑖 = 1, . . . , 𝑟 ′, D̃𝑖 ∩𝑈A is a T̃-divisor in𝑈A, and it descends to a T-divisor D𝑖 in X . We have

�̄�T
𝑖 = (𝑐1)T (OX (D𝑖)), 𝑖 = 1, . . . , 𝑟 ′.

For 𝑖 = 𝑟 ′ + 1, . . . , 𝑟 , D̃𝑖 ∩𝑈A is empty, so it is the zero T̃-divisor.
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2.3. Line bundles and Cartier divisors

We have group isomorphisms

L∨ � Pic𝐺 (C𝑟 ) � 𝐻2
𝐺 (C𝑟 ;Z),

where the first isomorphism is given by 𝜒 ∈ L∨ = Hom(𝐺,C∗) ↦→ �̃�𝜒 and the second isomorphism is
given by the G-equivariant first Chern class (𝑐1)𝐺 . We have a commutative diagram

Pic𝐺 (C𝑟 ) 𝜄∗−−−−−−→ Pic𝐺 (𝑈A)
�−−−−−−→ Pic(X )

(𝑐1)𝐺
⏐⏐� (𝑐1 )𝐺

⏐⏐� 𝑐1
⏐⏐�

𝐻2
𝐺 (C𝑟 ;Z) 𝜄∗−−−−−−→ 𝐻2

𝐺 (𝑈A;Z) �−−−−−−→ 𝐻2(X ;Z),

where 𝜄∗ is a surjective group homomorphism induced by the inclusion 𝜄 : 𝑈A ↩→ C𝑟 . The surjective
map 𝐻2

𝐺 (C𝑟 ;Z) → 𝐻2(X ;Z) is the restriction of the Kirwan map

𝜅 : 𝐻∗
𝐺 (C𝑟 ;Z) −→ 𝐻∗(X ;Z).

Define

𝐷𝑖 := (𝑐1)𝐺 (OC𝑟 (D̃𝑖)) ∈ 𝐻2
𝐺 (C𝑟 ;Z) � 𝐻2 ([C𝑟/𝐺];Z).

Then

Ker(𝜄∗) =
𝑟⊕

𝑖=𝑟 ′+1
Z𝐷𝑖 .

Therefore,

Pic(X ) � 𝐻2 (X ;Z) � L∨/⊕𝑟
𝑖=𝑟 ′+1Z𝐷𝑖 .

Recall that 𝜓∨ : 𝑀 −→ L∨ is surjective if and only if 𝑁tor = 0. Let

�̄�𝑖 = 𝑐1 (OX (D𝑖)) ∈ 𝐻2 (X ;Z), 𝑖 = 1, . . . , 𝑟 .

The map

�̄�∨ : PicT (X ) � 𝐻2
T (X ;Z) → Pic(X ) � 𝐻2 (X ;Z),

given by

�̄�T
𝑖 ↦→ �̄�𝑖 , 𝑖 = 1, . . . , 𝑟 ′,

is surjective if and only if 𝑁tor = 0. In general, Coker(𝜓∨) � Coker(�̄�∨) is a finite abelian group.
Pick a Z-basis {𝑒1, . . . , 𝑒𝑘 } of L � Z𝑘 , and let {𝑒∨1 , . . . , 𝑒

∨
𝑘 } be the dual Z-basis of L∨. For each

𝑎 ∈ {1, . . . , 𝑘}, we define a charge vector

𝑙 (𝑎) = (𝑙 (𝑎)1 , . . . , 𝑙 (𝑎)𝑟 ) ∈ Z𝑟
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by

𝜓(𝑒𝑎) =
𝑟∑
𝑖=1

𝑙 (𝑎)𝑖 �̃�𝑖 ,

where 𝜓 : L −→ 𝑁 is the inclusion map. Then

𝐷𝑖 = 𝜓
∨(𝐷T

𝑖 ) =
𝑘∑
𝑎=1

𝑙 (𝑎)𝑖 𝑒∨𝑎 , 𝑖 = 1, . . . , 𝑟,

and

𝑟∑
𝑖=1

𝑙 (𝑎)𝑖 𝑏𝑖 = 𝜙 ◦ 𝜓(𝑒𝑎) = 0, 𝑎 = 1, . . . , 𝑘 .

Example 2.3. We use the notation in Example 2.2.

1. X = X1,1,1.

𝐷1 = 𝐷2 = 𝐷3 = 1, 𝐷4 = −3;

𝑙 (1) = (1, 1, 1,−3);
PicT (X ) � Z3, Pic(X ) � Z/3Z;

2. X = X1,2,0.

𝐷1 = (0, 0), 𝐷2 = (0, 1), 𝐷3 = (1, 0), 𝐷4 = (−2, 1), 𝐷5 = (1,−2);
𝑙 (1) = (0, 0, 1,−2, 1), 𝑙 (2) = (0, 1, 0, 1,−2);

PicT (X ) = Z3, Pic(X ) = Z2/ (
Z(−2, 1) ⊕ Z(1,−2)

)
� Z/3Z.

3. X = X0,0,0.

𝐷1 = 3, 𝐷2 = 0, 𝐷3 = 0, 𝐷4 = −3;

𝑙 (1) = (3, 0, 0,−3);
PicT (X ) = Z3, Pic(X ) = Z/3Z.

2.4. Torus invariant subvarieties and their generic stabilisers

Let Σ(𝑑) be the set of d-dimensional cones. For each 𝜎 ∈ Σ(𝑑), we define

𝐼𝜎 := {𝑖 ∈ {1, . . . , 𝑟} | 𝜌𝑖 ⊄ 𝜎} ∈ A, 𝐼 ′𝜎 := {1, . . . , 𝑟} \ 𝐼𝜎 .

Then |𝐼 ′𝜎 | = 𝑑 and |𝐼𝜎 | = 𝑟 − 𝑑. Let �̃� (𝜎) ⊂ 𝑈A be the closed subvariety defined by the ideal of
C[𝑍1, . . . , 𝑍𝑟 ] generated by

{𝑍𝑖 = 0 | 𝜌𝑖 ⊂ 𝜎} = {𝑍𝑖 = 0 | 𝑖 ∈ 𝐼 ′𝜎}.

Then V (𝜎) := [𝑉 (𝜎)/𝐺] is an (𝑛 − 𝑑)-dimensional T -invariant closed substack of X = [𝑈A/𝐺].
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The group homomorphism 𝐺 � (C∗)𝑘 −→ T̃ � (C∗)𝑟 is given by

𝑔 ↦→ (𝜒1 (𝑔), . . . , 𝜒𝑟 (𝑔)),

where 𝜒𝑖 ∈ Hom(𝐺,C∗) = L∨ is given by

𝜒𝑖 (𝑢1, . . . , 𝑢𝑘 ) =
𝑘∏
𝑎=1

𝑢
𝑙 (𝑎)𝑖
𝑎 .

Let

𝐺𝜎 := {𝑔 ∈ 𝐺 | 𝑔 · 𝑧 = 𝑧 for all 𝑧 ∈ 𝑉 (𝜎)} =
⋂
𝑖∈𝐼𝜎

Ker(𝜒𝑖).

Then 𝐺𝜎 is the generic stabiliser of V (𝜎). It is a finite subgroup of G. If 𝜏 ⊂ 𝜎, then 𝐼𝜎 ⊂ 𝐼𝜏 , so
𝐺𝜏 ⊂ 𝐺𝜎 . There are two special cases:

◦ Let {0} be the unique 0-dimensional cone. Then 𝐺 {0} = 𝐾 is the generic stabiliser of V ({0}) = X .
◦ If 𝜎 ∈ Σ(𝑛), where 𝑛 = dimC X , then 𝔭𝜎 := V (𝜎) is a T -fixed point in X , and 𝔭𝜎 = B𝐺𝜎 .

Example 2.4. We use the notation in Example 2.2. Let 𝜎 ⊂ 𝑁R � R3 denote the 3-dimensional
cone spanned by �̄�1, �̄�2, �̄�3. For 𝑗 = 1, 2, 3, let 𝜏𝑗 denote the 2-dimensional cone in 𝑁R spanned by
{�̄�𝑖 : 𝑖 ∈ {1, 2, 3} − { 𝑗}}.

1. X = X1,1,1: 𝐺𝜎 = Z3, 𝐺𝜏1 = 𝐺𝜏2 = 𝐺𝜏3 = {1}.
2. X = X1,2,0: 𝐺𝜎 = Z3 = 𝐺𝜏3 , 𝐺𝜏1 = 𝐺𝜏2 = {1}.
3. X = X0,0,0: 𝐺𝜎 = Z3 = 𝐺𝜏1 = 𝐺𝜏2 = 𝐺𝜏3 .

Define the set of flags in Σ to be

𝐹 (Σ) = {(𝜏, 𝜎) ∈ Σ(𝑛 − 1) × Σ(𝑛) : 𝜏 ⊂ 𝜎}.

Given (𝜏, 𝜎) ∈ 𝐹 (Σ), let 𝔩𝜏 := V (𝜏) be the 1-dimensional T -invariant subvariety of X . Then 𝔭𝜎 is
contained in 𝔩𝜏 . There is a unique 𝑖 ∈ {1, . . . , 𝑟 ′} such that 𝑖 ∈ 𝐼 ′𝜎 \ 𝐼 ′𝜏 . The representation of 𝐺𝜎 on
the tangent line 𝑇𝔭𝜎 𝔩𝜏 to 𝔩𝜏 at the stacky point 𝔭𝜎 is given by 𝜒(𝜏,𝜎) := 𝜒𝑖 |𝐺𝜎 : 𝐺𝜎 → C∗. The image
𝜒𝑖 (𝐺𝜎) ⊂ C∗ is a cyclic subgroup of C∗; we define the order of this group to be 𝑟 (𝜏, 𝜎). Then there is
a short exact sequence of finite abelian groups:

1 → 𝐺𝜏 −→ 𝐺𝜎

𝜒(𝜏,𝜎)−→ 𝝁𝑟 (𝜏,𝜎) → 1,

where 𝝁𝑎 = {𝑧 ∈ C∗ | 𝑧𝑎 = 1} is the group of ath roots of unity.

2.5. The extended nef cone and the extended Mori cone

In this paragraph, F = Q, R or C. Given a finitely generated abelian group Λ with Λ/Λtor � Z𝑚, define
ΛF = Λ ⊗Z F � F𝑚. We have the following short exact sequences of vector spaces:

0 → LF → 𝑁F → 𝑁F → 0,

0 → 𝑀F → 𝑀F → L∨F → 0.
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We also have the following isomorphisms of vector spaces over F:

𝐻2 (X ;F) � 𝐻2(𝑋;F) � L∨F/⊕
𝑟
𝑖=𝑟 ′+1F𝐷𝑖 ,

𝐻2
T (X ;F) � 𝐻2

T (𝑋;F) � 𝑀F/⊕𝑟
𝑖=𝑟 ′+1F𝐷

T
𝑖 ,

where X is the coarse moduli space of X .
From now on, we assume all the maximal cones in Σ are n-dimensional, where 𝑛 = dimC X . Given

a maximal cone 𝜎 ∈ Σ(𝑛), we define

K∨
𝜎 :=

⊕
𝑖∈𝐼𝜎
Z𝐷𝑖 .

Then K∨
𝜎 is a sublattice of L∨ of finite index. We define the extended 𝜎-nef cone to be

Ñef𝜎 =
∑
𝑖∈𝐼𝜎
R≥0𝐷𝑖 ,

which is a k-dimensional cone in L∨
R
� R𝑘 . The extended nef cone of the extended stacky fan

(Σ, 𝑏1, . . . , 𝑏𝑟 ) is

ÑefX :=
⋂

𝜎∈Σ (𝑛)
Ñef𝜎 .

The extended 𝜎-Kähler cone 𝐶𝜎 is defined to be the interior of Ñef𝜎; the extended Kähler cone of X ,
𝐶X , is defined to be the interior of the extended nef cone ÑefX .

Let K𝜎 be the dual lattice of K∨
𝜎; it can be viewed as an additive subgroup of LQ:

K𝜎 = {𝛽 ∈ LQ | 〈𝐷, 𝛽〉 ∈ Z ∀𝐷 ∈ K∨
𝜎},

where 〈−,−〉 is the natural pairing between L∨
Q

and LQ. Define

K :=
⋃

𝜎∈Σ (𝑛)
K𝜎 .

Then K is a subset (which is not necessarily a subgroup) of LQ, and L ⊂ K.
We define the extended 𝜎-Mori cone ÑE𝜎 ⊂ LR to be the dual cone of Ñef𝜎 ⊂ L∨

R
:

ÑE𝜎 = {𝛽 ∈ LR | 〈𝐷, 𝛽〉 ≥ 0 ∀𝐷 ∈ Ñef𝜎}.

It is a k-dimensional cone in LR. The extended Mori cone of the extended stacky fan (Σ, 𝑏1, . . . , 𝑏𝑟 ) is

ÑEX :=
⋃

𝜎∈Σ (𝑛)
ÑE𝜎 .

Finally, we define

Keff,𝜎 := K𝜎 ∩ ÑE𝜎 , Keff := K ∩ ÑE(X ) =
⋃

𝜎∈Σ (𝑛)
Keff,𝜎 .
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Figure 3. Keff of X1,1,1 and its crepant resolution OP2 (−3).

Figure 4. The secondary fan of the crepant resolution of X1,2,0.

Example 2.5.

1. X = X1,1,1 (see Figure 3).

K∨ � 3Z, ÑefX = R≤0;

K �
1
3
Z, ÑEX = R≤0, Keff =

1
3
Z≤0.

2. X = X1,2,0 (see Figures 4 and 5).

K∨ � Z(−2, 1) ⊕ Z(1,−2), ÑefX = R≥0 (−2, 1) + R≥0(1,−2);

K � Z
(
− 2

3
,−1

3

)
⊕ Z

(
− 1

3
,−2

3

)
, ÑEX = R≥0

(
− 2

3
,−1

3

)
+ R≥0

(
− 1

3
,−2

3

)
,

Keff = Z≥0

(
− 2

3
,−1

3

)
+ Z≥0

(
− 1

3
,−2

3

)
.

3. X = X0,0,0.

K∨ � 3Z, ÑefX = R≤0;

K �
1
3
Z, ÑEX = R≤0, Keff =

1
3
Z≤0.

Assumption 2.6. From now on, we make the following assumptions on X .

(a) The coarse moduli space 𝑋Σ of X is semi-projective.
(b) We may choose 𝑏𝑟 ′+1, . . . , 𝑏𝑟 such that �̂� := 𝐷1+ · · ·+𝐷𝑟 is contained in the closure of the extended

Kähler cone 𝐶X .
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Figure 5. Keff of X1,2,0 and its (partial) crepant resolutions.

Figure 6. OP1 (−3) ⊕ OP1 (1).

Remark 2.7.

1. We make the above assumptions (a) and (b) so that the equivariant mirror theorem [27, Theorem 31]
takes a particularly simple form. See Section 4.1 in this paper for the precise statement.

2. By [28, Proposition 14.4.1], 𝑋Σ is semi-projective if and only if |Σ | is equal to the cone spanned by
𝑏1, . . . , 𝑏𝑟 . For example, the total space of OP1 (−3) ⊕ OP1 (1) is a smooth toric Calabi-Yau 3-fold
that is not semi-projective (see Figure 6).

3. When X is a Calabi-Yau smooth toric DM stack, Assumption (b) holds if its coarse moduli space 𝑋Σ
has a toric crepant resolution of singularities; see [47, Remark 3.4]. By [28, Proposition 11.4.19], any
3-dimensional Gorenstein toric variety 𝑋Σ has a resolution of singularities 𝜙 : 𝑋Σ′ → 𝑋Σ such that
𝜙 is projective and crepant. So Assumption 2.6 (b) holds for any 3-dimensional Calabi-Yau smooth
toric DM stacks.

2.6. Smooth toric DM stacks as symplectic quotients

Let𝐺R � 𝑈 (1)𝑘 be the maximal compact subgroup of𝐺 � (C∗)𝑘 . Then the Lie algebra of𝐺R is LR. Let

𝜇 : C𝑟 → L∨R =
𝑘⊕
𝑎=1
R𝑒∨𝑎
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be the moment map of the Hamiltonian 𝐺R-action on C𝑟 , equipped with the Kähler form

√
−1

𝑟∑
𝑖=1

𝑑𝑍𝑖 ∧ 𝑑�̄�𝑖 .

Then

𝜇(𝑍1, . . . , 𝑍𝑟 ) =
𝑟∑
𝑖=1

𝑘∑
𝑎=1

𝑙 (𝑎)𝑖 |𝑍𝑖 |2𝑒∨𝑎 .

If r =
∑𝑘
𝑎=1 𝑟𝑎𝑒

∨
𝑎 is in the extended Kähler cone of X , then

X = [𝜇−1 (r)/𝐺R] .

The generic stabiliser K (which is a finite subgroup of 𝐺 � (C∗)𝑘 ) is contained in the maximal
compact subgroup 𝐺R of G. The quotient 𝐺rig

R
:= 𝐺R/𝐾 � 𝑈 (1)𝑘 is the maximal compact subgroup of

𝐺rig = 𝐺/𝐾 � (C∗)𝑘 , and

X rig = [𝜇−1 (r)/𝐺rig
R
]

as a symplectic quotient.
The real numbers 𝑟1, . . . , 𝑟𝑘 are extended Kähler parameters. The symplectic structure 𝜔(r) depends

on r. The map r ↦→ [𝜔(r)] is given by L∨
R
→ 𝐻2(X ;R). Let 𝑇𝑎 = −𝑟𝑎 +

√
−1𝜃𝑎 be complexified

extended Kähler parameters of X .

2.7. The inertia stack and the Chen-Ruan orbifold cohomology

Given 𝜎 ∈ Σ, define

Box(𝜎) :=
{
𝑣 ∈ 𝑁 : �̄� =

∑
𝑖∈𝐼 ′𝜎

𝑐𝑖 �̄�𝑖 , 0 ≤ 𝑐𝑖 < 1
}
.

Then 𝑁tor ⊂ Box(𝜎) ⊂ 𝑁 . If𝜎 is a d-dimensional cone, then the set {
∑
𝑖∈𝐼 ′𝜎 𝑐𝑖 �̄�𝑖 : 𝑐𝑖 ∈ R, 0 ≤ 𝑐𝑖 < 1} is

a fundamental domain of the action of �̄�𝜎 = ⊕𝑖∈𝐼 ′𝜎Z�̄�𝑖 � Z
𝑑 on 𝑁𝜎 ⊗Z R = ⊕𝑖∈𝐼 ′𝜎R�̄�𝑖 � R

𝑑 . If 𝜏 ⊂ 𝜎,
then 𝐼 ′𝜏 ⊂ 𝐼 ′𝜎 , so Box(𝜏) ⊂ Box(𝜎).

Let 𝜎 ∈ Σ(𝑛) be a maximal cone in Σ. We have a short exact sequence of abelian groups

0 → K𝜎/L→ LR/L→ LR/K𝜎 → 0,

which can be identified with the following short exact sequence of multiplicative abelian groups

1 → 𝐺𝜎 → 𝐺R → (𝐺/𝐺𝜎)R → 1,

where 𝐺R � 𝑈 (1)𝑘 is the maximal compact subgroup of 𝐺 � (C∗)𝑘 , and (𝐺/𝐺𝜎)R � 𝑈 (1)𝑘 is the
maximal compact subgroup of (𝐺/𝐺𝜎) � (C∗)𝑘 .

Given a real number x, we recall some standard notation: �𝑥� is the greatest integer less than or equal
to x, �𝑥� is the least integer greater or equal to x and {𝑥} = 𝑥 − �𝑥� is the fractional part of x. Define
𝑣 : K𝜎 → 𝑁 by

𝑣(𝛽) =
𝑟∑
𝑖=1

�〈𝐷𝑖 , 𝛽〉�𝑏𝑖 .
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Then

𝑣(𝛽) =
∑
𝑖∈𝐼 ′𝜎

{−〈𝐷𝑖 , 𝛽〉}�̄�𝑖 ,

so 𝑣(𝛽) ∈ Box(𝜎). Indeed, v induces a bijection 𝐾𝜎/L � Box(𝜎).
For any 𝜏 ∈ Σ, there exists 𝜎 ∈ Σ(𝑛) such that 𝜏 ⊂ 𝜎. The bijection 𝐺𝜎 → Box(𝜎) restricts to a

bijection 𝐺𝜏 → Box(𝜏).
Define

Box(𝚺) :=
⋃
𝜎∈Σ

Box(𝜎) =
⋃

𝜎∈Σ (𝑛)
Box(𝜎).

Then 𝑁tor ⊂ Box(𝚺) ⊂ 𝑁 . There is a bijection K/L→ Box(𝚺).
Given 𝑣 ∈ Box(𝜎), where 𝜎 ∈ Σ(𝑑), define 𝑐𝑖 (𝑣) ∈ [0, 1) ∩ Q by

�̄� =
∑
𝑖∈𝐼 ′𝜎

𝑐𝑖 (𝑣) �̄�𝑖 .

Suppose that 𝑘 ∈ 𝐺𝜎 corresponds to 𝑣 ∈ Box(𝜎) under the bijection 𝐺𝜎 � Box(𝜎). Then

𝜒𝑖 (𝑘) =
{

1, 𝑖 ∈ 𝐼𝜎 ,
𝑒2𝜋

√
−1𝑐𝑖 (𝑣) , 𝑖 ∈ 𝐼 ′𝜎 .

Define

age(𝑘) = age(𝑣) =
∑
𝑖∉𝐼𝜎

𝑐𝑖 (𝑣).

Let 𝐼𝑈 = {(𝑧, 𝑘) ∈ 𝑈A × 𝐺 | 𝑘 · 𝑧 = 𝑧}, and let G act on 𝐼𝑈 by ℎ · (𝑧, 𝑘) = (ℎ · 𝑧, 𝑘). The inertia
stack IX of X is defined to be the quotient stack

IX := [𝐼𝑈/𝐺] .

Note that (𝑧 = (𝑍1, . . . , 𝑍𝑟 ), 𝑘) ∈ 𝐼𝑈 if and only if

𝑘 ∈
⋃
𝜎∈Σ

𝐺𝜎 and 𝑍𝑖 = 0 whenever 𝜒𝑖 (𝑘) ≠ 1.

So

𝐼𝑈 =
⋃

𝑣 ∈Box(𝚺)
𝑈𝑣 ,

where

𝑈𝑣 := {(𝑍1, . . . , 𝑍𝑚) ∈ 𝑈A : 𝑍𝑖 = 0 if 𝑐𝑖 (𝑣) ≠ 0}.

The connected components of IX are

{X𝑣 := [𝑈𝑣/𝐺] : 𝑣 ∈ Box(𝚺)}.

The involution 𝐼𝑈 → 𝐼𝑈, (𝑧, 𝑘) ↦→ (𝑧, 𝑘−1) induces involutions inv : IX → IX and inv : Box(𝚺) →
Box(𝚺) such that inv(X𝑣 ) = Xinv(𝑣) .
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In the remainder of this subsection, we consider rational cohomology and write 𝐻∗(−) instead of
𝐻∗(−;Q).

As a graded vector space over Q (and as the state-space of the relevant quantum theory in physics
[74]), the Chen-Ruan orbifold cohomology [23] is defined to be

𝐻∗
CR (X ) =

⊕
𝑣 ∈Box(𝚺)

𝐻∗(X𝑣 ) [2age(𝑣)] .

Let 1𝑣 be the unit in 𝐻∗(X𝑣 ). Then 1𝑣 ∈ 𝐻2age(𝑣)
CR (X ). In particular,

𝐻0
CR(X ) =

⊕
𝑣 ∈𝑁tor

Q1𝑣 .

Suppose that X is a proper toric DM stack. Then the orbifold Poincaré pairing on 𝐻∗
CR(X ) is defined as

(𝛼, 𝛽) :=
∫
IX

𝛼 ∪ inv∗(𝛽). (5)

We also have an equivariant pairing on 𝐻∗
CR,T(X ):

(𝛼, 𝛽)T :=
∫
IXT

𝛼 ∪ inv∗(𝛽), (6)

where ∫
IXT

: 𝐻∗
CR,T (X ) → 𝐻∗

T(point) = 𝐻∗(𝐵T)

is the equivariant pushforward to a point. When X is not proper, equation (5) is not defined, but we
can still define via equation (6) an equivariant pairing 𝐻∗

CR,T (X ) ⊗ 𝐻∗
CR,T(X ) → QT, where QT is the

fractional field of the ring 𝐻∗(𝐵T).

Example 2.8.

1. X = X1,1,1.

𝑁 = Z3, Box(𝚺) = {(0, 0, 0), (0, 0, 1), (0, 0, 2)};
𝐻0

CR(X ) = Q1(0,0,0) , 𝐻
2
CR (X ) = Q1(0,0,1) , 𝐻

4
CR(X ) = Q1(0,0,2) .

2. X = X1,2,0.

𝑁 = Z3, Box(𝚺) = {(0, 0, 0), (0, 2, 1), (0, 1, 1)};
𝐻0

CR(X ) = Q1(0,0,0) , 𝐻2
CR (X ) = Q1(0,2,1) ⊕ Q1(0,1,1) .

3. X = X0,0,0.

𝑁 = Z3 ⊕ Z3, Box(𝚺) = 𝑁tor = Z3 = {0, 1, 2};
𝐻0

CR(X ) = Q10 ⊕ Q11 ⊕ Q12.

3. All genus open-closed Gromov-Witten invariants

In this section, X is a 3-dimensional Calabi-Yau smooth Deligne-Mumford stack.
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3.1. Rigidification

The rigidification X rig of X is a toric Calabi-Yau 3-orbifold. The Calabi-Yau condition implies X rig =
X can, where X can is determined by the simplicial fan Σ and then by choosing each 𝑏𝑖 to be the
primitive generator of each 1-cone (compare to equation (3) in Section 2.1). Let T ′ (respectively, T′)
be the subtorus of T � (C∗)3 × B𝐾 (respectively, T � (C∗)3) preserving the Calabi-Yau 3-form on
X (respectively, X rig). Then T′ � (C∗)2 and T ′ � (C∗)2 × B𝐾 . There is a primitive u3 ∈ 𝑀 =
Hom(T,C∗) � Z3 such that Ker(u3) = T′. Define 𝑀 ′ := 𝑀/〈u3〉 � Z2. Then �̄� ′ := u⊥3 = {v ∈ �̄� :
〈u3, v〉 = 0} is the dual lattice of 𝑀 ′ = Hom(T′,C∗).

The simplicial fan Σ is determined by a convex polytope Δ ⊂ 𝑁 ′
R

= �̄� ′ ⊗Z R together with a
triangulation of Δ , where all the vertices are in the lattice �̄� . The fan Σ is a cone over this triangulation
in 𝑁 ′

1,R ⊂ 𝑁R, where 𝑁 ′
1,R = {v ∈ 𝑁R : 〈u3, v〉 = 1}.

3.2. Toric graph

Let TR � 𝑈 (1)3 (respectively, T′
R
� 𝑈 (1)2) be the maximal compact subgroup of T � (C∗)3 (re-

spectively, T′ � (C∗)2), and we choose an r in the extended Kähler cone. The T-action on X rig

restricts to a Hamiltonian TR-action on the Kähler orbifold (X rig, 𝜔(r)). Since 𝑀R (respectively, 𝑀 ′
R

)
is canonically identified with the dual of the Lie algebra of TR (respectively, T′

R
), the Kähler form

𝜔(r) determines a moment map 𝜇TR : X rig −→ 𝑀R up to translation by a vector in 𝑀R. The image
𝜇TR (X rig) is a convex polyhedron. The moment map 𝜇T′

R
: X rig −→ 𝑀 ′

R
is the composition 𝜋 ◦ 𝜇𝑇R ,

where 𝜋 : 𝑀R � R3 → 𝑀 ′
R
� R2 is the projection. The map 𝜇T′

R
is surjective. Let X rig

1 ⊂ X rig

be the union of 0-dimensional and 1-dimensional T-orbits in X rig. The toric graph is defined by
Γ := 𝜇𝑇 ′

R
(X rig

1 ) ⊂ 𝑀 ′
R
� R2. It is determined by the Kähler class [𝜔(r)] ∈ 𝐻2(X rig;R) = 𝐻2 (𝑋Σ;R)

up to translation by a vector in 𝑀 ′
R

. The vertices (respectively, edges) of Γ are in one-to-one cor-
respondence to 3-dimensional (respectively, 2-dimensional) cones in Σ. Conversely, the Kähler class
[𝜔(r)] ∈ 𝐻2(X rig;R) is determined by the toric graph.

Pulling back under the map X −→ X rig defines a one-to-one correspondence between Kähler
forms/classes on X and on its rigidification X rig.

3.3. Aganagic-Vafa A-branes

In [6], Aganagic-Vafa introduced a class of Lagrangian submanifolds of semi-projective smooth toric
Calabi-Yau 3-folds. In this section, we generalise this construction and define Aganagic-Vafa A-branes
in a general 3-dimensional Calabi-Yau smooth toric DM stack with semi-projective coarse moduli space.

Let X = [𝜇−1 (r)/𝐺R] be a 3-dimensional Calabi-Yau smooth toric DM stack, where

r =
𝑘∑
𝑎=1

𝑟𝑎𝑒
∨
𝑎 ∈ 𝐶 (X ) ⊂ L∨R,

and 𝜇−1(r) ⊂ C𝑘+3 is defined by the following equations:

𝑘+3∑
𝑖=1

𝑙 (𝑎)𝑖 |𝑋𝑖 |2 = 𝑟𝑎, 𝑎 = 1, . . . , 𝑘 .

Write 𝑋𝑖 = 𝜌𝑖𝑒
√
−1𝜙𝑖 , where 𝜌𝑖 = |𝑋𝑖 |. An Aganagic-Vafa brane is a Lagrangian suborbifold of X of the

form

L = [�̃�/𝐺R],
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where

�̃� =

{
(𝑋1, . . . , 𝑋𝑘+3) ∈ 𝜇−1(r) :

𝑘+3∑
𝑖=1

𝑙1𝑖 |𝑋𝑖 |2 = 𝑐1,
𝑘+3∑
𝑖=1

𝑙2𝑖 |𝑋𝑖 |2 = 𝑐2,
𝑘+3∑
𝑖=1

𝜙𝑖 = const

}
for some 𝑙𝛼𝑖 ∈ Z,

∑𝑘+3
𝑖=1 𝑙

𝛼
𝑖 = 0, 𝛼 = 1, 2. Note that the action of 𝐺R on C𝑘+3 preserves the subsets 𝜇−1(r)

and �̃�. If we view X = [𝜇−1 (r)/𝐺R] as a Lie groupoid (and in particular a category), then L = [�̃�/𝐺R]
is a full subcategory.

An Aganagic-Vafa brane L intersects a unique 1-dimensional orbit 𝔬𝜏 � C∗ × B𝐺𝜏 along S𝜏 :=
L∩𝔬𝜏 � 𝑆1×B𝐺𝜏 . The inclusion S𝜏 ⊂ L is a homotopic equivalence, so the fundamental group of L is

𝜋1 (L) � 𝜋1 (𝑆1 × B𝐺𝜏) � Z × 𝐺𝜏 .

In particular, it is abelian, so it is isomorphic to its abelianisation 𝐻1 (L;Z).
If (𝜏, 𝜎) ∈ 𝐹 (Σ), then there is an inclusion 𝜄(𝜏,𝜎) : S𝜏 ↩→ X𝜎 = [C3/𝐺𝜎] that induces

𝜄(𝜏,𝜎)
∗ : 𝜋1 (S𝜏) � Z × 𝐺𝜏 → 𝜋1 (X𝜎) � 𝐺𝜎 .

3.4. Moduli spaces of stable maps to (X ,L)
In [49], Katz-Liu introduced stable maps to a symplectic manifold with Lagrangian boundary conditions
at all genera; the domain of such a map is a prestable bordered Riemann surface: that is, a smooth or
nodal bordered Riemann surface. (See also [55], [38].) In [24, Section 2], Cho-Poddar define stable
maps to a symplectic orbifold X with Lagrangian boundary conditions, under the assumption that the
Lagrangian suborbifold L does not contain any stacky points (so that L is indeed a smooth manifold);
the domain of such a map is a prestable bordered orbifold Riemann surface in the sense of [24, Section
2]: that is, a smooth or nodal bordered orbifold Riemann surface, where a stacky point is either an
interior marked point or an interior node.

In general, L is a suborbifold that contains stacky points. To obtain compactness of the moduli spaces
when X and L are compact, one needs to allow orbifold structures at boundary marked points and
boundary nodes. In the present paper, L may contain stacky points, but we do not need to allow orbifold
structures on the boundary of the domain for the following two reasons:

(i) Our enumerative problem only requires interior insertions, so we do not need to introduce any
boundary marked points.

(ii) In our case, X and L are noncompact, and we will define and compute open GW invariants by torus
localisation on moduli space of stable maps X with boundaries in L. If a stable map represents a
torus fixed point in the moduli space, then any node in the domain must be mapped to a torus fixed
(scheme or stacky) point in X , but L does not contain any torus fixed point, so the domain does not
contain any boundary nodes.

Let (Σ, 𝑥1, . . . , 𝑥𝑛) be a prestable bordered orbifold Riemann surface with n interior marked point.
Then the coarse moduli space (Σ̄, 𝑥1, . . . , 𝑥𝑛) is a prestable bordered Riemann surface with n interior
marked points, defined in [49, Section 3.6] and [55, Section 3.2]. We define the topological type (𝑔, ℎ)
of Σ to be the topological type of Σ̄ (see [55, Section 3.2]).

Let (Σ, 𝜕Σ) be a prestable bordered orbifold Riemann surface of type (𝑔, ℎ), and let 𝜕Σ = 𝑅1∪· · ·∪𝑅ℎ
be union of connected components. Each connected component is a circle that contains no orbifold
points. A (bordered) prestable map to the pair (X ,L) is a map 𝑢 : (Σ, 𝜕Σ) → (X ,L), where Σ
is a prestable bordered orbifold Riemann surface such that 𝑢 ◦ 𝜈 : Σ̂ → X is holomorphic, where
𝜈 : Σ̂ → Σ is the normalisation (so Σ̂ is a possibly disconnected smooth bordered orbifold Riemann
surface); a prestable map to (X ,L) is stable if its automorphism group is finite. The topological type
of a stable map u is given by the degree 𝛽′ = �̄�∗ [Σ̄] ∈ 𝐻2(𝑋, 𝐿;Z) (where X and L are the coarse
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moduli spaces of X and L respectively, and �̄� : Σ̄ → 𝑋 is the map between coarse moduli spaces) and
�̄�𝑖 = 𝑢∗ [𝑅𝑖] = (𝜇𝑖 , 𝜆𝑖) ∈ 𝐻1 (L;Z) � Z × 𝐺𝜏 (where 𝜇𝑖 ∈ Z is the winding number and 𝜆𝑖 ∈ 𝐺𝜏 is the
monodromy). Given 𝛽′ ∈ 𝐻2 (𝑋, 𝐿;Z) and

�𝜇 = ((𝜇1, 𝜆1), . . . , (𝜇ℎ , 𝜆ℎ)) ∈ 𝐻1 (L;Z)ℎ .

Let M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇) be the moduli space of stable maps of type (𝑔, ℎ), degree 𝛽′, winding
numbers 𝜇𝑖 ∈ Z and monodromies 𝜆𝑖 ∈ 𝐺𝜏 , with n interior marked points.

3.5. The tangent-obstruction complex and the virtual dimension

Similar to [49, Section 4.2], the tangent space T 1
𝜉 and the obstruction space T 2

𝜉 at a moduli point

𝜉 = [𝑢 : ((Σ, 𝑥1, . . . , 𝑥𝑛), 𝜕Σ) → (X ,L)] ∈ M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇)

fit into the following exact sequence of real vector spaces:

0 →Aut((Σ, 𝑥1, . . . , 𝑥𝑛), 𝜕Σ) → 𝐻0(Σ, 𝜕Σ, 𝑢∗𝑇X , (𝑢 |𝜕Σ)∗𝑇L) → T 1
𝜉

→Def((Σ, 𝑥1, . . . , 𝑥𝑛), 𝜕Σ) → 𝐻1 (Σ, 𝜕Σ, 𝑢∗𝑇X , (𝑢 |𝜕Σ)∗𝑇L) → T 2
𝜉 ,

(7)

where

◦ Aut((Σ, 𝑥1, . . . , 𝑥𝑛), 𝜕Σ) is the space of infinitesimal automorphism of the domain
((Σ, 𝑥1, . . . , 𝑥𝑛), 𝜕Σ) and is equal to 𝐻0(Σ, 𝜕Σ, 𝑇Σ (−

∑𝑛
𝑗=1 𝑥 𝑗 ), 𝑇𝜕Σ) when Σ is a smooth bordered

orbifold Riemann surface;
◦ Def ((Σ, 𝑥1, . . . , 𝑥𝑛), 𝜕Σ) is the space of infinitesimal deformations of the domain, and is equal to
𝐻1 (Σ, 𝜕Σ, 𝑇Σ (−

∑𝑛
𝑗=1 𝑥𝑖), 𝑇𝜕Σ) when Σ is a smooth bordered orbifold Riemann surface;

◦ 𝐻0 (Σ, 𝜕Σ, 𝑢∗𝑇X , (𝑢 |𝜕Σ)∗𝑇L) is the space of infinitesimal deformation of the map for a fixed domain;
◦ 𝐻1 (Σ, 𝜕Σ, 𝑢∗𝑇X , (𝑢 |𝜕Σ)∗𝑇L) is the space of obstructions to deforming the map for a fixed domain.

Globally on the moduli space M(𝑔,ℎ) ,𝑛 (X ,L, 𝛽′, �𝜇), there is an exact sequence of sheaves

0 → 𝐵1 → 𝐵2 → T 1 → 𝐵4 → 𝐵5 → T 2 → 0 (8)

whose fibre at the moduli point 𝜉 is equation (7).
Let 𝔐(𝑔,ℎ) ,𝑛 be the moduli of prestable bordered orbifold Riemann surfaces of type (𝑔, ℎ) with n

interior marked point. Then 𝔐(𝑔,ℎ) ,𝑛 is a differentiable stack (with corners) of real dimension

3(2𝑔 − 2 + ℎ) + 2𝑛 = dimR Def ((Σ, 𝑥1, . . . , 𝑥𝑛), 𝜕Σ) − dimR Aut((Σ, 𝑥1, . . . , 𝑥𝑛), 𝜕Σ). (9)

There are evaluation maps (at interior marked points)

ev 𝑗 : M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇) → IX , 𝑗 = 1, . . . , 𝑛.

Given �𝑣 = (𝑣1, . . . , 𝑣𝑛), where 𝑣1, . . . , 𝑣𝑛 ∈ Box(𝚺), define

M(𝑔,ℎ) , �𝑣 (X ,L | 𝛽′, �𝜇) :=
𝑛⋂
𝑗=1

ev−1
𝑗 (X𝑣𝑗 ).

Suppose that 𝜉 ∈ M(𝑔,ℎ) , �𝑣 (X ,L | 𝛽′, �𝜇). By the Riemann-Roch theorem for prestable bordered
orbifold Riemann surface (which can be derived by combining the proof of the Riemann-Roch theorem
for prestable bordered Riemann surfaces and prestable orbifold closed Riemann surfaces),
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dimR 𝐻0 (Σ, 𝜕Σ, 𝑢∗𝑇X , (𝑢 |𝜕Σ)∗𝑇L) − dimR 𝐻1(Σ, 𝜕Σ, 𝑢∗𝑇X , (𝑢 |𝜕Σ)∗𝑇L)

= 3(2 − 2𝑔 − ℎ) − 2
𝑛∑
𝑗=1

age(𝑣 𝑗 ). (10)

The above equation (10) is the relative virtual dimension of M(𝑔,ℎ) , �𝑣 (X ,L | 𝛽′, �𝜇) → 𝔐(𝑔,ℎ) ,𝑛 that
sends a stable map to its domain. The virtual (real) dimension of M(𝑔,ℎ) , �𝑣 (X ,L | 𝛽′, �𝜇) is equal to

dimR T 1
𝜉 − dimR T 2

𝜉 = 2
𝑛∑
𝑗=1

(1 − age(𝑣 𝑗 )),

where age(𝑣 𝑗 ) ∈ {0, 1, 2}.

3.6. Torus action and equivariant invariants

Let T′
R
� 𝑈 (1)2 be the maximal compact subgroup of T′ � (C∗)2. For any 𝑡 ∈ T′

R
, the map 𝜙𝑡 : X → X

given by 𝑥 ↦→ 𝑡 · 𝑥 is an automorphism of the smooth toric DM stack X , and 𝜙𝑡 (L) = L, so T′
R

acts on
the moduli spaces M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇); here we use the notion of group actions on stacks in [65]. Let
𝐹 ⊂ M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇) be the substack of T′

R
fixed points. The restriction of the exact sequence

equation (8) to the substack F is the direct sum of two exact sequences

0 → 𝐵
𝑓
1 → 𝐵

𝑓
2 → T 1, 𝑓 → 𝐵

𝑓
4 → 𝐵

𝑓
5 → T 2, 𝑓 → 0, (11)

0 → 𝐵𝑚1 → 𝐵𝑚2 → T 1,𝑚 → 𝐵𝑚4 → 𝐵𝑚5 → T 2,𝑚 → 0, (12)

where equation (11) is the subcomplex fixed by the torus action. The virtual tangent bundle T vir
𝐹 of F is

T vir
𝐹 = T 1, 𝑓 − T 2, 𝑓

whose ranks can be different on different connected components of F. We will see that each connected
component of F is a compact orbifold and that T vir

𝐹 is equal to the tangent bundle T𝐹 of F. So

[𝐹]vir = [𝐹] .

The virtual normal bundle 𝑁vir of F in M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇) is

𝑁vir = T 1,𝑚 − T 2,𝑚.

Given 𝛾1, . . . , 𝛾𝑛 ∈ 𝐻∗
T′,CR(X ;Q) = 𝐻∗

T′
R
,CR (X ,Q), we define

〈𝛾1, . . . , 𝛾𝑛〉
X ,L,T′

R

𝑔,𝛽′, �𝜇 :=
∫
[𝐹 ]vir

∏𝑛
𝑗=1 (ev∗𝑗𝛾𝑖) |𝐹
𝑒T′
R
(𝑁vir)

∈ QT′
R
, (13)

where QT′
R

is the fractional field of 𝐻∗
T′
R

(point;Q), and

1
𝑒T′
R
(𝑁vir

𝐹 )
=
𝑒T′
R
(T 2,𝑚)

𝑒T′
R
(T 1,𝑚)

=
𝑒T′
R
(𝐵𝑚1 )𝑒T′

R
(𝐵𝑚5 )

𝑒T′
R
(𝐵𝑚2 )𝑒T′

R
(𝐵𝑚4 ) .

More precisely, the definition in equation (13) also requires an orientation on the virtual tangent bundle
T 1 − T 2, which we will specify later.
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3.7. Tangent weights: the 3-torus, the Calabi-Yau 2-torus, and the framing 1-torus

Let 𝔬𝜏 � C∗ × B𝐺𝜏 be the unique 1-dimensional T-orbit that intersects the Aganagic-Vafa A-brane L,
where 𝜏 ∈ Σ(2), as before. Let 𝔩𝜏 be the closure of 𝔬𝜏 , and let ℓ𝜏 be the coarse moduli of 𝔩𝜏 . Then ℓ𝜏 is
either P1 or C.

Definition 3.1. We say L is an inner brane if ℓ𝜏 � P1; we say L is an outer brane if ℓ𝜏 � C.

If L is an outer brane, let 𝜎 ∈ Σ(3) be the unique 3-cone such that (𝜏, 𝜎) ∈ 𝐹 (Σ); if L is an inner
brane, we choose 𝜎 ∈ Σ(3) such that (𝜏, 𝜎) ∈ 𝐹 (Σ), and let 𝜎− ∈ Σ(3) denote the other choice, so that
𝔭𝜎 and 𝔭𝜎− are the two torus fixed points in 𝔩𝜏 . For inner branes, we also denote 𝜎+ = 𝜎.

By permuting 𝑏1, . . . , 𝑏𝑟 if necessary, we may assume that 𝐼 ′𝜎 = {1, 2, 3}, and (𝜏1, 𝜎) = (𝜏, 𝜎),
(𝜏2, 𝜎) and (𝜏3, 𝜎) are three flags in the toric graph in the counterclockwise direction such that

𝐼 ′𝜏1 = {2, 3}, 𝐼 ′𝜏2 = {3, 1}, 𝐼 ′𝜏3 = {1, 2}.

Here we fixed an orientation of R2. If L is an inner brane, we assume in addition 𝐼 ′𝜎− = {2, 3, 4}.
Recall from Section 2.4 that for any flag (𝜏, 𝜎) ∈ 𝐹 (Σ), 𝜒(𝜏,𝜎) ∈ Hom(𝐺𝜎 ,C

∗) is the character of
the 1-dimensional 𝐺𝜎 representation 𝑇𝔭𝜎 𝔩𝜏 . Let

𝔯 := 𝑟 (𝜏, 𝜎) = |𝐺𝜎/𝐺𝜏 |, 𝔪 := |𝐺𝜏/𝐾 |.

Then we have the following two short exact sequences of finite abelian groups:

1 → 𝐺𝜏 −→ 𝐺𝜎

𝜒(𝜏,𝜎)−→ 𝝁𝔯 → 1, 1 → 𝐾 −→ 𝐺𝜏

𝜒(𝜏3 ,𝜎)
−→ 𝝁𝔪 → 1.

Note that for any 𝜆 ∈ 𝐺𝜏 , 𝜒(𝜏,𝜎) (𝜆) = 1 and 𝜒(𝜏2 ,𝜎) (𝜆)𝜒(𝜏3 ,𝜎) (𝜆) = 1. Let �̄� denote the unique element
in {0, 1, . . . ,𝔪 − 1} such that

𝜒3(𝜆) = 𝑒2𝜋
√
−1�̄�/𝔪 .

Let u3 ∈ 𝑀 be defined as in Section 3.1, so that 〈u3, �̄�𝑖〉 = 1. We may choose a Z-basis {v1, v2, v3} of
�̄� such that 〈u3, v𝑖〉 = 𝛿𝑖,3, and

�̄�1 = 𝔯v1 − 𝔰v2 + v3, �̄�2 = 𝔪v2 + v3, �̄�3 = v3.

Moreover, the choice (v1, v2, v3) is unique if we require 𝔰 ∈ {0, 1, . . . , 𝔯 − 1}. Let {u1, u2, u3} be the
Z-basis of M that is dual to the Z-basis {v1, v2, v2} of �̄� . Let {w1,w2,w3} be the Q-basis of 𝑀Q that is
dual to the Q-basis {�̄�1, �̄�2, �̄�3} of 𝑁Q = 𝑁 ⊗Z Q. Then

w1 =
1
𝔯

u1, w2 =
𝔰
𝔯𝔪

u1 +
1
𝔪

u2, w3 = −𝔰 +𝔪
𝔯𝔪

u1 −
1
𝔪

u2 + u3.

Moreover, for 𝑖 ∈ {1, 2, 3},

w𝑖 = 𝑒T (𝑇𝔭𝜎 𝔩𝜏𝑖 ) = 𝑒T (OX (D𝑖))
���
𝔭𝜎

.

The inclusion T′ ⊂ T induces the following surjective ring homomorphism

𝐻∗(BT; 𝑅) = 𝑅[u1, u2, u3] −→ 𝐻∗(BT′; 𝑅) = 𝑅[u′
1, u

′
2], u1 ↦→ u′

1, u2 ↦→ u′
2, u3 ↦→ 0, (14)

where 𝑅 = Z or Q.
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Given a framing that is an integer 𝑓 ∈ Z, let T 𝑓 ⊂ T′ be the kernel of the character u′
2 − 𝑓 u′

1 ∈
Hom(T′;C∗). Then T 𝑓 � C∗ is a 1-dimensional subtorus of the Calabi-Yau torus T′. The inclusion
T 𝑓 ⊂ T′ induces a surjective ring homomorphism

𝐻∗(BT′; 𝑅) = 𝑅[u′
1, u

′
2] −→ 𝐻∗(BT 𝑓 ; 𝑅) = 𝑅[u], u′

1 ↦→ u, u′
2 ↦→ 𝑓 u, (15)

where 𝑅 = Z or Q. For 𝑖 = 1, 2, 3, let w′
𝑖 denote the image of w𝑖 under the ring homomorphism equation

(14), and let w 𝑓
𝑖 denote the image of w′

𝑖 under the ring homomorphism in (15). Then

w′
1 =

1
𝔯

u′
1, w′

2 =
𝔰
𝔯𝔪

u′
1 +

1
𝔪

u′
2, w′

3 = −𝔰 +𝔪
𝔯𝔪

u′
1 −

1
𝔪

u′
2 = −w′

1 − w′
2 ∈ 𝐻2 (BT′) = Qu′

1 ⊕ Qu′
2, (16)

and w 𝑓
𝑖 = 𝑤𝑖u, where 𝑤𝑖 ∈ Q are given by

𝑤1 =
1
𝔯
, 𝑤2 =

𝔰 + 𝔯 𝑓
𝔯𝔪

, 𝑤3 = −𝑤1 − 𝑤2 =
−𝔪 − 𝔰 − 𝔯 𝑓

𝔯𝔪
.

3.8. Disk factors as equivariant open GW invariants

A framed Aganagic-Vafa Lagrangian brane is a pair (L, 𝑓 ), where L is an Aganagic-Vafa brane together
with a choice of a flag (𝜏, 𝜎) ∈ 𝐹 (Σ) such that 𝔬𝜏 is the unique 1-dimensional orbit intersecting L
and a choice of framing 𝑓 ∈ Z. Given a framed Aganagic-Vafa Lagrangian brane (L, 𝑓 ), we choose an
isomorphism 𝜋1 (L) � Z×𝐺𝜏 such that if ℎ = 𝜄(𝜏,𝜎)

∗ (𝑑0, 𝜆) (where 𝜄(𝜏,𝜎)
∗ is defined in Section 3.3); then

𝜒(𝜏1 ,𝜎) (ℎ) = 𝑒2𝜋
√
−1𝑑0𝑤1 , 𝜒(𝜏2 ,𝜎) (ℎ) = 𝑒2𝜋

√
−1𝑑0 (𝑤2− �̄�

𝔪 ) , 𝜒(𝜏3 ,𝜎) (ℎ) = 𝑒2𝜋
√
−1𝑑0 (𝑤3+ �̄�

𝔪 ) .

Let ℓ𝜏 be the coarse moduli of 𝔩𝜏 , as before. Let 𝑝𝜎 ∈ ℓ𝜏 be the coarse moduli of 𝔭𝜎 � B𝐺𝜎 , and let
𝑆𝜏 := 𝐿 ∩ ℓ𝜏 � 𝑆1 be the coarse moduli of S𝜏 = L ∩ 𝔩𝜏 � 𝑆1 × B𝐺𝜏 .

3.8.1. (L, 𝑓 ) is a framed outer brane
In this case ℓ𝜏 = C. Let 𝐷 ⊂ ℓ𝜏 be the disk that contains 𝑝𝜎 with boundary 𝑆𝜏 , oriented by the complex
structure on ℓ𝜏 , and let 𝑏 = [𝐷] ∈ 𝐻2(𝑋, 𝐿;Z). Given (𝑑0, 𝜆) ∈ 𝐻1(L;Z) � Z × 𝐺𝜏 , where 𝑑0 > 0,
define

M(𝑑0, 𝜆) := M(0,1) ,1 (X ,L | 𝑑0𝑏, (𝑑0, 𝜆)).

The virtual real dimension of M(𝑑0, 𝜆) is 2(1− age(ℎ(𝑑0, 𝜆))), where ℎ(𝑑0, 𝜆) := 𝜄(𝜏,𝜎)
∗ (𝑑0, 𝜆) ∈ 𝐺𝜎 .

Define the disk factor

𝐷𝑑0 ,𝜆 := 〈1ℎ (𝑑0 ,𝜆) 〉
X ,L,T′

R

0,𝑑0𝑏, (𝑑0 ,𝜆) ,

which is a rational function in w′
1,w

′
2, homogeneous of degree age(ℎ(𝑑0, 𝜆)) − 1. The disk factor is

computed in [11] when𝐺𝜎 is cyclic and in [66, Section 3.3] for general𝐺𝜎 . In our notation, the formula
in [66, Section 3.3] says2

𝐷𝑑0 ,𝜆 =

(
𝔯w′

1
𝑑0

)age(ℎ (𝑑0 ,𝜆))−1 1
𝑑0 |𝐺𝜏 |

·

∏ � 𝑑0
𝔯 �+age(ℎ (𝑑0 ,𝜆))−1

𝑎=1

(
𝑑0w′

2
𝔯w′

1
+ 𝑎 − 𝑐2 (ℎ(𝑑0, 𝜆))

)
� 𝑑0

𝔯 �!
, (17)

2The disk function in [66, Section 3.3] and our disk factor are the same when ℎ (𝑑0, 𝜆) ≠ 0. When ℎ (𝑑0, 𝜆) = 0, the
disk function is 〈 〉X ,L

... (no insertion), while the disk factor is 〈1〉X ,L
... (one insertion of 1), so there is an additional factor of

( 𝔯
w1

) 𝛿0,ℎ (𝑑0 ,𝜆) in the disk function in [66, Section 3.3].
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where 𝑐𝑖 (·) ∈ Q ∩ [0, 1) is defined in Section 2.7. More explicitly,

𝑐2 (ℎ(𝑑0, 𝜆)) =
〈
𝑑0𝑤2 −

�̄�

𝔪

〉
.

3.8.2. (L, 𝑓 ) is a framed inner brane
In this case ℓ𝜏 � P1. It contains two torus fixed points 𝑝+ = 𝑝𝜎 and 𝑝− = 𝑝𝜎− , where 𝜎− ∈ Σ(3). The
circle 𝑆𝜏 is the intersection of two disks 𝐷+ and 𝐷− that contain 𝑝+ and 𝑝−, respectively. Let

𝑏 = [𝐷] ∈ 𝐻2 (𝑋, 𝐿;Z), 𝛼 = [ℓ𝜏] ∈ 𝐻2 (𝑋;Z).

Then [𝐷−] = 𝛼 − 𝑏 ∈ 𝐻2(𝑋, 𝐿;Z). Given (𝑑0, 𝜆) ∈ 𝐻1 (L;Z) � Z × 𝐺𝜏 , where 𝑑0 ≠ 0, we define

M(𝑑0, 𝜆) :=

{
M(0,1) ,1 (X ,L | 𝑑0𝑏, (𝑑0, 𝜆)), 𝑑0 > 0,
M(0,1) ,1 (X ,L | −𝑑0(𝛼 − 𝑏), (𝑑0, 𝜆)), 𝑑0 < 0.

Then

virtual dimension of M(𝑑0, 𝜆) =
{

1 − age(ℎ+(𝑑0, 𝜆)), 𝑑0 > 0,
1 − age(ℎ−(𝑑0, 𝜆)), 𝑑0 < 0,

where ℎ±(𝑑0, 𝜆) = 𝜄(𝜏,𝜎±)
∗ (𝑑0, 𝜆) ∈ 𝐺𝜎± . Define

𝐷𝑑0 ,𝜆 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈1ℎ+ (𝑑0 ,𝜆) 〉

X ,L,T′
R

0,𝑑0𝑏, (𝑑0 ,𝜆) , 𝑑0 > 0,

〈1ℎ− (𝑑0 ,𝜆) 〉
X ,L,T′

R

0,−𝑑0 (𝛼−𝑏) , (𝑑0 ,𝜆) , 𝑑0 < 0.
.

Then 𝐷𝑑0 ,𝜆 is a rational function in u′
1, u

′
2, homogeneous of degree age(ℎ±(𝑑0, 𝜆)) − 1 if ±𝑑0 > 0.

More precisely, the disk factor 𝐷𝑑0 ,𝜆 is defined up to a sign depending on choice of orientation of
M(𝑑0, 𝜆), which will be clarified in Section 3.11 by relative GW invariants.

3.9. Normal bundle to 𝔩𝜏

Let L be an inner brane so that 𝔩𝜏 is a proper smooth toric DM curve. Let 𝔩𝜏 be the image of 𝔩𝜏 under
the morphism X → X rig. We have

𝔩𝜏 −→ 𝔩𝜏 −→ 𝔩rig𝜏 −→ ℓ𝜏 � P1,

where 𝔩𝜏 → 𝔩𝜏 is a K-banded gerbe, 𝔩𝜏 → 𝔩rig𝜏 is a 𝝁𝔪-banded gerbe and 𝔩𝜏 → 𝔩rig𝜏 is a 𝐺𝜏-banded
gerbe. The normal bundle 𝔩𝜏 in X is a direct sum of two T-equivariant line bundles over 𝔩𝜏 :

𝑁𝔩𝜏/X = 𝐿2 ⊕ 𝐿3,

where 𝐿2 = OX (D2)
��
𝔩𝜏

and 𝐿3 = OX (D3)
��
𝔩𝜏

. The total space of 𝑁𝔩𝜏/X is a smooth toric DM stack that
is isomorphic to the open substack Y := X𝜎 ∪ X𝜎− of X . Let D̂𝑖 be the image of D𝑖 under X → X rig.
Then

𝑁𝔩𝜏/X rig = �̂�2 ⊕ �̂�3,
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where �̂�2 = OX rig (D̂2)
��
𝔩𝜏

and �̂�3 = OX rig (D̂3)
��
𝔩𝜏

. The total space of 𝑁𝔩𝜏/X rig is a toric orbifold that is
isomorphic to the open substack Y rig = X rig

𝜎 ∪ X rig
𝜎− of the toric orbifold X rig.

Let Σ0 be the simplicial fan in 𝑁R consisting of 𝜎, 𝜎− and their subcones. The stacky fan of Y rig is
given by (Σ0, (�̄�1, �̄�2, �̄�3, �̄�4)), where

�̄�1 = 𝔯v1 − 𝔰v2 + v3, �̄�2 = 𝔪v2 + v3, �̄�3 = v3, �̄�4 = −𝔯−v1 + 𝑐v2 + v3,

where c is some integer. For inner branes, we also denote 𝔯+ = 𝔯. We have Y = [𝑈/𝐺0], where

𝑈 = {(𝑍1, 𝑍2, 𝑍3, 𝑍4) ∈ C4 : (𝑍1, 𝑍4) ≠ (0, 0)},
𝐺0 = {(𝑡1, 𝑡2, 𝑡3, 𝑡4) ∈ (C∗)4 : 𝑡𝔯1(𝑡4)

−𝔯− = (𝑡1)−𝔰𝑡𝔪2 𝑡
𝑐
4 = 𝑡1𝑡2𝑡3𝑡4 = 1}.

We have a short exact sequence of abelian groups:

1 → 𝝁𝔪 −→ 𝐺0
𝜒1×𝜒4−→ 𝐺𝔯,𝔯− → 1,

where 𝐺𝔯,𝔯− = {(𝑡1, 𝑡4) ∈ (C∗)2 : 𝑡𝔯1(𝑡4)
−𝔯− = 1} and 𝜒𝑖 (𝑡1, 𝑡2, 𝑡3, 𝑡4) = 𝑡𝑖 . The subgroup 𝝁𝔪 of 𝐺0

acts trivially on 𝑉 = {(𝑍1, 𝑍2, 𝑍3, 𝑍4) ∈ 𝑈A : 𝑍2 = 𝑍3 = 0}, so the 𝐺0-action on V factors through a
𝐺𝔯,𝔯− -action on V, and

𝔩𝜏 = [𝑉/𝐺0], 𝔩rig𝜏 = [𝑉/𝐺𝔯,𝔯−] � F𝔯,𝔯− ,

where F𝔯,𝔯− denotes the football obtained by glueing [C/𝝁𝔯] and [C/𝝁𝔯−] along [C∗/𝝁𝔯] � [C∗/𝝁𝔯−] �
C∗. The two torus fixed points in 𝔩rig𝜏 are

𝔭𝑥 = [({(0, 0, 0)} × C∗)/𝐺𝔯,𝔯−] � B𝝁𝔯 , 𝔭𝑦 = [(C∗ × {(0, 0, 0)})/𝐺𝔯,𝔯−] � B𝝁𝔯− ,

and 𝔩rig𝜏 −{𝔭𝑥 ,𝔭𝑦} � C∗. We have a surjective group homomorphism Z⊕Z→ Pic(𝔩rig𝜏 ) sending (𝑛𝑥 , 𝑛𝑦)
to O𝔩rig𝜏

(𝑛𝑥𝔭𝑥 + 𝑛𝑦𝔭𝑦); the kernel is Z(𝔯,−𝔯−).
Let O(−1) denote the tautological line bundle over BC∗ associated with the fundamental represen-

tation C∗ → 𝐺𝐿(1,C), 𝑡 ↦→ 𝑡. Given a line bundle L over a DM stack Z and a positive integer 𝔪, let
𝔪
√
𝐿/Z denote the following fibre product (compare to [14, Definition 2.2.6]):

𝔪
√
𝐿/Z = Z ×BC∗ BC∗

𝑝2−−−−−−→ BC∗

𝑝1
⏐⏐� ⏐⏐�⊗𝔪

Z 𝜙𝐿−−−−−−→ BC∗

where the morphism 𝜙𝐿 : Z −→ BC∗ is defined by L (so that 𝜙∗𝐿O(−1) = 𝐿), and BC∗ → BC∗ is
induced by the 𝔪th power map from C∗ to itself. Then 𝑝1 : 𝔪

√
𝐿/Z → Z is a 𝝁𝔪-banded gerbe. Let

𝔪
√
𝐿 := 𝑝∗2O(−1) ∈ Pic( 𝔪

√
𝐿/Z). Then ( 𝔪

√
𝐿)⊗𝔪 = 𝑝∗1𝐿: that is, 𝔪

√
𝐿 is an 𝔪th root of 𝑝∗1𝐿.

It is straightforward to check that

◦ 𝔩𝜏 is isomorphic to 𝔪
√
O𝔩rig𝜏

(𝔰𝔭𝑥 − 𝑐𝔭𝑦)/𝔩rig𝜏 as a 𝝁𝔪-banded gerbe over 𝔩rig𝜏 � F𝔯,𝔯− , and

◦ �̂�2 � 𝔪

√
O𝔩rig𝜏

(𝔰𝔭𝑥 − 𝑐𝔭𝑦), �̂�3 = �̂�−1
2 ⊗ 𝑝∗1O𝔩rig𝜏

(−𝔭𝑥 − 𝔭𝑦), where 𝑝1 : 𝔩𝜏 → 𝔩rig𝜏 and O𝔩rig𝜏
(−𝔭𝑥 − 𝔭𝑦)

is the cotangent bundle of 𝔩rig𝜏 .
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3.10. Degeneration

Let Σ1 = {{0},R≥0v1,R≥0 (−v1)} be the complete 1-dimensional fan in Rv1 � R, and let Σ2 =
{{0},R≥0v4,R≥0(−v4)} be the complete 1-dimensional fan in Rv4 � R. Then 𝑋Σ1 = 𝑋Σ2 = P1. The
stacky fan (Σ1, (𝔯v1,−𝔯−v1)) defines the 1-dimensional toric orbifold F𝔯,−𝔯− , and the stacky fan

𝚺� = (Σ1 × Σ2, (𝑏′1 = 𝔯v1, 𝑏
′
2 = −𝔯−v1, 𝑏

′
3 = v4, 𝑏

′
4 = −v4))

defines the 2-dimensional toric orbifold F𝔯,𝔯− × P1. The 1-dimensional cones in the fan Σ1 × Σ2 are
{𝜌𝑖 = R≥0𝑏

′
𝑖 : 1 ≤ 𝑖 ≤ 4}. Let Σ′ be the fan obtained by adding a 1-dimensional cone 𝜌5 = R≥0𝑏

′
5,

where 𝑏′5 = −v1 − v4. Let S ′ be the 2-dimensional toric orbifold defined by the stacky fan 𝚺′ =
(Σ′, (𝑏′1, 𝑏

′
2, 𝑏

′
3, 𝑏

′
4, 𝑏

′
5)), and let 𝔩 ′𝑖 = V (𝜌𝑖) ⊂ S ′ be 1-dimensional closed toric substack associated

with the ray 𝜌𝑖 . The morphism 𝚺′ → 𝚺� of stacky fans induces a morphism 𝜈 : S ′ → F𝔯,𝔯− × P1 of
toric orbifolds; 𝜈 contracts the divisor 𝔩 ′5 to the torus fixed point [0, 1] × [0, 1] � B𝝁𝔯− in F𝔯,𝔯− × P1.
Let 𝑝 : F𝔯,𝔯− × P1 → P1 be the projection to the second factor. The composition 𝜋′ := 𝑝 ◦ 𝜈 is a flat
morphism, and

(𝜋′)−1([0, 1]) = 𝔩 ′3, (𝜋′)−1([1, 0]) = 𝔩 ′4 ∪ 𝔩 ′5,

where 𝔩 ′3 � F𝔯,𝔯− , 𝔩 ′4 � F𝔯,1, and 𝔩 ′5 � F1,𝔯− . The torus fixed points in S ′ are

𝔭0
𝑥 = 𝔩 ′1 ∩ 𝔩 ′3 � B𝝁𝔯 , 𝔭

0
𝑦 = 𝔩 ′2 ∩ 𝔩 ′3 � B𝝁𝔯− , 𝔭

∞
𝑥 = 𝔩 ′1 ∩ 𝔩 ′4 � B𝝁𝔯 , 𝔭

∞
𝑦 = 𝔩 ′2 ∩ 𝔩 ′5 � B𝝁𝔯− , 𝑝𝑧 = 𝔩 ′4 ∩ 𝔩 ′5,

where 𝑝𝑧 is a scheme point.
Given any 𝑓 ∈ Z, define

Ŝ = 𝔪
√
OS′ (𝔰𝔩 ′1 − 𝑐𝔩

′
2 + 𝑓 𝔩 ′5)/S ′,

which is a 𝝁𝔪-banded gerbe over S ′, and let 𝑞 : Ŝ → S ′ = S rig be the morphism to the rigidification.
Define 𝜋 := 𝑞 ◦𝜋′ : S → P1, and let 𝔩𝑖 ⊂ S be the divisor that corresponds to 𝔩 ′𝑖 ⊂ S ′ under 𝑞 : Ŝ → S ′.
Then 𝑞𝑖 := 𝑞 |𝔩𝑖 : 𝔩𝑖 → 𝔩 ′𝑖 = 𝔩rig𝑖 is a 𝝁𝔪-banded gerbe. We have

𝜋−1 ([0, 1]) = 𝔩3 � 𝔩𝜏 𝜋−1 ([1, 0]) = 𝔩4 ∪ 𝔩5.

Define �̃�2, �̃�3 ∈ Pic(Ŝ) by

�̃�2 := 𝔪
√
OS′ (𝔰𝔩 ′1 − 𝑐𝔩

′
2 + 𝑓 𝔩 ′5) �̃�3 := �̃�−1

2 ⊗ 𝑞∗OS′ (−𝔩 ′1 − 𝔩 ′2).

Then

�̃�2
��
𝔩3
= 𝔪

√
O𝔩′3

(𝔰𝔭0
𝑥 − 𝑐𝔭0

𝑦) � �̂�2, �̃�3
��
𝔩3
= 𝔪

√
O𝔩′3

(−𝔰𝔭0
𝑥 + 𝑐𝔭0

𝑦) ⊗ 𝑞∗3O𝔩′3
(−𝔭0

𝑥 − 𝔭0
𝑦) � �̂�3.

For 𝑖 ∈ {2, 3}, define �̂�+𝑖 = �̃�𝑖
��
𝔩4

and �̂�−𝑖 = �̃�𝑖
��
𝔩5

. Then

�̂�+2 = 𝔪

√
O𝔩′4

(𝔰𝔭∞𝑥 + 𝑓 𝑝𝑧), �̂�+3 = 𝔪

√
O𝔩′4

(−𝔰𝔭∞𝑥 − 𝑓 𝑝𝑧) ⊗ 𝑞∗4O𝔩′4
(−𝔭∞𝑥 ),

�̂�−2 = 𝔪

√
O𝔩′5

(−𝑐𝔭∞𝑦 − 𝑓 𝑝𝑧), �̂�−3 = 𝔪

√
O𝔩′5

(𝑐𝔭∞𝑦 + 𝑓 𝑝𝑧) ⊗ 𝑞∗5O𝔩′5
(−𝔭∞𝑦 ).

To summarise:

◦ Ŝ is a degeneration from 𝔩𝜏 to a nodal DM curve 𝔩4 ∪ 𝔩5, and S ′ = Ŝ rig is a degeneration from the
football 𝔩rig𝜏 � F𝔯,𝔯− to the nodal DM curve 𝔩 ′4 ∪ 𝔩 ′5.
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◦ For 𝑖 = 2, 3, the line bundle �̃�𝑖 on Ŝ defines a degeneration of the line bundle �̂�𝑖 → 𝔩𝜏 to a line
bundle on 𝔩4 ∪ 𝔩5 that restricts to �̂�+𝑖 on 𝔩4 and �̂�−𝑖 on 𝔩5.

◦ Ŝ , �̃�𝑖 , 𝔩4, 𝔩5, and �̂�±𝑖 depend on f, while S ′, 𝔩 ′4 and 𝔩 ′5 do not.

Moreover, the total space of �̃�2 ⊕ �̃�3 → Ŝ is a 4-dimensional toric orbifold Ŵ defined by a stacky fan

(Σ 𝑓 , (�̄�1, �̄�2, �̄�3, �̄�4, v4,−v4,−v1 − 𝑓 v2 − v4)), (18)

where Σ 𝑓 is a simplicial fan in
⊕4

𝑖=1 Rv𝑖 , and (�̄�1, . . . ,−v1 − 𝑓 v2 − v4) is a 7-tuple of vectors in
�̄� ⊕ Zv4 � Z4. Let W be the 4-dimensional smooth toric DM stack defined by the the stacky fan

(Σ 𝑓 , (𝑏1, 𝑏2, 𝑏3, 𝑏4, v4,−v4,−ṽ1 − 𝑓 ṽ2 − v4)), (19)

where ṽ1, ṽ2 ∈ 𝑁 are lifts of v1, v2 ∈ �̄� , so that (𝑏1, . . . ,−ṽ1 − 𝑓 ṽ2 − v4) is a 7-tuple of elements in
𝑁 ⊕ Zv4. Then W is a K-banded gerbe over Ŵ = W rig and is a degeneration from the total space Y of
𝑁𝔩𝜏/X to the total space Y∞ of a direct sum 𝐿∞2 ⊕ 𝐿∞3 of line bundles over a nodal DM curve 𝔩+ ∪ 𝔩−;
𝔩+ ∪ 𝔩− is a K-banded gerbe over 𝔩4 ∪ 𝔩5 and a 𝐺𝜏-banded gerbe over 𝔩 ′4 ∪ 𝔩 ′5. For 𝑖 = 2, 3, let 𝐿±𝑖 = 𝐿∞𝑖 |𝔩± .
Then 𝐿±𝑖 is the pullback of �̂�±𝑖 . Let 𝔭0 � B𝐺𝜏 be the node that is the intersection of 𝔩+ and 𝔩−, and let
𝔭± be the unique torus fixed point in 𝔩± − {𝔭0}. Then 𝔭+ � B𝐺𝜎 and 𝔭− � B𝐺𝜎− . Define T′ weights

w±
1 := (𝑐1)T′ (𝑇𝔭± 𝔩±), w±

2 := (𝑐1)T′ (𝐿2) |𝔭± , w±
3 := (𝑐1)T′ (𝐿3) |𝔭± ∈ 𝐻2(BT′) = Qu′

1 ⊕ Qu′
2.

Then w+
𝑖 = w′

𝑖 is given by equation (16), w±
1 + w±

2 + w±
3 = 0, and

w−
1 = − 1

𝔯−
u′

1, w−
2 =

𝑐

𝔯−𝔪
u′

1 +
1
𝔪

u′
2, w−

3 =
−𝑐 +𝔪
𝔯−𝔪

u′
1 −

1
𝔪

u′
2. (20)

We also have

(𝑐1)T′ (𝑇𝔭0 𝔩±) = ∓u′
1, (𝑐1)T′ (𝐿±2 )𝔭0 =

u′
2 − 𝑓 u′

1
𝔪

= −(𝑐1)T′ (𝐿±3 )𝔭0 .

The above weights are summarised in Figure 7 below.

Figure 7. Degenerated 𝑁𝔩𝜏/X and the T′-weights.
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3.11. Disk factors as equivariant relative GW invariants

When 𝑑0 > 0, let M0,1 (𝔩+/𝔭0, (𝑑0, 𝜆)) be the moduli space of relative maps to (𝔩+,𝔭0) with the relative
condition (𝑑0, 𝜆), where 𝜆 ∈ 𝐺𝜏 [1]. A relative stable map to (𝔩+,𝔭0) is a morphism to 𝔩+[𝑚] that is the
union of 𝔩+ and a chain of m copies of P1 × B𝐺𝜆. Let M0,1 (𝔩+/𝔭0, (𝑑0, 𝜆)) ⊂ M0,1 (𝔩+/𝔭0, (𝑑0, 𝜆)) be
the open substack where the target is 𝔩+[0] = 𝔩+. The tangent space T 1

𝜉 and the obstruction space T 2
𝜉 at

a moduli point 𝜉 = [𝑢 : (C, 𝑥, 𝑦) → (𝔩+,𝔭0)] in M0,1 (𝔩+/𝔭0, (𝑑0, 𝜆)) (where 𝑢−1(𝔭0) = 𝑑0𝑦 as Cartier
divisors) fit into the following exact sequence of complex vector spaces:

0 →Ext0 (ΩC (𝑥 + 𝑦),OC) → 𝐻0 (C, 𝑢∗(𝑇𝔩+ (−𝔭0)) → T 1
𝜉

→Ext1 (ΩC (𝑥 + 𝑦),OC) → 𝐻1 (C, 𝑢∗(𝑇𝔩+ (−𝔭0)) → T 2
𝜉 .

(21)

Globally on M0,1 (𝔩+/𝔭0, (𝑑0, 𝜆)), there is an exact sequence of sheaves

0 → 𝐵1 → 𝐵2 → T 1 → 𝐵4 → 𝐵5 → T 2 → 0 (22)

whose fibre at the moduli point 𝜉 is equation (21).
Let 𝜋 : U+ → M0,1 (𝔩+/𝔭0, (𝑑0, 𝜆)) be the universal domain curve, and let 𝐹+ : U+ → 𝔩+ be the

evaluation map. We define

𝑉+
0,1 := 𝑅•𝜋∗𝐹

∗
+ (𝐿+2 ⊕ 𝐿+3) ∈ 𝐾T′

(
M0,1 (𝔩+/𝔭0, (𝑑0, 𝜆))

)
,

where 𝑅•𝜋∗ is the K-theoretic push-forward.
For 𝑑0 > 0, we define

𝐷𝑑0 ,𝜆 = 〈1ℎ+ (𝑑0 ,𝜆) 〉
X ,L,𝑇 ′

R

0,𝑑0𝑏, (𝑑0 ,𝜆)

=
∫
[M0,1 (𝔩+ ,𝔭0 , (𝑑0 ,𝜆)) ]vir

ev∗(1ℎ+ (𝑑0 ,𝜆) )𝑒T′ (𝑉+
0,1).

When 𝑑0 < 0, letM0,1 (𝔩−/𝔭0, (−𝑑0, 𝜆
−1)) be the moduli space of relative stable maps to (𝔩−,𝔭0) with

relative condition (−𝑑0, 𝜆
−1), and let M0,1 (𝔩−/𝔭0, (−𝑑0, 𝜆

−1)) be the open substack where the target is
𝔩−. Let 𝜋 : U− → M0,1 (𝔩−/𝔭0, (−𝑑0, 𝜆

−1)) be the universal domain curve, and let 𝐹− : U− → 𝔩− be the
evaluation map. We define

𝑉−
0,1 = 𝑅•𝜋∗𝐹

∗
−(𝐿−2 ⊕ 𝐿−3 ) ∈ 𝐾T′

(
M0,1 (𝔩−/𝔭0, (−𝑑0, 𝜆

−1))
)

and define

𝐷𝑑0 ,𝜆 = 〈1ℎ− (𝑑0 ,𝜆) 〉
X ,L,𝑇 ′

R

0,−𝑑0 (𝛼−𝑏) , (𝑑0 ,𝜆))

=
∫
[M0,1 (𝔩− ,𝔭0 , (−𝑑0 ,𝜆−1)) ]vir

ev∗(1ℎ− (𝑑0 ,𝜆) )𝑒T′ (𝑉−
0,1).

Let 𝑢 : (C, 𝑥, 𝑦) → 𝔩+ be a relative stable map that represents a point in M. Suppose that u is fixed
by the torus action. Recall that 𝑐𝑖 : 𝐺𝜎 → [0, 1) ∩ Q is defined by 𝜒𝑖 (𝑘) = exp(2𝜋

√
−1𝑐𝑖 (𝑘)). In the

computation below, let 𝑘± = ℎ±(𝑑0, 𝜆). For 𝑗 = 1, 2, 3, let 𝜖 𝑗 = 𝑐 𝑗 (𝑘+). Then 𝜖1 = 〈 𝑑0
𝔯+
〉. We have the

following weights
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chT′
(
𝐻0(C, 𝑢∗𝐿+1)

)
=

�𝑑0𝑤1 �∑
𝑎=0

𝑒
𝑎

u′1
𝑑0 , chT′

(
𝐻1(C, 𝑢∗𝐿+1)

)
= 0,

chT′
(
𝐻0 (C, 𝑢∗𝐿+2 ⊗ O𝑦)

)
= 𝛿 〈𝑑0𝑤2−𝜖2 〉,0𝑒

u′2− 𝑓 u′1
𝔪 , chT′

(
𝐻1(C, 𝑢∗𝐿+2 ⊗ O𝑦)

)
= 0,

chT′
(
𝐻0(C, 𝑢∗𝐿+2)

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0∑

𝑎=−�𝑑0𝑤2−𝜖2 �
𝑒

w′
2+(𝑎−𝜖2)

u′1
𝑑0 , 𝑓 ≥ 0,

0, 𝑓 < 0,

chT′
(
𝐻1(C, 𝑢∗𝐿+2)

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝑓 ≥ 0,
−�𝑑0𝑤2−𝜖2 �−1∑

𝑎=1
𝑒

w′
2+(𝑎−𝜖2)

u′1
𝑑0 , 𝑓 < 0

chT′
(
𝐻0(C, 𝑢∗𝐿+3)

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0∑

𝑎=−�𝑑0𝑤3−𝜖3 �
𝑒

w′
3+(𝑎−𝜖3)

u′1
𝑑0 , 𝑓 < 0,

0, 𝑓 ≥ 0,

chT′
(
𝐻1(C, 𝑢∗𝐿+3)

)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝑓 < 0,
−�𝑑0𝑤3−𝜖3 �−1∑

𝑎=1
𝑒

w′
3+(𝑎−𝜖3)

u′1
𝑑0 , 𝑓 ≥ 0.

and the following identities

0∑
𝑎=−�𝑤3𝑑0−𝜖3 �

𝑒
w′

3+(𝑎−𝜖3)
u′1
𝑑0 =

−�𝑑0𝑤2−𝜖2 �−1+𝛿〈𝑑0𝑤2−𝜖2〉,0∑
𝑎=𝑑0𝑤1+𝜖2+𝜖3

𝑒
−w′

2+(𝜖2−𝑎)
u′1
𝑑0

−�𝑤3𝑑0+1−𝜖3 �∑
𝑎=1

𝑒
w′

3+(𝑎−𝜖3)
u′1
𝑑0 =

𝑑0
𝑠+1

+𝜖2+𝜖3−1∑
𝑎=−�𝑑0𝑤2−𝜖2 �+𝛿〈𝑑0𝑤2−𝜖2〉

𝑒
−w′

2+(𝜖2−𝑎)
u′1
𝑑0

𝑑0𝑤1 + 𝜖2 + 𝜖3 =

⌊
𝑑0
𝑠+1

⌋
+ age(𝑘+).

The T′-equivariant Euler classes are

𝑒T′ (𝐵𝑚1 ) = 1,

𝑒T′ (𝐵𝑚2 ) = �𝑑0𝑤1�!
( u′

1
𝑑0

) �𝑑0𝑤1 �
,

𝑒T′ (𝐵𝑚5 )
𝑒T′ (𝐵𝑚4 ) = (−1) �𝑑0𝑤2−𝜖2 �+�𝑑0𝑤1 �+age(𝑘+)−1

�𝑑0𝑤1 �+age(𝑘+)−1∏
𝑎=1

(
w′

2 + (𝑎 − 𝜖2)
u′

1
𝑑0

)
.
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Since |Aut( 𝑓 ) | = 𝑑0 |𝐺𝜏 |, by localisation,

𝐷𝑑0 ,𝜆 = 𝐷 (𝑑0, 𝑘
+, 𝑘−) = 1

|Aut( 𝑓 ) |
𝑒T′ (𝐵𝑚1 )𝑒T′ (𝐵𝑚5 )
𝑒T′ (𝐵𝑚2 )𝑒T′ (𝐵𝑚4 )

=
1

𝑑0 |𝐺𝜏 |

∏ �𝑑0𝑤1 �+age(𝑘+)−1
𝑎=1 (w′

2 + (𝑎 − 𝜖2)
u′1
𝑑0
)

�𝑑0𝑤1�!(
u′1
𝑑0
) �𝑑0𝑤1 �

· (−1) �𝑑0𝑤2−𝜖2 �+�𝑑0𝑤1 �+age(𝑘+)−1

=(−1) �𝑑0𝑤2−𝜖2 �+�𝑑0𝑤1 �+age(𝑘+)−1
( u′

1
𝑑0

)age(𝑘+)−1
· 1
𝑑0 |𝐺𝜏 |

∏ �𝑑0𝑤1 �+age(𝑘+)−1
𝑎=1 ( 𝑑0w′

2
𝑠+1 w′

1
+ 𝑎 − 𝜖2)

�𝑑0𝑤1�!

= − (−1) �𝑑0𝑤3+ �̄�
𝔪 �

( u′
1
𝑑0

)age(𝑘+)−1
· 1
𝑑0 |𝐺𝜏 |

∏ �𝑑0𝑤1 �+age(𝑘+)−1
𝑎=1 ( 𝑑0w′

2
𝑠+1 w′

1
+ 𝑎 − 𝜖2)

�𝑑0𝑤1�!

Let u := 𝜄∗𝑓 u′
1 ∈ 𝐻2 (T 𝑓 ;Z). Then 𝐻∗(T 𝑓 ;Q) = Q[u] and 𝜄∗𝑓 u′

2 = 𝑓 u. Define 𝐷𝑑0 ,𝜆, 𝑓 = 𝜄∗𝑓 𝐷𝑑0 ,𝜆.
Hence when 𝑑0 > 0,

𝐷𝑑0 ,𝜆, 𝑓

= −(−1) �𝑑0𝑤3+ �̄�
𝔪 �

(
u
𝑑0

)age(ℎ+ (𝑑0 ,𝜆))−1
· 1
𝑑0 |𝐺𝜏 |

∏ �𝑑0𝑤1 �+age(ℎ+ (𝑑0 ,𝜆))−1
𝑎=1 (𝑑0𝑤2 + 𝑎 − 𝑐2 (ℎ+(𝑑0, 𝜆))

�𝑑0𝑤1�!
.

If 𝑑0 < 0, similar computation shows (notice 𝜆−1 = (1 − 𝛿�̄�,0) (𝔪 − �̄�) ∈ {0, . . . ,𝔪 − 1})

𝐷𝑑0 ,𝜆, 𝑓 = −(−1) �𝑑0𝑤
−
2 +

(
1− �̄�

𝑚−𝛿�̄�,0
)
�
(

u
𝑑0

)age(ℎ− (𝑑0 ,𝜆))−1

· 1
−𝑑0 |𝐺𝜏 |

∏ �𝑑0𝑤
−
1 �+age(ℎ− (𝑑0 ,𝜆))−1

𝑎=1 (𝑑0𝑤
−
3 − 𝑐3 (ℎ−(𝑑0, 𝜆)) + 𝑎)

�𝑑0𝑤
−
1 �!

.

If L is an outer brane, it is the same as 𝑑0 > 0. Define

𝐷𝑑0 ,𝜆, 𝑓 = −(−1) �𝑑0𝑤3+ �̄�
𝔪 � ( u

𝑑0

)age(ℎ (𝑑0 ,𝜆))−1 · 1
𝑑0 |𝐺𝜏 |

∏ �𝑑0𝑤1 �+age(ℎ (𝑑0 ,𝜆))−1
𝑎=1 (𝑑0𝑤2 + 𝑎 − 𝑐2 (ℎ(𝑑0, 𝜆))

�𝑑0𝑤1�!
.

3.12. Open-closed GW invariants and descendant GW invariants

For any torus fixed point 𝔭𝜎 of X , where 𝜎 ∈ Σ(3), we have

𝐻∗
CR (𝔭𝜎) =

⊕
𝑘∈𝐺𝜎

Q1𝑘 , 𝐻∗
CR,T′ (𝔭𝜎) =

⊕
𝑘∈𝐺𝜎

Q[w′
1,w

′
2]1𝑘 .

The inclusion 𝜄𝜎 : 𝔭𝜎 ↩→ X induces

𝜄𝜎∗ : 𝐻∗
CR,T′ (𝔭𝜎) = 𝐻

∗
T′ (I𝔭𝜎) → 𝐻∗

CR,T′ (X ) = 𝐻∗
T′ (IX ).

Define

𝜙𝜎,𝑘 = 𝜄𝜎∗1𝑘 ∈ 𝐻∗
CR,T′ (X ), 𝜙 𝑓

𝜎,𝑘 = 𝜄∗𝑓 𝜙𝜎,𝑘 ∈ 𝐻∗
CR,T 𝑓

(X ).

Proposition 3.2 (framed inner brane). Suppose that (L, 𝑓 ) is a framed inner brane and

�𝜇 = ((𝜇1, 𝜆 𝑗 ), . . . , (𝜇ℎ , 𝜆ℎ)),
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where (𝜇 𝑗 , 𝜆 𝑗 ) ∈ 𝐻1(L;Z) � Z×B𝐺𝜏 . Let 𝐽± = { 𝑗 ∈ {1, . . . , ℎ} : ±𝜇 𝑗 > 0}, and let 𝑘±𝑗 = ℎ
±(𝜇 𝑗 , 𝜆 𝑗 ).

Then

〈𝛾1, . . . , 𝛾𝑛〉X , (L, 𝑓 )
𝑔,𝛽′, �𝜇 =

ℎ∏
𝑗=1

𝐷 ′
𝜇 𝑗 ,𝜆 𝑗 , 𝑓

·
∫
[M𝑔,𝑛+ℎ (X ,𝛽) ]vir

( ∏𝑛
𝑖=1 ev∗𝑖 𝛾𝑖

∏
𝑗∈𝐽+ ev∗𝑛+ 𝑗𝜙

𝑓

𝜎+ , (ℎ+ (𝑑0 ,𝜆 𝑗 ))−1

∏
𝑗∈𝐽− ev∗𝑛+ 𝑗𝜙

𝑓

𝜎− , (ℎ− (𝑑0 ,𝜆 𝑗 ))−1

)∏ℎ
𝑗=1

u
𝜇 𝑗
( u
𝜇 𝑗

− �̄�𝑛+ 𝑗 )
,

where

𝛽 ∈ 𝐻2(X ), 𝛽′ = 𝛽 +
( ∑
𝑗∈𝐽+

𝜇 𝑗

)
𝑏 −

( ∑
𝑗∈𝐽−

𝜇 𝑗

)
(𝛼 − 𝑏) ∈ 𝐻2(X ,L).

Proof. There exists 𝛽 ∈ 𝐻2(X ) such that

𝛽′ = 𝛽 +
( ∑
𝑗∈𝐽+

𝜇 𝑗

)
𝑏 +

∑
𝑗∈𝐽−

(−𝜇 𝑗 ) (𝛼 − 𝑏).

Let 〈𝑘+𝑗 〉 be the cyclic subgroup generated by 𝑘+𝑗 , and let 𝑟 𝑗 be the cardinality of 〈𝑘+𝑗 〉 for 𝑗 ∈ 𝐽+ and 𝑟 𝑗
be the cardinality of 〈𝑘−𝑗 〉 for 𝑗 ∈ 𝐽−.

We have

M(𝑔,ℎ) ,𝑛 (X ,L | 𝛽′, �𝜇)T′R =
⋃

Γ∈𝐺𝑔,𝑛 (X ,L |𝛽′, �𝜇)
𝐹Γ

M𝑔,𝑛+ℎ (X , 𝛽)T
′
R = M𝑔,𝑛+ℎ (X , 𝛽)T

′
=

⋃
Γ̂∈𝐺𝑔,𝑛+ℎ (X ,𝛽)

𝐹Γ̂ .

In the remaining part of this subsection, we use the following abbreviations:

M = M𝑔,𝑛 (X ,L | 𝛽′, �𝜇), M̂ = M𝑔,𝑛+ℎ (X , 𝛽),

M 𝑗 =

{
M(0,1) ,1 (X ,L | 𝜇 𝑗𝑏, (𝜇 𝑗 , 𝜆)), 𝑗 ∈ 𝐽+
M(0,1) ,1 (X ,L | −𝜇 𝑗 (𝛼 − 𝑏), (𝜇 𝑗 , 𝜆)), 𝑗 ∈ 𝐽−

G = 𝐺𝑔,𝑛 (X ,L | 𝛽′, �𝜇), Ĝ = 𝐺𝑔,𝑛+ℎ (X , 𝛽)
x = (𝑥1, . . . , 𝑥𝑛), y = (𝑦1, . . . , 𝑦ℎ).

Given 𝑢 : (Σ, x, 𝜕Σ) → (X ,L) that represents a point 𝜉 ∈ MT′
R , we have

Σ = C ∪
ℎ⋃
𝑗=1
𝐷 𝑗 ,

where C is an orbicurve of genus g, 𝑥1, . . . , 𝑥𝑛 ∈ C, 𝐷 𝑗 = [{𝑧 ∈ C | |𝑧 | ≤ 1}/Z𝑟 𝑗 ], C and 𝐷 𝑗 intersect
at 𝑦 𝑗 = 𝐵Z𝑟 𝑗 . Let 𝑢 𝑗 = 𝑢 |𝐷 𝑗 and �̂� = 𝑢 |C . Then

1. For 𝑗 = 1, . . . , ℎ, 𝑢 𝑗 : (𝐷 𝑗 , 𝜕𝐷 𝑗 ) → (X ,L) represents a point in MT′
R

𝑗 .
2. �̂� : (C, x, y) → X represents a point 𝜉 ∈ M̂T′ , and �̂�(y 𝑗 ) = [𝔭±, (𝑘±𝑗 )−1] ∈ I𝔭± ⊂ IX if 𝑗 ∈ 𝐽±.
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Let 𝑥𝑛+ 𝑗 = 𝑦 𝑗 . Let 𝐹Γ be the connected component of MT′ associated to the decorated graph Γ ∈ G,
and let 𝐹Γ̂ be the connected component of M̂T′

R associated to the decorated graph Γ̂ ∈ G. Then for any
Γ ∈ G there exists Γ̂ ∈ Ĝ such that

ev𝑛+ 𝑗 (𝐹Γ̂) = (𝔭±, (𝑘±𝑗 )−1) ∈ I𝔭± ⊂ IX

if 𝑗 ∈ 𝐽±, and 𝐹Γ can be identified with 𝐹Γ̂ up to a finite morphism. More precisely,

[𝐹Γ]vir =
∏
𝑗∈𝐽+

|𝐺𝜎+ |
𝑟 𝑗 |Aut(𝑢 𝑗 ) |

∏
𝑗∈𝐽−

|𝐺𝜎− |
𝑟 𝑗 |Aut(𝑢 𝑗 ) |

[𝐹Γ̂]
vir

=
∏
𝑗∈𝐽+

𝑠+1
𝑟 𝑗𝜇 𝑗

∏
𝑗∈𝐽−

𝑠−1
−𝑟 𝑗𝜇 𝑗

[𝐹Γ̂]
vir.

We have

1
𝑒T′
R
(𝑁vir

Γ )
=
𝑒T′
R
(𝐵𝑚1 )𝑒T′

R
(𝐵𝑚5 )

𝑒T′
R
(𝐵𝑚2 )𝑒T′

R
(𝐵𝑚4 ) ,

1
𝑒T′
R
(𝑁vir

Γ̂
)
=
𝑒T′
R
(�̂�𝑚1 )𝑒T′

R
(�̂�𝑚5 )

𝑒T′
R
(�̂�𝑚2 )𝑒T′

R
(�̂�𝑚4 )

,

where

𝑒T′
R
(𝐵𝑚1 ) = 𝑒T′

R
(�̂�𝑚1 ),

𝑒T′
R
(𝐵𝑚4 ) = 𝑒T′

R
(�̂�𝑚4 )

∏
𝑗∈𝐽+

( u′
1

𝑟 𝑗𝜇 𝑗
−
�̄� 𝑗

𝑟 𝑗

) ∏
𝑗∈𝐽−

( u′
1

𝑟 𝑗𝜇 𝑗
−
�̄� 𝑗

𝑟 𝑗

)
For 𝑘 = 0, 1 and 𝑗 = 1, . . . , ℎ, let

𝐻𝑘 (𝐷 𝑗 ) = 𝐻𝑘 (𝐷 𝑗 , 𝜕𝐷 𝑗 , 𝑢
∗
𝑗𝑇X , (𝑢 𝑗 |𝜕𝐷 𝑗 )∗𝑇L

)
.

Then there is a long exact sequence

0 → 𝐵2 → �̂�2 ⊕
ℎ⊕
𝑗=1

𝐻0 (𝐷 𝑗 ) →
⊕
𝑗∈𝐽+

(𝑇𝔭+X )𝑘
+
𝑗 ⊕

⊕
𝑗∈𝐽−

(𝑇𝔭−X )𝑘
−
𝑗

→ 𝐵5 → �̂�5 ⊕
ℎ⊕
𝑗=1

𝐻1(𝐷 𝑗 ) → 0,

where (𝑇𝔭±X )𝑘
±
𝑗 denote the 𝑘±𝑗 -invariant part of 𝑇𝔭±X . Note that

(𝑇𝔭±X )𝑘
±
𝑗 = 𝑇(𝔭± ,𝑘±𝑗 )IX = 𝑇(𝔭± ,𝑘−1

𝑗 )IX

𝑒T′
R
(𝐻1(𝐷 𝑗 )𝑚)

𝑒T′
R
(𝐻0(𝐷 𝑗 )𝑚)

= |𝜇 𝑗 | |𝐺𝜏 |𝐷𝜇 𝑗 ,𝜆 𝑗 .

Let

𝑒T 𝑓 (𝑁vir
Γ ) := 𝜄∗𝑓 𝑒T′R (𝑁

vir
Γ ) = 𝑒T′

R
(𝑁vir

Γ )
���
u′1=u,u′2= 𝑓 u

,

𝑒T 𝑓 (𝑁vir
Γ̂
) := 𝜄∗𝑓 𝑒T′R (𝑁

vir
Γ̂
) = 𝑒T′

R
(𝑁vir

Γ̂
)
���
u′1=u,u′2= 𝑓 u

.
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Given 𝛾1, . . . , 𝛾𝑛 ∈ 𝐻∗
CR,T 𝑓

(X ), we define

〈𝛾1, . . . , 𝛾ℎ〉X , (L, 𝑓 )
𝛽′, ( (𝜇1 ,𝜆1) ,..., (𝜇ℎ ,𝜆ℎ)) :=

∫
[𝐹Γ ]vir

( ∏𝑛
𝑖=1 ev∗𝑖 𝛾𝑖

)
|𝐹Γ

𝑒T 𝑓 (𝑁vir
Γ )

=
∏
𝑗∈𝐽+

𝔯+
𝑟 𝑗𝜇 𝑗

∏
𝑗∈𝐽−

𝔯−
−𝑟 𝑗𝜇 𝑗

ℎ∏
𝑗=1

(|𝜇 𝑗 | |𝐺𝜏 |𝐷𝜇 𝑗 ,𝜆 𝑗 , 𝑓 )

·
∫
[𝐹Γ̂ ]vir

( ∏𝑛
𝑖=1 ev∗𝑖 𝛾𝑖

∏
𝑗∈𝐽+ ev∗𝑛+ 𝑗𝜙𝜎+ , (𝑘+𝑗 )−1

∏
𝑗∈𝐽− ev∗𝑛+ 𝑗𝜙

𝑓

𝜎− , (𝑘−𝑗 )−1

)
|𝐹Γ∏

𝑗∈𝐽+ (
u′1
𝑟 𝑗𝜇 𝑗

− �̄�𝑛+ 𝑗
𝑟 𝑗

)
∏

𝑗∈𝐽− (
u′1
𝑟 𝑗 𝜇 𝑗

− �̄�𝑛+ 𝑗
𝑟 𝑗

)𝑒T 𝑓 (𝑁vir
Γ̂
)

=
ℎ∏
𝑗=1

𝐷 ′
𝜇 𝑗 ,𝜆 𝑗 , 𝑓

·
∫
[𝐹Γ̂ ]vir

( ∏𝑛
𝑖=1 ev∗𝑖 𝛾𝑖

∏
𝑗∈𝐽+ ev∗𝑛+ 𝑗𝜙

𝑓

𝜎+ , (𝑘+𝑗 )−1

∏
𝑗∈𝐽− ev∗𝑛+ 𝑗𝜙

𝑓

𝜎− , (𝑘−𝑗 )−1

)
|𝐹Γ∏ℎ

𝑗=1
u
𝜇 𝑗
( u
𝜇 𝑗

− �̄�𝑛+ 𝑗 )𝑒T 𝑓 (𝑁vir
Γ̂
)

where

𝐷 ′
𝑑0 ,𝜆, 𝑓

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
−(−1) �𝑑0𝑤

+
3 +

�̄�
𝔪 �

( u
𝑑0

)age(𝑘+)
· 𝔯+
𝑑0

·
∏ �𝑑0𝑤

+
1 �+age(𝑘+)−1

𝑎=1 (𝑑0𝑤
+
2 + 𝑎 − 𝑐2(𝑘+))

�𝑑0𝑤
+
1�!

, 𝑑0 > 0,

−(−1) �𝑑0𝑤
−
2 +(1− �̄�

𝔪−𝛿�̄�,0) �
( u
𝑑0

)age(𝑘−)
· 𝔯−
−𝑑0

·
∏ �𝑑0𝑤

−
1 �+age(𝑘−)−1

𝑎=1 (𝑑0𝑤
−
3 − 𝑐3 (𝑘−) + 𝑎)

�𝑑0𝑤
−
1 �!

, 𝑑0 < 0.

�

Suppose that (L, 𝑓 ) is a framed outer brane. Define

𝐷 ′
𝑑0 ,𝜆, 𝑓

= −(−1) �𝑑0𝑤3+ �̄�
𝔪 �

( u
𝑑0

)age(𝑘)
· 𝔯
𝑑0

·
∏ �𝑑0𝑤1 �+age(𝑘)−1

𝑎=1 (𝑑0𝑤2 + 𝑎 − 𝑐2 (𝑘))
�𝑑0𝑤1�!

,

where 𝑘 = ℎ(𝑑0, 𝜆). By the 𝑑0 > 0 part of the proof of Proposition 3.2, we obtain:

Proposition 3.3 (framed outer brane). Suppose that (L, 𝑓 ) is a framed inner brane and �𝜇 =
((𝜇1, 𝜆1), . . . , (𝜇ℎ , 𝜆ℎ)), where (𝜇 𝑗 , 𝜆 𝑗 ) ∈ 𝐻1 (L;Z). Then

〈𝛾1, . . . , 𝛾𝑛〉X , (L, 𝑓 )
𝑔,𝛽′, �𝜇 =

ℎ∏
𝑗=1

𝐷 ′
𝜇 𝑗 ,𝜆, 𝑓

·
∫
[M𝑔,𝑛+ℎ (X ,𝛽) ]vir

( ∏𝑛
𝑖=1 ev∗𝑖 𝛾𝑖

∏ℎ
𝑗=1 ev∗𝑛+ 𝑗𝜙

𝑓

𝜎, (ℎ (𝑑0 ,𝜆))−1

)∏ℎ
𝑗=1

u
𝜇 𝑗
( u
𝜇 𝑗

− �̄�𝑛+ 𝑗 )
,

where

𝛽 ∈ 𝐻2 (X ), 𝛽′ = 𝛽 +
( ℎ∑
𝑗=1

𝜇 𝑗

)
𝑏.

3.13. Generating functions of open-closed GW invariants

From now on, we assume the generic stabiliser K is trivial so that X = X rig is a toric Calabi-Yau
3-orbifold. Then

𝜒3 : 𝐺𝜏 −→ 𝝁𝔪, 𝜆 ↦→ 𝑒2𝜋
√
−1�̄�/𝔪
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is a group isomorphism. We have �̄� = 𝑁 and �̄�𝑖 = �̄�𝑖 . In particular,

𝑏1 = 𝔯v1 − 𝔰v2 + v3, 𝑏2 = 𝔪v2 + v3, 𝑏3 = v3.

There exists 𝑚𝑎, 𝑛𝑎 ∈ Z, such that

𝑏3+𝑎 = 𝑚𝑎v1 + 𝑛𝑎v2 + v3, 𝑎 = 1, . . . , 𝑘 .

Introduce variables {𝑋 𝑗 | 𝑗 = 1, . . . , ℎ}, and let

𝝉2 =
𝑚∑
𝑖=1

𝜏𝑖𝑢𝑖 ,

where 𝑢1, . . . , 𝑢𝑚 form a basis of 𝐻2
CR (X ;Q). We choose T′-equivariant lifting of 𝝉2 as follows: for

each 𝑢𝑖 ∈ 𝐻2
CR(X ;Q), we choose the unique T′-equivariant lifting 𝑢T

′

𝑖 ∈ 𝐻2
CR,T′ (X ;Q) such that

𝜄∗𝜎𝑢
T′

𝑖 = 0 ∈ 𝐻2
CR,T′ (𝔭𝜎;Q), where 𝜄∗𝜎 : 𝐻2

CR,T′ (X ;Q) → 𝐻2
CR,T′ (𝔭𝜎;Q) is induced by the inclusion

map 𝜄𝜎 : 𝔭𝜎 → X .
We define 𝜉0 := 𝑒−𝜋

√
−1/𝔪. If (L, 𝑓 ) is a framed outer brane, define

𝐹
X , (L, 𝑓 )
𝑔,ℎ (𝝉2, 𝑄

𝑏 , 𝑋1, . . . , 𝑋ℎ)

=
∑

𝛽′,𝑛≥0

∑
(𝜇 𝑗 ,𝜆 𝑗 ) ∈𝐻1 (L;Z)

〈(𝜄∗𝑓 𝝉2)𝑛〉X , (L, 𝑓 )
𝑔,𝛽, (𝜇1 ,𝜆1) ,..., (𝜇ℎ ,𝜆ℎ)

𝑛!

ℎ∏
𝑗=1

(𝑄𝑏𝑋 𝑗 )𝜇 𝑗 · 𝜉 �̄�1
0 1𝜆−1

1
⊗ · · · ⊗ 𝜉 �̄�ℎ0 1𝜆−1

ℎ
,

(23)

which is a function that takes values in 𝐻∗
CR (B𝐺𝜏 ;C)⊗ℎ , where

𝐻∗
CR(B𝐺𝜏 ;C) =

⊕
𝜆∈𝐺𝜏

C1𝜆.

When 𝜆 = 1 is the identity element of 𝐺𝜏 , 11 = 1 is the unit of 𝐻∗
CR (B𝐺𝜏 ;C).

If (L, 𝑓 ) is a framed inner brane, define

𝐹
X , (L, 𝑓 )
𝑔,ℎ (𝝉2, 𝑄

𝑏 , 𝑋1, . . . , 𝑋ℎ) =
∑

𝛽′,𝑛≥0

∑
(𝜇 𝑗 ,𝜆 𝑗 ) ∈𝐻1 (L;Z)

〈(𝜄∗𝑓 𝝉2)𝑛〉X , (L, 𝑓 )
𝑔,𝛽, (𝜇1 ,𝜆1) ,..., (𝜇ℎ ,𝜆ℎ)

𝑛!

·
∏

𝑗∈{1,...,ℎ}
𝜇 𝑗>0

(𝑄𝑏𝑋 𝑗 )𝜇 𝑗

∏
𝑗∈{1,...,ℎ}

𝜇 𝑗<0

(𝑄𝑏−𝛼𝑋 𝑗 )𝜇 𝑗 · 𝜉 �̄�1
0 1𝜆−1

1
⊗ · · · ⊗ 𝜉 �̄�ℎ0 1𝜆−1

ℎ
,

(24)

which is a function that takes values in 𝐻∗
CR (B𝐺𝜏 ;C)⊗ℎ .

3.14. The equivariant J-function and the disk potential

Let {𝑢𝑖}𝑁𝑖=1 be a homogeneous basis of 𝐻∗
T,CR(X ;Q) and {𝑢𝑖}𝑁𝑖=1 be its dual basis. Define

𝝉 =
𝑁∑
𝑖=1

𝜏𝑖𝑢𝑖 = 𝝉0 + 𝝉2 + 𝝉>2,
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where

𝝉0 ∈ 𝐻0
T,CR(X ;C), 𝝉2 ∈ 𝐻2

T,CR(X ;C), 𝝉>2 ∈ 𝐻>2
T,CR (X ;C).

The J-function [71, 26, 40] is a 𝐻∗
T,CR (X )-valued function:

𝐽 (𝝉, 𝑧) := 1 +
∑

𝛽≥0,𝑛≥0

1
𝑛!

𝑁∑
𝑖=1

〈
1, 𝝉𝑛,

𝑢𝑖

𝑧 − �̄�

〉X ,T

0,𝛽
𝑢𝑖 .

Then

𝜄∗𝜎𝐽 (𝝉, 𝑧)
���
u1=u, u2= 𝑓 u, u3=0

=
∑
𝑘∈𝐺𝜎

𝐽
𝑓
𝜎,𝑘 (𝝉, 𝑧)1𝑘 ,

where

𝐽
𝑓
𝜎,𝑘 (𝝉, 𝑧) = 𝛿𝑘,1 +

∑
𝛽≥0,𝑛≥0

1
𝑛!

𝑁∑
𝑖=1

〈
1, (𝜄∗𝑓 𝝉)

𝑛,
|𝐺𝜎 |𝜙 𝑓

𝜎,𝑘−1

𝑧 − �̄�

〉X ,T 𝑓

0,𝛽

.

As a special case of Proposition 3.3,

〈𝛾1, . . . , 𝛾𝑛〉X , (L, 𝑓 )
0,𝛽+𝑑0𝑏, (𝑑0 ,𝑘) = 𝐷

′
𝑑0 ,𝜆, 𝑓

∫
[M0,𝑛+1 (X ,𝛽) ]vir

( ∏𝑛
𝑖=1 ev∗𝑖 𝛾𝑖 ∪ ev∗𝑛+1𝜙

𝑓

(ℎ+ (𝑑0 ,𝜆))−1

)
u
𝑑0
( u
𝑑0

− �̄�𝑛+1)

= 𝐷 ′
𝑑0 ,𝜆, 𝑓

〈
1, 𝛾1, . . . , 𝛾𝑛,

𝜙
𝑓

(ℎ+ (𝑑0 ,𝜆))−1

u
𝑑0

− �̄�

〉X
0,𝛽

;

𝐹
X , (L, 𝑓 )
0,1 (𝝉2, 𝑄

𝑏 , 𝑋1) =
∑
𝛽,𝑛≥0

∑
(𝑑0 ,𝜆) ∈𝐻1 (L;Z)

1
𝑛!

〈(𝜄∗𝑓 𝝉2)𝑛〉X , (L, 𝑓 )
0,𝛽+𝑑0𝑏, (𝑑0 ,𝜆) (𝑄

𝑏𝑋)𝑑0𝜉 �̄�0 1𝜆−1

=
1

|𝐺𝜎 |
∑

(𝑑0 ,𝜆) ∈𝐻1 (L;Z)
(𝑄𝑏𝑋1)𝑑0𝐷 ′

𝑑0 ,𝜆, 𝑓
𝐽
𝑓
𝜎,ℎ+ (𝑑0 ,𝜆)

(
𝝉2,

u
𝑑0

)
𝜉 �̄�0 1𝜆−1 .

Proposition 3.4. Let 𝑋 = 𝑄𝑏𝑋1. If (L, 𝑓 ) is a framed outer brane, then

𝐹
X , (L, 𝑓 )
0,1 (𝝉2, 𝑋) =

1
|𝐺𝜎 |

∑
(𝑑0 ,𝜆) ∈𝐻1 (L;Z)

𝑋𝑑0𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐽
𝑓
𝜎,ℎ+ (𝑑0 ,𝜆)

(
𝝉2,

u
𝑑0

)
𝜉 �̄�0 1𝜆−1 .

If (L, 𝑓 ) is a framed inner brane, then

𝐹
X , (L, 𝑓 )
0,1 (𝝉2, 𝑄, 𝑋) =

1
|𝐺𝜎 |

∑
(𝑑0 ,𝜆) ∈𝐻1 (L;Z) ,𝑑0>0

𝑋𝑑0𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐽
𝑓
𝜎+ ,ℎ+ (𝑑0 ,𝜆)

(
𝝉2,

u
𝑑0

)
𝜉 �̄�0 1𝜆−1

+ 1
|𝐺𝜎 |

∑
(𝑑0 ,𝜆) ∈𝐻1 (L;Z) ,𝑑0<0

𝑋𝑑0𝑄−𝑑0𝛼𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐽
𝑓
𝜎− ,ℎ− (𝑑0 ,𝜆)

(
𝝉2,

u
𝑑0

)
· 𝔯+
𝔯−
𝜉 �̄�0 1𝜆−1 .
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4. Mirror symmetry for the disk amplitudes

4.1. The equivariant I-function and the equivariant mirror theorem

We choose 𝑝1, . . . , 𝑝𝑘 ∈ L∨ ∩ ÑefX such that

◦ {𝑝1, . . . , 𝑝𝑘 } is a Q-basis of L∨
Q

.
◦ {𝑝1, . . . , 𝑝𝑘′ } is a Q-basis of 𝐻2(X ;Q).
◦ 𝑝𝑎 = 𝐷3+𝑎 for 𝑎 = 𝑘 ′ + 1, . . . , 𝑘 .

We define charges 𝑚 (𝑎)
𝑖 ∈ Q by 𝐷𝑖 =

∑𝑘
𝑎=1 𝑚

(𝑎)
𝑖 𝑝𝑎.

Let 𝑞′0, 𝑞1, . . . , 𝑞𝑘 be 𝑘 + 1 formal variables, and define 𝑞𝛽 = 𝑞 〈𝑝1 ,𝛽〉
1 · · · 𝑞 〈𝑝𝑘 ,𝛽〉𝑘 for 𝛽 ∈ K. We take

the equivariant lifting 𝑝T𝑎 ∈ 𝐻2
T
(X ;Q) of 𝑝𝑎 ∈ 𝐻2(X ;Q). The equivariant I-function is an 𝐻∗

CR,T(X )-
valued power series defined as follows [47]:

𝐼 (𝑞′0, 𝑞, 𝑧) = 𝑒
log𝑞′0+

∑𝑘′
𝑎=1 �̄�T𝑎 log𝑞𝑎

𝑧

∑
𝛽∈Keff

𝑞𝛽
𝑟 ′∏
𝑖=1

∏∞
𝑚= �〈𝐷𝑖 ,𝛽〉� (�̄�

T
𝑖 + (〈𝐷𝑖 , 𝛽〉 − 𝑚)𝑧)∏∞

𝑚=0(�̄�T
𝑖 + (〈𝐷𝑖 , 𝛽〉 − 𝑚)𝑧)

·
𝑟∏

𝑖=𝑟 ′+1

∏∞
𝑚= �〈𝐷𝑖 ,𝛽〉� (〈𝐷𝑖 , 𝛽〉 − 𝑚)𝑧∏∞

𝑚=0 (〈𝐷𝑖 , 𝛽〉 − 𝑚)𝑧
1𝑣 (𝛽) ,

where 𝑞𝛽 =
∏𝑘

𝑎=1 𝑞
〈𝑝𝑎 ,𝛽〉
𝑎 . Note that 〈𝑝𝑎, 𝛽〉 ≥ 0 for 𝛽 ∈ Keff. The equivariant I-function can be

rewritten as

𝐼 (𝑞′0, 𝑞, 𝑧) = 𝑒
log𝑞′0+

∑𝑘′
𝑎=1 �̄�T𝑎 log𝑞𝑎

𝑧

∑
𝛽∈Keff

𝑞𝛽

𝑧 〈�̂�,𝛽〉+age(𝑣 (𝛽))

𝑟 ′∏
𝑖=1

∏∞
𝑚= �〈𝐷𝑖 ,𝛽〉� (

�̄�T
𝑖

𝑧 + 〈𝐷𝑖 , 𝛽〉 − 𝑚)∏∞
𝑚=0(

�̄�T
𝑖

𝑧 + 〈𝐷𝑖 , 𝛽〉 − 𝑚)

·
𝑟∏

𝑖=𝑟 ′+1

∏∞
𝑚= �〈𝐷𝑖 ,𝛽〉� (〈𝐷𝑖 , 𝛽〉 − 𝑚)∏∞

𝑚=0(〈𝐷𝑖 , 𝛽〉 − 𝑚)
1𝑣 (𝛽) ,

where �̂� = 𝐷1 + · · · + 𝐷𝑟 ∈ 𝐶X .
Since X is a Calabi-Yau orbifold, age(𝑣) is an integer for any 𝑣 ∈ Box(𝚺). Then

𝐻≤2
CR,T(X ) = 𝐻0

CR.T(X ) ⊕ 𝐻2
CR,T(X ).

Let Q = Q(u1, u2, u3) be the fractional field of 𝐻∗
T
(point;Q):

𝐻0
CR,T(X ;Q) = Q1,

𝐻2
CR,T(X ;Q) =

𝑘′⊕
𝑎=1

Q𝑝T𝑎 ⊕
⊕

𝑣 ∈Box(𝚺)
age(𝑣)=1

Q1𝑣 .

Recall that the embedding of the stacky fixed point 𝔭𝜎 is 𝜄𝜎 : 𝔭𝜎 → X . We choose the lifting 𝑝T𝑎 such
that 𝜄∗𝜎 𝑝T𝑎 = 0.

For 𝑖 = 1, . . . , 𝑟 , we will define Ω𝑖 ⊂ Keff − {0} and 𝐴𝑖 (𝑞) supported on Ω𝑖 . We observe that if
𝛽 ∈ Keff and 𝑣(𝛽) = 0, then 〈𝐷𝑖 , 𝛽〉 ∈ Z for 𝑖 = 1, . . . , 𝑟 .

◦ For 𝑖 = 1, . . . , 𝑟 ′, let

Ω𝑖 =
{
𝛽 ∈ Keff : 𝑣(𝛽) = 0, 〈𝐷𝑖 , 𝛽〉 < 0 and 〈𝐷 𝑗 , 𝛽〉 ≥ 0 for 𝑗 ∈ {1, . . . , 𝑟} − {𝑖}

}
.
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Then Ω𝑖 ⊂ {𝛽 ∈ Keff : 𝑣(𝛽) = 0, 𝛽 ≠ 0}. We define

𝐴𝑖 (𝑞) :=
∑
𝛽∈Ω𝑖

𝑞𝛽
(−1)−〈𝐷𝑖 ,𝛽〉−1 (−〈𝐷𝑖 , 𝛽〉 − 1)!∏

𝑗∈{1,...,𝑟 }−{𝑖 } 〈𝐷 𝑗 , 𝛽〉!
.

◦ For 𝑖 = 𝑟 ′ + 1, . . . , 𝑟 , let

Ω𝑖 := {𝛽 ∈ Keff : 𝑣(𝛽) = 𝑏𝑖 , 〈𝐷 𝑗 , 𝛽〉 ∉ Z<0 for 𝑗 = 1, . . . , 𝑟},

and define

𝐴𝑖 (𝑞) =
∑
𝛽∈Ω𝑖

𝑞𝛽
𝑟∏
𝑗=1

∏∞
𝑚= �〈𝐷 𝑗 ,𝛽〉� (〈𝐷 𝑗 , 𝛽〉 − 𝑚)∏∞

𝑚=0 (〈𝐷 𝑗 , 𝛽〉 − 𝑚)
.

Let 𝜎 be the smallest cone containing 𝑏𝑖 . Then

𝑏𝑖 =
∑
𝑗∈𝐼 ′𝜎

𝑐 𝑗 (𝑏𝑖)𝑏 𝑗 ,

where 𝑐 𝑗 (𝑏𝑖) ∈ (0, 1) and
∑

𝑗∈𝐼 ′𝜎 𝑐 𝑗 (𝑏𝑖) = 1. There exists a unique 𝐷∨
𝑖 ∈ LQ such that

〈𝐷 𝑗 , 𝐷
∨
𝑖 〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, 𝑗 = 𝑖,

−𝑐 𝑗 (𝑏𝑖), 𝑗 ∈ 𝐼 ′𝜎 ,
0, 𝑗 ∈ 𝐼𝜎 − {𝑖}.

Then

𝐴𝑖 (𝑞) = 𝑞𝐷
∨
𝑖 + higher order terms

𝐼 (𝑞′0, 𝑞, 𝑧) = 1 + 1
𝑧
(log 𝑞′01 +

𝑘′∑
𝑎=1

log(𝑞𝑎)𝑝T𝑎 +
𝑟 ′∑
𝑖=1

𝐴𝑖 (𝑞)�̄�T
𝑖 +

𝑟∑
𝑖=𝑟 ′+1

𝐴𝑖 (𝑞)1𝑏𝑖 ) + 𝑜(𝑧−1).

For 𝑖 = 1, . . . , 𝑟 ′,

D̄T
𝑖 =

𝑘′∑
𝑎=1

𝑚 (𝑎)
𝑖 𝑝T𝑎 + 𝜆𝑖 ,

where 𝜆𝑖 ∈ 𝐻2 (𝐵T;Q). Let 𝑆𝑎 (𝑞) :=
∑𝑟 ′

𝑖=1 𝑚
(𝑎)
𝑖 𝐴𝑖 (𝑞). Then

𝐼 (𝑞′0, 𝑞, 𝑧) = 1 + 1
𝑧
((log 𝑞′0 +

𝑟 ′∑
𝑖=1

𝜆𝑖𝐴𝑖 (𝑞))1 +
𝑘′∑
𝑎=1

(log(𝑞𝑎) + 𝑆𝑎 (𝑞))𝑝T𝑎 +
𝑟∑

𝑖=𝑟 ′+1
𝐴𝑖 (𝑞)1𝑏𝑖 ) + 𝑜(𝑧−1).

Recall that the T-equivariant J-function for X is

𝐽 (𝝉, 𝑧) = 1 +
∑

𝛽≥0,𝑛≥0

𝑁∑
𝑖=1

1
𝑛!

〈1, 𝝉𝑛, 𝑢𝑖

𝑧 − �̄�
〉X ,T
0,𝛽 𝑢

𝑖 ,

where {𝑢𝑖}𝑁𝑖=1 is an 𝐻∗(𝐵T)-basis of 𝐻∗
T
(X ;Q) and {𝑢𝑖}𝑁𝑖=1 is the dual basis. Assume 𝑢0 = 1, 𝑢𝑎 = 𝑝T𝑎

for 𝑎 = 1, . . . , 𝑘 ′ and 𝑢𝑎 = 1𝑏𝑎+3 for 𝑎 = 𝑘 ′ + 1, . . . , 𝑘 . The mirror theorem for toric orbifolds [27]
implies the following theorem.
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Theorem 4.1 (Coates-Corti-Iritani-Tseng [27]). If the toric orbifold X satisfies Assumption 2.6, then

𝑒
𝜏0 (𝑞′0 ,𝑞)

𝑧 𝐽 (𝝉2 (𝑞), 𝑧) = 𝐼 (𝑞′0, 𝑞, 𝑧),

where the equivariant closed mirror map (𝑞′0, 𝑞) ↦→ 𝜏0 (𝑞′0, 𝑞)1 + 𝝉2 (𝑞) is determined by the first-order
term in the asymptotic expansion of the I-function

𝐼 (𝑞′0, 𝑞, 𝑧) = 1 +
𝜏0(𝑞′0, 𝑞)1 + 𝝉2(𝑞)

𝑧
+ 𝑜(𝑧−1).

More explicitly, the equivariant closed mirror map is given by

𝜏0 = log(𝑞′0) +
𝑟 ′∑
𝑖=1

𝜆𝑖𝐴𝑖 (𝑞),

𝜏𝑎 =

{
log(𝑞𝑎) + 𝑆𝑎 (𝑞), 1 ≤ 𝑎 ≤ 𝑘 ′,

𝐴𝑎−3 (𝑞), 𝑘 ′ + 1 ≤ 𝑎 ≤ 𝑘.
. (25)

4.2. The pullback of the disk potential under the mirror map

By Proposition 3.4, if (L, 𝑓 ) is a framed outer brane, then

𝐹
X , (L, 𝑓 )
0,1 (𝝉2, 𝑄, 𝑋) =

1
|𝐺𝜎 |

∑
(𝑑0 ,𝜆) ∈𝐻1 (L;Z)

𝑋𝑑0𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐽
𝑓
𝜎,ℎ (𝑑0 ,𝜆)

(
𝝉2,

u
𝑑0

)
𝜉 �̄�0 1𝜆−1 .

Let 𝐹X , (L, 𝑓 ) (𝑞, 𝑋) be the pullback of 𝐹X , (L, 𝑓 )
0,1 (𝝉2, 𝑄, 𝑋) under the closed mirror map.

By Proposition 3.4, if (L, 𝑓 ) is a framed inner brane, then

𝐹
X , (L, 𝑓 )
0,1 (𝝉2, 𝑄, 𝑋)

=
1

|𝐺𝜎 |
∑

(𝑑0 ,𝜆) ∈𝐻1 (L;Z) ,𝑑0>0
𝑋𝑑0𝐷 ′

𝑑0 ,𝜆, 𝑓
𝐽
𝑓
𝜎+ ,ℎ+ (𝑑0 ,𝜆)

(
𝝉2,

u
𝑑0

)
𝜉 �̄�0 1𝜆−1

+ 1
|𝐺𝜎 |

∑
(𝑑0 ,𝑘+ ,𝑘−) ∈𝐻𝜏,𝜎+ ,𝜎− ,𝑑0<0

𝑋𝑑0𝑄−𝑑0𝛼𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐽
𝑓
𝜎− ,ℎ− (𝑑0 ,𝜆)

(
𝝉2,

u
𝑑0

)
· 𝔯+
𝔯−
𝜉 �̄�0 1𝜆−1 .

Given 𝜎 ∈ Σ(3), 𝑘 ∈ 𝐺𝜎 , and 𝑓 ∈ Z, define 𝐼 𝑓𝜎,𝑘 (𝑞, 𝑧) by

𝜄∗𝜎 𝐼 (𝑞, 𝑧)
���
u1=u, u2= 𝑓 u, u3=0

=
∑
𝑘∈𝐺𝜎

𝐼
𝑓
𝜎,𝑘 (𝑞, 𝑧)1𝑘 .

Since a toric Calabi-Yau orbifold satisfies the weak Fano condition, by the equivariant mirror theorem
(Theorem 4.1), we may write 𝐹X , (L, 𝑓 ) (𝑞, 𝑋) in terms of 𝐼 𝑓𝜎,𝑘 (𝑞, 𝑧) in case of an outer brane and in
terms of 𝐼 𝑓𝜎+ ,𝑘+

(𝑞, 𝑧) and 𝐼 𝑓𝜎− ,𝑘−
(𝑞, 𝑧) in case of an inner brane.

Lemma 4.2. If (L, 𝑓 ) is a framed outer brane, then

𝐹
X , (L, 𝑓 )
0,1 (𝑞, 𝑋) = 1

|𝐺𝜎 |
∑

(𝑑0 ,𝜆) ∈𝐻1 (L;Z)
𝑋𝑑0𝐷 ′

𝑑0 ,𝜆, 𝑓
𝑒

−𝑑0𝜏0 (𝑞)
u 𝐼

𝑓
𝜎,ℎ (𝑑0 ,𝜆)

(
𝑞,

u
𝑑0

)
𝜉 �̄�0 1𝜆−1 . (26)
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If (L, 𝑓 ) is a framed inner brane, then

𝐹
X , (L, 𝑓 + , 𝑓 −)
0,1 (𝑞, 𝑋)

=
1

|𝐺𝜎 |
∑

(𝑑0 ,𝜆) ∈𝐻1 (L;Z) ,𝑑0>0
𝑋𝑑0𝐷 ′

𝑑0 ,𝜆, 𝑓
𝑒

−𝑑0𝜏0 (𝑞)
u 𝐼

𝑓
𝜎+ ,ℎ+ (𝑑0 ,𝜆)

(
𝑞,

u
𝑑0

)
𝜉 �̄�0 1𝜆−1

+ 1
|𝐺𝜎 |

∑
(𝑑0 ,𝜆) ∈𝐻1 (L;Z) ,𝑑0<0

𝑋𝑑0𝑄−𝑑0𝛼𝐷 ′
𝑑0 ,𝜆, 𝑓

𝑒
−𝑑0𝜏0 (𝑞)

u 𝐼
𝑓
𝜎− ,ℎ− (𝑑0 ,𝜆)

(
𝑞,

u
𝑑0

)
· 𝔯+
𝔯−
𝜉 �̄�0 1𝜆−1 .

Let (L, 𝑓 ) be a framed brane, and let 𝜏, 𝜎 = 𝜎+, 𝜎− be defined as in Section 3.3. Recall that

𝐼 ′𝜎 = {𝑖 ∈ {1, . . . , 𝑟 ′} : 𝜌𝑖 ⊂ 𝜎} = {1, 2, 3}, 𝐼𝜎 = {1, . . . , 𝑟} \ 𝐼 ′𝜎 ,
𝐼 ′𝜏 = {𝑖 ∈ {1, . . . , 𝑟 ′} : 𝜌𝑖 ⊂ 𝜏} = {2, 3}, 𝐼𝜏 = {1, . . . , 𝑟} \ 𝐼 ′𝜏 ,
Keff,𝜎 = {𝛽 ∈ LQ : 〈𝐷𝑖 , 𝛽〉 ∈ Z≥0 for 𝑖 ∈ 𝐼𝜎}.

In case that L is inner,

𝐼 ′𝜎− = {2, 3, 4}, 𝐼𝜎− = {1, . . . , 𝑟}\𝐼 ′𝜎−

Keff,𝜎− = {𝛽 ∈ LQ : 〈𝐷𝑖 , 𝛽〉 ∈ Z≥0 for 𝑖 ∈ 𝐼𝜎− }.

Let b𝜎,𝑖 = 𝜄∗𝜎 �̄�
T
𝑖 ∈ 𝐻2

T
(𝔭𝜎;Q) = 𝐻2 (𝐵T;Q) for 1 ≤ 𝑖 ≤ 𝑟 , and then b𝑖 = 0 for 𝑟 ′ + 1 ≤ 𝑖 ≤ 𝑟 . For

𝛽 ∈ Keff,𝜎 , define an 𝐻∗(𝐵T;Q)-valued

𝐼 (𝜎, 𝛽) :=
𝑟∏
𝑖=1

∏∞
𝑚= �〈𝐷𝑖 ,𝛽〉� (b𝜎,𝑖 + (〈𝐷𝑖 , 𝛽〉 − 𝑚) u1

𝑑0
)∏∞

𝑚=0 (b𝜎,𝑖 + (〈𝐷𝑖 , 𝛽〉 − 𝑚) u1
𝑑0
)

. (27)

Recall that 𝜄∗𝜎 𝑝T𝑎 = 0, so

𝜄∗𝜎 𝐼 (𝑞, 𝑧) |𝑧= u1
𝑑0

=
∑

𝛽∈Keff,𝜎

𝑒
𝑑0
u1

log 𝑞′0𝑞𝛽 𝐼 (𝜎, 𝛽)1𝑣 (𝛽) .

With the above notation, if L is an outer brane, we can rewrite 𝐹X , (L, 𝑓 )
0,1 (𝑞, 𝑋) as

𝐹
X , (L, 𝑓 )
0,1 (𝑞, 𝑋) = 1

|𝐺𝜎 |
∑

(𝑑0 ,𝜆) ∈𝐻1 (L;Z)

∑
𝛽∈Keff,𝜎 ,𝑣 (𝛽)=ℎ (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐼 𝑓 (𝜎, 𝛽)𝜉 �̄�0 1𝜆−1 ,

where 𝐼 𝑓 (𝜎, 𝛽) = 𝐼 (𝜎, 𝛽) |u1=u, u2= 𝑓 u, u3=0, and

𝑥 = 𝑋 exp
( log 𝑞′0 − 𝜏0 (𝑞)

u1

)
is the B-brane moduli parameter.

Following [51, 59], we define extended charge vectors

{𝑚 (𝑎)
𝑖 }𝑎=0,...,𝑘

𝑖=1,...,𝑟 =

(
𝑤1 𝑤2 𝑤3 0 . . .

{𝑚 (𝑎)
𝑖 }𝑎=1,...,𝑘

𝑖=1,...,𝑟

)
,
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such that 𝑚 (0)
𝑖 = 𝑤𝑖 for 𝑖 = 1, 2, 3 and 𝑚 (0)

𝑖 = 0 for 𝑖 = 4, . . . , 𝑟 . Recall that

𝜏0 +
𝑘′∑
𝑎=1

𝜏𝑎𝑝
T
𝑎 +

𝑘∑
𝑎=𝑘′+1

𝜏𝑎1𝑏𝑎+3 = log 𝑞′0 +
𝑘′∑
𝑎=1

log 𝑞𝑎𝑝T𝑎 +
𝑟 ′∑
𝑖=1

𝐴𝑖 (𝑞)D̄T
𝑖 +

𝑟∑
𝑖=𝑟 ′+1

𝐴𝑖 (𝑞)1𝑏𝑖 .

We pull back the above identity under 𝜄∗𝜎 . Since

𝜄∗𝜎 𝑝
T
𝑎 = 0, 𝜄∗𝜎DT

𝑖

���
u1=u, u2= 𝑓 u, u3=0

= 𝑚 (0)
𝑖 u,

we get

𝜏0(𝑞′0, 𝑞) = log 𝑞′0 +
𝑟 ′∑
𝑖=1

𝑚 (0)
𝑖 𝐴𝑖 (𝑞)v.

So the open mirror map is given by

log 𝑋 = log 𝑥 +
𝑟 ′∑
𝑖=1

𝑚 (0)
𝑖 𝐴𝑖 (𝑞). (28)

If L is inner, we further set 𝑄 = 𝑞. Denote the pullback of the disk potential 𝑊X , (L, 𝑓 ) (𝑞, 𝑥) to be the
pullback of 𝐹X , (L, 𝑓 )

0,1 (𝑞, 𝑋) under this open mirror map. Then by Lemma 4.2,

|𝐺𝜎 |𝑊X , (L, 𝑓 ) (𝑞, 𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
𝑑0>0,𝛽∈Keff,𝜎
𝑣 (𝛽)=ℎ (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐼 𝑓 (𝜎, 𝛽)𝜉 �̄�0 1𝜆−1 , L is outer,

∑
𝑑0>0,𝛽∈Keff,𝜎+
𝑣 (𝛽)=ℎ+ (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐼 𝑓 (𝜎+, 𝛽)𝜉 �̄�0 1𝜆−1

+ 𝔯+
𝔯−

∑
𝑑0<0,𝛽∈Keff,𝜎−
𝑣 (𝛽)=ℎ− (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽−𝑑0𝛼𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐼 𝑓 (𝜎−, 𝛽)𝜉 �̄�0 1𝜆−1 , L is inner.

(29)

Given 𝛽 = (𝑑0, 𝛽) ∈ Z × K𝜎 , define the extended or open sector pairing to be

〈𝐷𝑖 , 𝛽〉 = 𝑚 (0)
𝑖 𝑑0 + 〈𝐷𝑖 , 𝛽〉.

Recall that {𝐷𝑖 : 𝑖 ∈ 𝐼𝜎} is a Q-basis of L∨
Q
� Q𝑘 and a Z-basis of K∨

𝜎 � Z
𝑘 . Let 𝑣𝑎 = 𝐷𝑎+3 for

𝑎 = 1, . . . , 𝑘 ., and let {ℎ𝑎}𝑎=1,...,𝑘 be the dualQ-basis of LQ. Then {ℎ𝑎}𝑎=1,...,𝑘 is a Z-basis ofK𝜎 � Z𝑘 ,
and

Keff,𝜎 =
𝑘∑
𝑎=1
Z≥0ℎ𝑎 .

Given any (𝑑0, 𝛽) ∈ Z × K𝜎 , define

𝑞𝛽 = 𝑥𝑑0𝑞𝛽 = 𝑥𝑑0

𝑘∏
𝑎=1

𝑞
〈𝑝𝑎 ,𝛽〉
𝑎 .
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Define

Keff (X ,L) = {𝛽 = (𝑑0, 𝛽) ∈ Z × Keff,𝜎 : 〈𝐷1, 𝛽〉 ∈ Z≥0, 𝑑0 ≠ 0}.

Theorem 4.3. Assuming the Aganagic-Vafa brane (L, 𝑓 ) is either inner or outer,

𝑊X , (L, 𝑓 ) (𝑞, 𝑥) =
∑

𝛽∈Keff (X ,L)
𝑣 (𝛽)=ℎ (𝑑0 ,𝜆)

𝑞𝛽𝐴
X , (L, 𝑓 )
𝛽

𝜉 �̄�0 1𝜆−1 , (30)

where

𝐴
X , (L, 𝑓 )
𝛽=(𝑑0 ,𝛽)

=
−(−1) � 〈𝐷3 ,𝛽〉�

𝔪𝑑0
∏

𝑖∈𝐼𝜏 〈𝐷𝑖 , 𝛽〉!
· Γ(−〈𝐷3, 𝛽〉)
Γ(〈𝐷2, 𝛽〉 + 1)

.

Proof. Assume L is an outer brane. Let 𝛽 = (𝑑0, 𝛽), and let 𝜖 𝑗 = 𝑐 𝑗 (𝑣) for 𝑗 = 1, 2, 3. By equation (29)
(and recall that |𝐺𝜎 | = 𝔯𝔪),

𝑊X , (L, 𝑓 ) (𝑞, 𝑥) = 1
𝔯𝔪

∑
𝑑0>0

𝛽∈Keff,𝜎
𝑣 (𝛽)=ℎ (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽𝐷 ′
𝑑0 ,𝜆, 𝑓

𝐼 𝑓 (𝜎, 𝛽)𝜉 �̄�0 1𝜆−1 .

Given any 𝛽 ∈ Keff,𝜎 , we have �〈𝐷 𝑗 , 𝛽〉� − 𝜖 𝑗 = 〈𝐷 𝑗 , 𝛽〉 for 𝑗 = 1, 2, 3, and �〈𝐷𝑖 , 𝛽〉� = 〈𝐷𝑖 , 𝛽〉 for
𝑖 ∈ 𝐼𝜎 . The disk factors

𝐷 ′
𝑑0 ,𝜆, 𝑓

= −(−1) �𝑑0𝑤3+ �̄�
𝑚 � 𝔯
𝑑0

(
u
𝑑0

)age(ℎ (𝑑0 ,𝜆)) ∏ �𝑑0𝑤1 �+age(ℎ (𝑑0 ,𝜆))−1
𝑎=1 (𝑑0𝑤2 + 𝑎 − 𝜖2)

�𝑑0𝑤1�!

= −(−1) �𝑑0𝑤3+ �̄�
𝑚 � 𝔯
𝑑0

(
u
𝑑0

)age(ℎ (𝑑0 ,𝜆)) 1
Γ(𝑤1𝑑0 − 𝜖1 + 1) ·

Γ(−𝑤3𝑑0 + 𝜖3)
Γ(𝑤2𝑑0 − 𝜖2 + 1) .

The pullback of the coefficients of the I-function is

𝐼 𝑓 (𝜎, 𝛽) =
( u
𝑑0

)−age(ℎ (𝑑0 ,𝜆)) 1∏
𝑖∈𝐼𝜎 Γ(〈𝐷𝑖 , 𝛽〉 + 1)

· Γ(𝑤1𝑑0 − 𝜖1 + 1)
Γ(〈𝐷1, 𝛽〉 + 1)

· Γ(𝑤2𝑑0 − 𝜖2 + 1)
Γ(〈𝐷2, 𝛽〉 + 1)

· Γ(𝑤3𝑑0 − 𝜖3 + 1)
Γ(〈𝐷3, 𝛽〉 + 1)

.

Hence

𝑊X , (L, 𝑓 ) (𝑞, 𝑥) =
∑

𝛽∈Keff (X ,L)
𝑣 (𝛽)=ℎ (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽𝐴
X , (L, 𝑓 )
(𝑑0 ,𝛽) 𝜉 �̄�0 1𝜆−1 ,

where

𝐴
X , (L, 𝑓 )
𝛽

= (−1) � 〈𝐷3 ,𝛽〉� −1
𝔪𝑑0

1∏
𝑖∈𝐼𝜏 Γ(〈𝐷𝑖 , 𝛽〉 + 1)

· Γ(−〈𝐷3, 𝛽〉)
Γ(〈𝐷2, 𝛽〉 + 1)

.

Note that Keff (X ,L) ⊂ Z>0 × Keff,𝜎 , and for any (𝑑0, 𝛽) ∈ (Z>0 × Keff,𝜎)\Keff (X ,L), 𝐴X , (L, 𝑓 )
(𝑑0 ,𝛽) = 0.

In case L is inner, by equation (29),

𝑊X , (L, 𝑓 ) (𝑞, 𝑥) = 𝐼+ + 𝐼−,
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where

𝐼+ =
∑

𝑑0>0,𝛽∈Keff,𝜎+
𝑣 (𝛽)=ℎ+ (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽
−1
𝔪𝑑0

(−1) �𝑤+
3 𝑑0+〈𝐷3 ,𝛽〉�∏

𝑖∈𝐼𝜎+ Γ(〈𝐷𝑖 , 𝛽〉 + 1)

·
Γ(−𝑤+

3𝑑0 − 〈𝐷3, 𝛽〉)
Γ(𝑤+

2𝑑0 + 〈𝐷2, 𝛽〉 + 1)Γ(𝑤+
1𝑑0 + 〈𝐷1, 𝛽〉 + 1) 𝜉

�̄�
0 1𝜆−1 ,

𝐼− =
∑

𝑑0<0,𝛽∈Keff,𝜎−
𝑣 (𝛽)=ℎ− (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽−𝑑0𝛼
−1
𝔪𝑑0

(−1) �𝑤−
2 𝑑0+〈𝐷2 ,𝛽〉�∏

𝑖∈𝐼𝜎− Γ(〈𝐷𝑖 , 𝛽〉 + 1)

·
Γ(−𝑤−

2 𝑑0 − 〈𝐷2, 𝛽〉)
Γ(𝑤−

3 𝑑0 + 〈𝐷3, 𝛽〉 + 1)Γ(𝑤−
1 𝑑0 + 〈𝐷4, 𝛽〉 + 1) 𝜉

�̄�
0 1𝜆−1

=
∑

𝛽∈Keff,𝜎−
〈𝛽,𝐷4 〉+𝑤−

1 𝑑0∈Z≥0
𝑑0<0,𝑣 (𝛽)=ℎ− (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽−𝑑0𝛼
−1
𝔪𝑑0

(−1) �𝑤−
2 𝑑0+〈𝐷2 ,𝛽〉�∏

𝑖∈𝐼𝜎− Γ(〈𝐷𝑖 , 𝛽〉 + 1)

·
Γ(−𝑤−

2 𝑑0 − 〈𝐷2, 𝛽〉)
Γ(𝑤−

3 𝑑0 + 〈𝐷3, 𝛽〉 + 1)Γ(𝑤−
1 𝑑0 + 〈𝐷4, 𝛽〉 + 1) 𝜉

�̄�
0 1𝜆−1 .

We have

〈𝐷1, 𝛼〉 = 𝑤+
1 , 〈𝐷2, 𝛼〉 = 𝑤+

2 − 𝑤−
2 , 〈𝐷3, 𝛼〉 = 𝑤+

3 − 𝑤−
3 , 〈𝐷4, 𝛼〉 = −𝑤−

1 ,

and 〈𝐷𝑖 , 𝛼〉 = 0 for 𝑖 ∈ 𝐼\{1, 2, 3, 4}. So for 𝛽 ∈ Keff,𝜎− ,

〈𝐷1, 𝛽〉 = 〈𝐷1, 𝛽 − 𝑑0𝛼〉 + 𝑑0𝑤
+
1 ,

𝑤−
2 𝑑0 + 〈𝐷2, 𝛽〉 = 𝑤+

2𝑑0 + 〈𝐷2, 𝛽 − 𝑑0𝛼〉,
𝑤−

3 𝑑0 + 〈𝐷3, 𝛽〉 = 𝑤+
3𝑑0 + 〈𝐷3, 𝛽 − 𝑑0𝛼〉,

𝑑0𝑤
−
1 + 〈𝐷4, 𝛽〉 = 〈𝐷4, 𝛽 − 𝑑0𝛼〉.

Since the conditions 〈𝛽, 𝐷4〉 + 𝑤−
1 𝑑0 ∈ Z≥0 and 𝛽 ∈ Keff,𝜎− imply (𝑑0, 𝛽 − 𝑑0𝛼) ∈ Keff (X ,L),

𝐼− =
∑

(𝑑0 ,𝛽−𝑑0𝛼) ∈Keff (X ,L)
𝑑0<0

𝑥𝑑0𝑞𝛽−𝑑0𝛼
−1
𝔪𝑑0

(−1) �𝑤+
2 𝑑0+〈𝐷2 ,𝛽−𝑑0𝛼〉�∏

𝑖∈𝐼𝜎+ Γ(〈𝐷𝑖 , 𝛽 − 𝑑0𝛼〉 + 1)

·
Γ(−𝑤+

2𝑑0 − 〈𝐷2, 𝛽 − 𝑑0𝛼〉)
Γ(𝑤+

3𝑑0 + 〈𝐷3, 𝛽 − 𝑑0𝛼〉 + 1)Γ(𝑤+
1𝑑0 + 〈𝐷1, 𝛽 − 𝑑0𝛼〉 + 1) 𝜉

�̄�
0 1𝜆−1 .

So

𝐼+ + 𝐼− =
∑

𝛽∈Keff (X ,L)
𝑣 (𝛽)=ℎ+ (𝑑0 ,𝜆)

𝑥𝑑0𝑞𝛽
−1
𝔪𝑑0

(−1) � 〈𝐷3 ,𝛽〉�∏
𝑖∈𝐼𝜎+ Γ(〈𝐷𝑖 , 𝛽〉 + 1)

· Γ(−〈𝐷3, 𝛽〉)
Γ(〈𝐷2, 𝛽〉 + 1)Γ(〈𝐷1, 𝛽〉 + 1)

𝜉 �̄�0 1𝜆−1 .

�

https://doi.org/10.1017/fms.2022.57 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.57


44 Bohan Fang et al.

Remark 4.4. When L is an outer brane, the condition 𝛽 = (𝑑0, 𝛽) ∈ Keff (X ,L) implies 𝑑0 > 0. One has

𝑘∑
𝑎=1

〈𝐷𝑎+3, 𝛽〉𝑏𝑎+3 = −
3∑
𝑖=1

〈𝐷𝑖 , 𝛽〉𝑏𝑖 .

Since 〈𝐷𝑎+3, 𝛽〉 ≥ 0, the fan Σ is convex, and this is an outer brane, every 1-cone 𝑏𝑖 is on the same side
of the plane spanned by 𝑏2, 𝑏3. Therefore, 〈𝛽, 𝐷1〉 ≤ 0. From 𝑤1𝑑0 + 〈𝐷1, 𝛽〉 ∈ Z≥0, we see that 𝑑0 > 0.

4.3. The B-model and the framed mirror curve

The mirror B-model to the toric Calabi-Yau threefold X is another noncompact Calabi-Yau hypersurface
𝑌 ⊂ C2 × (C∗)2, constructed as the Hori-Vafa mirror [45]. It is equivalent to an affine mirror curve
𝐶𝑞 ⊂ (C∗)2. We state the relevant mirror prediction for disk amplitudes from [6, 5].

4.3.1. Toric degeneration
The main reference of this subsection is [61, Section 3].

The set

Θ0 =
⋂
𝐼 ∈A

∑
𝑖∈𝐼
Q≥0𝐷𝑖 ⊂ L∨Q

is a top-dimensional convex cone in L∨
Q
� Q𝑘 . The cone Θ0 together with its faces is a fan in L∨

R
denoted

by Θ. This fan determines a k-dimensional affine toric variety 𝑋Θ.
Consider the exact sequence induced from equation (4) (notice 𝑁tor = 0)

0 −→ 𝑀 ′ 𝜙′∨

−→ 𝑀 ′ 𝜓′∨

−→ L∨ −→ 0,

where 𝑀 ′ = 𝑀/〈v3〉 and 𝑀 ′ = 𝑀/〈𝜙∨(v3)〉. Let 𝐷 ′T
𝑖 be the image of 𝐷T

𝑖 when passing to 𝑀 ′. For any
proper subset 𝐼 ⊂ {1, . . . , 𝑟} and a cone 𝜐 ∈ Θ, define

Ξ̃𝐼 =
∑
𝑖∈𝐼
Q≥0𝐷

′T
𝑖 , Θ̃𝐼 ,𝜐 = (𝜓 ′∨)−1(𝜐) ∩ Ξ̃𝐼 .

Define a fan

Θ̃ = {Θ̃𝐼 ,𝜐 |𝐼 � {1, . . . , 𝑟}, 𝜐 ∈ Θ} � {0}.

This fan determines a toric variety 𝑋Θ̃. There is a fan morphism 𝜌′ : Θ̃ → Θ, which induces a flat
family of toric surfaces 𝜌 : 𝑋Θ̃ → 𝑋Θ.

Let Θ′
0 ⊂ L∨

Q
be the cone spanned by 𝑝1, . . . , 𝑝𝑘 . Let L′∨ :=

⊕𝑘
𝑎=1 Z𝑝𝑎 and let L′ be the dual lattice.

Then L′∨ is a sublattice of L∨ of finite index, and L is a sublattice of L′ of finite index. Let Θ∨
0 and Θ′∨

0
be the dual cones of Θ0 and Θ′

0, respectively. We have inclusions

Θ′
0 ⊂ Θ0, Θ∨

0 ⊂ Θ′∨
0 .

Since Θ∨
0 ∩ L is a subset of Θ′∨

0 ∩ L′, we have an injective ring homomorphism

C[Θ∨
0 ∩ L] → C[Θ′∨

0 ∩ L′] = C[𝑞1, . . . , 𝑞𝑘 ],
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where 𝑞1, . . . , 𝑞𝑘 are the variables in Section 4.1. Taking the spectrum, we obtain a morphism

A𝑘 = Spec(C[𝑞1, . . . , 𝑞𝑘 ]) −→ 𝑋Θ = Spec
(
C[Θ∨

0 ∩ L]
)

and a cartesian diagram

𝔛
�̃�−−−−−−→ 𝑋Θ̃

𝜌
⏐⏐� 𝜌

⏐⏐�
A𝑘

𝜈−−−−−−→ 𝑋Θ

(31)

where �̃� : 𝔛 → A𝑘 is a flat family of toric surfaces.
We choose a Kähler class [𝜔(𝜂)] ∈ 𝐻2 (𝑋Σ;Z) associated to a lattice point 𝜂 ∈ L∨; [𝜔(𝜂)] is the

first Chern class of some ample line bundle over 𝑋Σ. Then it determines a toric graph Γ ∈ 𝑀 ′
R
� R2

up to translation by an element in 𝑀 ′ � Z2 (see Section 3.2). The toric graph gives a polyhedral
decomposition of 𝑀Q in the sense of [61, Section 3]. It is a covering P of 𝑀Q by strongly convex lattice
polyhedra. The asymptotic fan of P is defined to be

ΣP := { lim
𝑎→0

𝑎Ξ ⊂ 𝑀 ′
Q : Ξ ∈ P}.

The fan ΣP = Θ̃ ∩ 𝜌′−1 (0) defines a toric surface S, which is the same as the toric surface given by the
defining polytope Δ . For each Π ∈ P , let 𝐶 (Π) ⊂ 𝑀 ′

Q
×Q≥0 be the closure of the cone over Ξ × {1} in

𝑀 ′
Q
× Q. Then

Σ̃P := {𝜎 is a face of 𝐶 (Π) : Π ∈ P} = Θ̃ ∩ 𝜌′−1(Q≥0𝜂)

is a fan in 𝑀 ′
Q
×Qwith support |Σ̃P | = 𝑀 ′

Q
×Q≥0. The projection 𝜋′ : 𝑀 ′

Q
×Q→ Q to the second factor

defines a map from the fan Σ̃P to the fan {0,Q≥0}. This map of fans determines a flat toric morphism
𝜋 : 𝑋Σ̃P

→ A1, where 𝑋Σ̃P
is the toric 3-fold defined by the fan Σ̃P . Let t be a closed point in A1, and

let 𝑋𝑡 denote the fibre of 𝜋 over t. Then 𝑋𝑡 � S for 𝑡 ≠ 0. As shown in [61], when 𝑡 = 0, we have a
union of irreducible components, where each S𝜐 is the toric surface defined by the polytope Δ𝜐 (recall
that each 3-cone is a cone over a triangle Δ𝜐 ⊂ Δ in 𝑁R)

𝑋0 =
⋃

𝜐∈Σ (3)
S𝜐 .

If 𝜐′ ∈ Σ(2), 𝜐 ∈ Σ(3) and 𝜐′ ⊂ 𝜐, 𝜐′ corresponds to a torus invariant divisor D𝜐′ ⊂ S𝜐 . We have the
following commutative diagram:

𝑋0 𝑋Σ̃P
𝔛 𝑋Θ̃

{0} A1 A𝑘 𝑋Θ.

𝜋

�̃�

𝜌 𝜌

𝜈

(32)

The polytope Hull(�̃�1, . . . , �̃�𝑟 ) ⊂ 𝑁 lies on the hyperplane 〈𝜙∨(u3), •〉 = 1. It determines a polytope
on 𝑁 ′ = {〈𝜙∨(u3), •〉 = 0} up to a translation. The associated line bundle 𝔏 on 𝑋Θ̃ has sections
𝑢𝑖 , 𝑖 = 1, . . . , 𝑟 associated to each integer point in this polytope. Define

𝑢 =
𝑟∑
𝑖=1

𝑢𝑖 , ℭ̃ = 𝑢−1(0).

https://doi.org/10.1017/fms.2022.57 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.57


46 Bohan Fang et al.

The divisor ℭ̃ ⊂ 𝑋Θ̃. Let ℭ := �̃�−1(ℭ̃) ⊂ 𝔛 be the pullback divisor under the morphism �̃� : 𝔛 → 𝑋Θ̃.
Then ℭ → A𝑘 is a flat family of curves over A𝑘 .

For 𝑞 ≠ 0, ℭ𝑞 = �̃�−1(𝑞) ∩ ℭ can be identified with the zero locus of

𝐻𝑞 (𝑥, 𝑦) = 𝑥𝔯𝑦−𝔰−𝔯 𝑓 + 𝑦𝔪 + 1 +
𝑘∑
𝑎=1

𝑠𝑎 (𝑞)𝑥𝑚𝑎 𝑦𝑛𝑎− 𝑓 𝑚𝑎 , (33)

where 𝑥𝔯𝑦−𝔰−𝔯 𝑓 = 𝑢1𝑢
−1
3 , 𝑦𝔪 = 𝑢2𝑢

−1
3 while 𝑠𝑎 (𝑞)𝑥𝑚𝑎 𝑦𝑛𝑎− 𝑓 𝑚𝑎 = 𝑢3+𝑎𝑢

−1
3 for 𝑎 = 1, . . . , 𝑘 . Here 𝑥, 𝑦

are affine coordinates of the toric surface S.
For any 𝛽 ∈ Keff, let 𝑠𝛽 =

∏𝑘
𝑎=1 𝑠

〈𝐷𝑎+3 ,𝛽〉
𝑎 . If we write 𝑝𝑎 =

∑𝑘
𝑏=1 𝑝

𝑏
𝑎𝐷𝑏+3, we have

𝑠𝑎 =
𝑘∏

𝑏=1
𝑞
𝑝𝑎
𝑏

𝑏 , 𝑠𝛽 = 𝑞𝛽 . (34)

Denote 𝑠𝛽 = 𝑥𝑑0 𝑠𝛽 for 𝛽 = (𝑑0, 𝛽).
When 𝑞 = 0, we have a union of irreducible components

ℭ0 =
⋃

𝜐∈Σ (3)
�̄�0,𝜐 .

Each irreducible component S𝜐 of the central fibre 𝑋0 is given by the equation {𝑢𝑖 = 0, 𝑏𝑖 ∉ 𝜐}. On
S𝜎+ , the coordinates in the affine chart 𝑢3 ≠ 0 are

𝑥𝔯𝑦−𝔰−𝔯 𝑓 = 𝑢1𝑢
−1
3 , 𝑦

𝑚 = 𝑢2𝑢
−1
3 ,

while on S𝜎− , the coordinates are

𝑢4𝑢
−1
3 = (𝑞𝛼𝑥−1)𝔰− 𝑦𝑛1+𝑠− 𝑓 , 𝑢2𝑢

−1
3 = 𝑦𝔪 .

Here 𝑏4 = 𝑚1v1 + 𝑛1v2 + v3, 𝑚1 = −𝔰− and 𝛼 = [𝔩𝜏]. Define

𝑈 ={(𝑞1, . . . , 𝑞𝑘 ) ∈ (C∗)𝑘 × C𝑘−𝑘′ : ℭ𝑞 is smooth
and intersects 𝜕S transversally at distinct points}.

Then U is a dense open subset of A𝑘 .

4.3.2. Mirror curve and the mirror conjecture for disk amplitudes
When 𝑞 ≠ 0, we denote 𝐶𝑞 = ℭ𝑞 \ (𝜕S). Thus the mirror curve 𝐶𝑞 ⊂ (C∗)2 is given by equation (33).
On �̄�0,𝜐 , when 𝑥 = 0, there are m points, called large radius limit (LRL) points. They are given by

𝑥 = 0, 𝑦𝔪 = −1.

If L is outer, these points are smooth points in �̄�0,𝜎 ⊂ ℭ0; if L is inner, they are the nodal points
�̄�0,𝜎+ ∩ �̄�0,𝜎− .

The group 𝐺∗
𝜎 = {(𝑡1, 𝑡2) ∈ (C∗)2 |𝑡𝔯1 = 𝑡𝔰2, 𝑡

𝔪
2 = 1} fits into the short exact sequence

1 → 𝝁∗
𝔯 → 𝐺∗

𝜎 → 𝝁∗
𝑚 → 1,

where 𝐺∗
𝜎 → 𝝁∗

𝔪 is given by (𝑡1, 𝑡2) ↦→ 𝑡2. Let

𝜒1 = (𝑒2𝜋
√
−1 1

𝔯 , 1), 𝜒2 = (𝑒2𝜋
√
−1 𝔰

𝔯𝔪 , 𝑒2𝜋
√
−1 1

𝔪 ).
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Then 𝐺∗
𝜎 = {𝜒 𝑗

1 𝜒
𝑙
2 | 𝑗 ∈ {0, . . . , 𝔯 − 1}, 𝑙 ∈ {0, . . . ,𝔪 − 1}}. It pairs with 𝐺𝜎 by

𝜒1 (ℎ) = 𝑒2𝜋
√
−1𝑐1 (ℎ) , 𝜒2 (ℎ) = 𝑒2𝜋

√
−1𝑐2 (ℎ) , ℎ ∈ 𝐺

and acts on the family of compactified mirror curves C̄ by

𝜒1 · (𝑥, 𝑦, 𝑠𝑎) = (𝑒2𝜋
√
−1 1

𝔯 𝑥, 𝑦, 𝑒−2𝜋
√
−1𝑐𝜎

1 (𝑏𝑎+3) 𝑠𝑎),

𝜒2 · (𝑥, 𝑦, 𝑠𝑎) = (𝑒2𝜋
√
−1 𝑠+𝔯 𝑓

𝔯𝔪 𝑥, 𝑒2𝜋
√
−1 1

𝔪 𝑦, 𝑒−2𝜋
√
−1𝑐𝜎

2 (𝑏𝑎+3) 𝑠𝑎).

Here 𝑐𝜎𝑖 (𝑏𝑎+3) is defined as ℎ𝑎+3 =
∑3
𝑖=1 𝑐

𝜎
𝑖 (𝑏𝑎+3)𝑏𝑖 . The group 𝝁∗

𝔪 acts freely and transitively on the
set of LRL points (𝑥 = 0 on �̄�0,𝜎+ ).

Given 𝜂 ∈ {0, 1, . . . ,𝔪 − 1}, let 𝜂 ∈ 𝐺∗
𝜏 be the element associated to the character

𝜒𝜂 : 𝐺𝜏 → C∗, 𝜒𝜂 (𝜆) = exp

(
2𝜋

√
−1

𝔪
𝜂�̄�

)
.

Then 𝜂 ↦→ 𝜂 is a bijection from {0, 1, . . . ,𝔪 − 1} to 𝐺∗
𝜏 . Given 𝜂 ∈ 𝐺∗

𝜏 , define 𝔲𝜂 ∈ ℭ0 by

𝔲𝜂 = (0, 𝑒𝜋
√
−1(−1+2�̄�)/𝔪).

For a small 𝜖 , one can always find small 𝜖 ′(𝜖) < 𝜖 such that when ‖𝑞‖ < 𝜖 ′(𝜖) the following set

𝑈 𝜖 , 𝜖 ′ =

{
{(𝑥, 𝑞), |𝑥 | < 𝜖,𝑈}, L is outer;
{(𝑥, 𝑞), |𝑥 | < 𝜖, |𝑞𝛼𝑥−1 | < 𝜖 whenever ‖𝑞‖ < 𝜖 ′}, L is inner;

is not empty. Let 𝑈 𝜖 = 𝑈 𝜖 , 𝜖 ′ (𝜖 ) × {‖𝑞‖ < 𝜖 ′(𝜖), 𝑞 ∈ 𝑈} ⊂ ℭ. When 𝜖 is sufficiently small,𝑈 𝜖 , 𝜖 ′ (𝜖 ) is
a disjoint union of 𝔪 small contractible regions when L is outer, or is a disjoint union of m annuli when
L is inner. Let𝑈 𝜖

𝜂 be the unique connected component of𝑈 𝜖 containing 𝔲𝜂 . So log 𝑦 is well defined on
𝑈 𝜖
𝜂 up to an integral multiple of 2𝜋

√
−1, and it could be written as a power series in x when L is outer,

and a Laurent series in x when L is inner.
Define

𝜙𝜂 :=
1
𝔪

∑
𝜆∈𝐺𝜏

𝜒𝜂 (𝜆−1)1𝜆.

Then {𝜙𝜂 : 𝜂 ∈ 𝐺∗
1} is the canonical basis of 𝐻∗

CR (B𝜇𝔪), and

1𝜆 =
∑
𝜂∈𝝁∗

𝔪

𝜒𝜂 (𝜆)𝜙𝜂 .

We prove the following mirror theorem for disk amplitudes. Note that the ambiguity in log 𝑦 does
not play any role in the statement.

Theorem 4.5.

𝑥
𝜕

𝜕𝑥

∑
𝜂∈𝝁∗

𝑚

(log 𝑦 |𝑈 𝜖
𝜂
)𝜙𝜂 =

(
𝑥
𝜕

𝜕𝑥

)2
𝑊X , (L, 𝑓 ) (𝑞, 𝑥) =

(
𝑥
𝜕

𝜕𝑥

)2
𝐹
X , (L, 𝑓 )
0,1 (𝝉2, 𝑋).

Here s and q are related by equation (34). The A-model flat coordinates 𝝉2, 𝑋 and the B-model
coordinates 𝑞, 𝑥 are related by the mirror maps in equation (25) and equation (28).
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Remark 4.6.

(i) Theorem 4.5 for smooth toric Calabi-Yau 3-folds was conjectured in [6, 5] and proved in [33].
(ii) Theorem 4.5 can also be written as∫ ∑

𝜂∈𝝁∗
𝑚

(
log 𝑦

𝑑𝑥

𝑥
|𝑈 𝜖

𝜂

)
𝜙𝜂“ = ”𝑊X , (L, 𝑓 ) (𝑞, 𝑥),

where the integral is indefinite and “ = ” means their instanton parts are equal in the following sense.
The left side is the sum of a power series with no constant term in x and an extra term in the form of
𝑓 (𝑞) log 𝑥 + 𝑐. The power series part is equal to the right side. Note that the constant ambiguity in
the indefinite integral is irrelevant here. If X is a smooth variety, then 𝝁∗

𝑚 is trivial, and we revert
to the original form of the conjecture in [6, 5]. We will prove this conjecture in the next subsection.

4.4. Open mirror theorem for disk amplitudes

Lemma 4.7. The solution v to the exponential polynomial equation

𝑘∑
𝑎=0

𝑡𝑎𝑒
𝑟𝑎𝑣 − 𝑒𝑣 + 1 = 0 (35)

around 𝑡0 = · · · = 𝑡𝑘 = 0, 𝑣 = 0 is in the following power series form:

𝑣 =
∞∑

𝑙0 ,...,𝑙𝑘=0
(𝑙0 ,...,𝑙𝑘 )≠0

(𝑟0𝑙0 + . . . 𝑟𝑘 𝑙𝑘 − 1)(𝑙0+···+𝑙𝑘−1)

𝑙0! . . . 𝑙𝑘 !
𝑡𝑙00 . . . 𝑡

𝑙𝑘
𝑘 . (36)

Here we adopt the Pochhammer symbol

(𝑎)𝑛 =
Γ(𝑎 + 1)

Γ(𝑎 − 𝑛 + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑎(𝑎 − 1) · · · (𝑎 − 𝑛 + 1), 𝑛 > 0;
1, 𝑛 = 0;

1
(𝑎+1) ...(𝑎−𝑛) , 𝑛 < 0;

where 𝑎 ∈ C and 𝑛 ∈ Z.

Proof. See Appendix A. �

Starting from the above observation, we prove Theorem 4.5 in this section. To find the expansion of
log 𝑦 on𝑈 𝜖

𝜂 , we assume

log 𝑦 = log 𝜉0 +
2𝜋

√
−1

𝔪
𝜂 + 𝑣(𝑞, 𝑥)

𝔪
=
𝜋
√
−1
𝔪

(−1 + 2𝜂) + 𝑣(𝑞, 𝑥)
𝔪

,

where v is a power series in q and x. Setting

𝜉 �̄� = 𝑒
2𝜋

√
−1

𝔪 �̄� , 𝑡0 = 𝑥𝔯 (𝜉0𝜉 �̄�)−𝑠−𝔯 𝑓 , 𝑟0 = −𝑤2𝔯,

𝑡𝑎 = 𝑠𝑎𝑥
𝑚𝑎 (𝜉0𝜉 �̄�)𝑛𝑎− 𝑓 𝑚𝑎 , 𝑟𝑎 =

𝑛𝑎 − 𝑓 𝑚𝑎

𝔪
,
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the mirror curve is

𝐻 (𝑥, 𝑦) =
𝑘∑
𝑎=0

𝑡𝑎𝑒
𝑟𝑎𝑣 − 𝑒𝑣 + 1 = 0.

Let Deff (X ,L) = {𝛽 = (𝑑0, 𝛽) ∈ Z × L|〈𝛽, 𝐷𝑖〉 ∈ Z≥0, 𝑖 ≠ 2, 3}. So Keff (X ,L) ⊂ Deff (X ,L). By
Lemma 4.7,

𝑣 =
∞∑

𝑙0 ,...,𝑙𝑘=0
(𝑙0 ,...,𝑙𝑘 )≠0

(𝑟0𝑙0 + . . . 𝑟𝑘 𝑙𝑘 − 1)(𝑙0+···+𝑙𝑘−1)

𝑙0! . . . 𝑙𝑘 !

𝑘∏
𝑎=0

𝑡𝑙𝑎𝑎 .

= −
∑

𝛽∈Deff (X ,L)

(𝜉0𝜉 �̄�)−𝑚〈𝐷2 ,𝛽〉
(−〈𝐷2, 𝛽〉 − 1)(−〈𝐷2 ,𝛽〉−〈𝐷3 ,𝛽〉−1)∏

𝑖∈𝐼𝜏 〈𝐷𝑖 , 𝛽〉!
𝑥𝑑0

𝑘∏
𝑎=1

𝑠
〈𝐷𝑎+3 ,𝛽〉
𝑎

= −
∑

𝛽∈Deff (X ,L)

(𝜉0)−𝑚〈𝐷3 ,𝛽〉 (𝜉 �̄�)−𝑚〈𝐷2 ,𝛽〉
(−〈𝐷3, 𝛽〉 − 1)(−〈𝐷2 ,𝛽〉−〈𝐷3 ,𝛽〉−1)∏

𝑖∈𝐼𝜏 〈𝐷𝑖 , 𝛽〉!
𝑥𝑑0𝑞𝛽 .

Suppose that L is an outer brane. For any 𝛽 = (𝑑0, 𝛽) ∈ Deff (X ,L), we have

𝑑0(v1 + 𝑓 v2) − 𝑣(𝛽) + 𝑁𝜎 ∈ 𝐺𝜏 ⊂ 𝐺𝜎 = 𝑁/𝑁𝜎 .

Let 𝜆 = 𝑑0(v1 + 𝑓 v2) − 𝑣(𝛽) +𝑁𝜎 ∈ 𝐺𝜏 . Then ℎ(𝑑0, 𝜆) = 𝑣(𝛽) ∈ 𝐺𝜎 . If L is an inner brane, we replace
𝜎 by 𝜎+ in the above discussion and define 𝜆 ∈ 𝐺1 similarly. Then

〈𝐷2, 𝛽〉 ∈
�̄�

𝔪
+ Z, 〈𝐷3, 𝛽〉 ∈ − �̄�

𝔪
+ Z.

So

𝜉
−〈𝐷2 ,𝛽〉
�̄� = exp

(
−2𝜋

√
−1

𝔪
𝜂�̄�

)
= 𝜒𝜂 (𝜆−1).

It follows that

𝑥
𝜕

𝜕𝑥

∑
𝜂∈𝝁∗

𝑚

(log 𝑦)𝑈 𝜖
𝜂
𝜙𝜂

= −
∑

𝛽∈Keff (X ,L)
ℎ (𝑑0 ,𝜆)=𝑣 (𝛽)

(𝜉0)−𝔪 〈𝐷3 ,𝛽〉
𝑑0(−〈𝐷3, 𝛽〉 − 1)(−〈𝐷2 ,𝛽〉−〈𝐷3 ,𝛽〉−1)

𝔪
∏

𝑖∈𝐼𝜏 〈𝐷𝑖 , 𝛽〉!

∑
𝜂∈𝝁∗

𝑚

𝜒𝜂 (𝜆−1)𝜙𝜂𝑥𝑑0𝑞𝛽

= −
∑

𝛽∈Keff (X ,L)
ℎ (𝑑0 ,𝜆)=𝑣 (𝛽)

(𝜉0)−𝔪 � 〈𝐷3 ,𝛽〉�
𝑑0(−〈𝐷3, 𝛽〉 − 1)(−〈𝐷2 ,𝛽〉−〈𝐷3 ,𝛽〉−1)

𝔪
∏

𝑖∈𝐼𝜏 〈𝐷𝑖 , 𝛽〉!

∑
𝜂∈𝝁∗

𝔪

(𝜉0)�̄�𝜒𝜂 (𝜆−1)𝜙𝜂𝑥𝑑0𝑞𝛽

=
∑

𝛽∈Keff (X ,L)
ℎ (𝑑0 ,𝜆)=𝑣 (𝛽)

−(−1) � 〈𝐷3 ,𝛽〉� 𝑑0Γ(−〈𝐷3, 𝛽〉)
𝔪Γ(〈𝐷2, 𝛽〉 + 1)

∏
𝑖∈𝐼𝜏 Γ(〈𝐷𝑖 , 𝛽〉 + 1)

𝑥𝑑0𝑞𝛽𝜉 �̄�0 1𝜆−1 .
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On the other hand,(
𝑥
𝜕

𝜕𝑥

)2
𝑊X , (L, 𝑓 ) (𝑥, 𝑞)

=
∑

𝛽∈Keff (X ,L)
ℎ (𝑑0 ,𝜆)=𝑣 (𝛽)

−(−1) � 〈𝐷3 ,𝛽〉� 𝑑0Γ(−〈𝐷3, 𝛽〉)
𝔪Γ(〈𝐷2, 𝛽〉 + 1)

∏
𝑖∈𝐼𝜏 Γ(〈𝐷𝑖 , 𝛽〉 + 1)

𝑥𝑑0𝑞𝛽𝜉 �̄�0 1𝜆−1 .

Thus Theorem 4.5 follows.

A. Proof of Lemma 4.7

In this appendix, we obtain a power series solution to the following exponential polynomial where
𝑟𝑎 ∈ R

1 − 𝑒𝑣 +
𝑘∑
𝑎=1

𝑡𝑎𝑒
𝑟𝑎𝑣 = 0 (37)

around 𝑡1 = · · · = 𝑡𝑘 = 0 by oscillatory integral and inverse Laplace transform. Note that the notation
here is slightly different from that in Lemma 4.7: the sum in the above equation (37) starts from 𝑎 = 1,
whereas the sum in equation (35) in Lemma 4.7 starts from 𝑎 = 0.

We also consider the following equation where 𝑓 , 𝑟𝑎 ∈ Z>0:

𝐿(𝑋,𝑌 ) = 1 + 𝑋𝑌− 𝑓 + 𝑌 +
𝑘∑
𝑎=1

𝑠𝑎𝑌
𝑟𝑎 = 0. (38)

Let 𝑋 = 𝑒−𝑥 and 𝑌 = 𝑒−𝑦 . This equation identifies with equation (37) after setting 𝑋 = 0 and a change
of variables 𝑣 =

√
−1𝜋 − 𝑦, 𝑡𝑎 = (−1)𝑟𝑎 𝑠𝑎.

Lemma A.1. For equation (37), one can expand v as a power series in 𝑡𝑎, where each coefficient is a
rational function of 𝑟𝑎. For equation (38), the variable Y can be expanded as a power series of (−1)𝑟𝑎 𝑠𝑎
and (−1) 𝑓 𝑋 around 𝑌 = −1 with each coefficient rational in 𝑟𝑎 and f. One can also expand Y as a
power series of 𝑠𝑎 and (−𝑋)

1
𝑓 around 𝑌 = 0 with each coefficient rational in 𝑟𝑎 and f.

Proof. This is done by elementary recursive calculation. We illustrate the expansion at 𝑌 = 0 for
equation (38). The equation can be written as

𝑌 𝑓 + 𝑌 𝑓 +1 +
𝑘∑
𝑎=1

𝑠𝑎𝑌
𝑟𝑎+ 𝑓 = ((−𝑋)

1
𝑓 ) 𝑓 .

Implicit function theorem (applying to 𝑌 (𝑌 + 1 +
∑𝑘
𝑎=1 𝑠𝑎𝑌

𝑟𝑎 )
1
𝑓 = (−𝑋)

1
𝑓 ) says Y is analytic in (−𝑋)

1
𝑓

and 𝑠𝑎 around (𝑋,𝑌, 𝑠) = (0, 0, 0), and recursive calculation shows each coefficient is a rational function
of lower degree coefficients. �

We consider an affine curve

𝐶 := {(𝑋,𝑌 ) ∈ (C∗)2 | 𝐿(𝑋,𝑌 ) = 0}

and its partial compactification �̄� ⊂ C2 with two points (𝑋,𝑌 ) = (0, 0) and (𝑋,𝑌 ) = (0,−1 + 𝑂 (𝑠))
added. Let 𝑒−𝑥0 be the branch point of the map (𝑋,𝑌 ) ↦→ 𝑋 such that 𝑒−𝑥0 = − 1

4 +𝑂 (𝑠). Let 𝛾𝑠 be the
oriented Lefschetz thimble that passes through the ramification point (𝑒−𝑥0 , 𝑒−𝑦0) = (− 1

4 + 𝑂 (𝑠),− 1
2 +
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𝑂 (𝑠)) and goes from (𝑋,𝑌 ) = (0,−1 +𝑂 (𝑠)) to (𝑋,𝑌 ) = (0, 0). So the coordinate on 𝛾𝑠 is z such that
𝑥 − 𝑥0 = 𝑧2. We choose the sign of z such that (𝑋,𝑌 ) = (0, 0) is at 𝑧 = +∞.

Lemma A.2.∫
𝛾𝑠

𝑒−𝑢𝑥𝑦𝑑𝑥 =
∑

𝑙1 ,...,𝑙𝑘 ≥0
𝑒
√
−1𝜋 (−( 𝑓 +1)𝑢+

∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(𝑢)Γ( 𝑓 𝑢 +
∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(( 𝑓 + 1)𝑢 +
∑𝑘
𝑎=1 (𝑟𝑎 − 1)𝑙𝑎 + 1)

∏𝑘
𝑎=1 𝑠

𝑙𝑎
𝑎

𝑙1! . . . 𝑙𝑘 !
.

Proof. Consider a Landau-Ginzburg model𝑊𝑠 : (C∗)3 → C, where

𝑊𝑠 = 𝑋1𝑋
− 𝑓
2 𝑋3 + 𝑋2𝑋3 + 𝑋3 +

𝑘∑
𝑎=1

𝑠𝑎𝑋
𝑟𝑎
2 𝑋3 − 𝑢 log 𝑋1.

Define 𝑡1 = 𝑋1𝑋
− 𝑓
2 𝑋3, 𝑡2 = 𝑋2𝑋3, 𝑡1 = 𝑋1𝑋

− 𝑓
2 , 𝑡2 = 𝑋2.

Let 𝑋3 ∈ Γ3 be a cycle that counterclockwise encircles the positive real axis, starting and ending
on the positive real infinity. We require that the argument of each 𝑋3 ∈ Γ3 takes every value in (0, 2𝜋)
once. Define the relative connected cycle Γ𝑠 to be

Γ𝑠 ={(𝑋1, 𝑋2, 𝑋3) ∈ (C∗)3 | 𝑡1 > 0, 𝑡2 > 0, 𝑋3 ∈ Γ3,when 𝑋3 < 0 and 𝑠 = 0, 𝑋2 ∈ R−}.

When |𝑠 | < 𝜖 for small 𝜖 , the superpotential Re(𝑊) → ∞ in the noncompact direction of Γ𝑠 . On Γ𝑠 the
logarithm is taken in the following way: when 𝑋3 < 0 and 𝑠 = 0,

arg(𝑋1) = −( 𝑓 + 1)𝜋, arg(𝑋2) = −𝜋, arg(𝑋3) = 𝜋.

Since the cycle Γ𝑠 is simply connected and deforms continuously with respect to s, this choice is fixed.
Evaluate the following oscillatory integral of𝑊𝑠:

𝐼 (𝑢) =
∫
Γ𝑠
𝑒−𝑊𝑠

𝑑𝑋1
𝑋1

𝑑𝑋2
𝑋2

𝑑𝑋3
𝑋3

=
∫
Γ𝑠

exp(−
𝑘∑
𝑎=1

𝑠𝑎𝑡
𝑟𝑎
2 𝑋1−𝑟𝑎

3 − 𝑡1 − 𝑡2 − 𝑋3 + 𝑢 log 𝑡1 + 𝑓 𝑢 log 𝑡2 − ( 𝑓 + 1)𝑢 log 𝑋3)
𝑑𝑡1
𝑡1

𝑑𝑡2
𝑡2

𝑑𝑋3
𝑋3

=
∫
Γ𝑠
𝑒−

∑𝑘
𝑎=1 𝑠𝑎𝑡

𝑟𝑎
2 𝑋1−𝑟𝑎

3 −𝑡1−𝑡2−𝑋3 𝑡𝑢1 𝑡
𝑓 𝑢
2 𝑒−( 𝑓 +1)𝑢 (log𝑋3−

√
−1𝜋)𝑒−( 𝑓 +1)

√
−1𝜋𝑢 𝑑𝑡1

𝑡1

𝑑𝑡2
𝑡2

𝑑𝑋3
𝑋3

= − 𝑒−( 𝑓 +1)
√
−1𝜋𝑢

∑
𝑙1 ,...,𝑙𝑘 ≥0

(−1)
∑𝑘

𝑎=1 (𝑟𝑎−1)𝑙𝑎
𝑘∏
𝑎=1

(−𝑠𝑎)𝑙𝑎
𝑙𝑎!

( ∫
𝑡1>0

𝑒−𝑡1 𝑡𝑢−1
1 𝑑𝑡1

)
·
( ∫

𝑡2>0
𝑒−𝑡2 𝑡

∑𝑘
𝑎=0 𝑟𝑎𝑙𝑎+ 𝑓 𝑢−1

2 𝑑𝑡2

)
·
( ∫

𝑋3∈Γ3

𝑒−𝑋3𝑒 (log𝑋3−
√
−1𝜋) (

∑𝑘
𝑎=1 (1−𝑟𝑎)𝑙𝑎−( 𝑓 +1)𝑢−1)𝑑𝑋3

)
=2𝜋

√
−1𝑒−( 𝑓 +1)

√
−1𝜋𝑢

∑
𝑙1 ,...,𝑙𝑘 ≥0

(−1)
∑𝑘

𝑎=1 𝑟𝑎𝑙𝑎

𝑘∏
𝑎=1

𝑠𝑙𝑎𝑎
𝑙𝑎!

Γ(𝑢)Γ( 𝑓 𝑢 +
∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(( 𝑓 + 1)𝑢 +
∑𝑘
𝑎=1 (𝑟𝑎 − 1)𝑙𝑎 + 1)

.

Here we use the Hankel’s formula:
√
−1

2𝜋

∫
Γ3

𝑒−𝑧 (log(𝑡)−
√
−1𝜋)𝑒−𝑡𝑑𝑡 =

1
Γ(𝑧) .

https://doi.org/10.1017/fms.2022.57 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.57


52 Bohan Fang et al.

By Hori-Iqbal-Vafa [44], this oscillatory integral could be reduced to a Laplace transform on the
curve C. Introduce two variables 𝑣+, 𝑣− ∈ C, and the extended cycle

Γ̃𝑠 = Γ𝑠 × {𝑣+ = −𝑣−}.

Define 𝐻 = 𝑊𝑠

𝑋3
. Define the holomorphic volume form

Ω =
𝑑𝑋1
𝑋1

𝑑𝑋2
𝑋2

𝑑𝑣−

𝑣−
= 𝑑𝑥𝑑𝑦

𝑑𝑣−

𝑣−
.

We reduce the oscillatory integral to the curve C as follows. Let Γ̃red = {(𝑡1, 𝑡2) | arg 𝑡1 = arg 𝑡2}×{𝑣+ =
−𝑣−}.

𝐼 (𝑢) = 1
2
√
−1𝜋

∫
Γ̃𝑠
𝑒−𝑋3 (𝐻−𝑣+𝑣−)𝑒−𝑢𝑥

𝑑𝑋1
𝑋1

𝑑𝑋2
𝑋2

𝑑𝑋3𝑑𝑣
+𝑑𝑣−

=
1

2
√
−1𝜋

∫
Γ̃red

𝛿(𝐻 − 𝑣+𝑣−)𝑒−𝑢𝑥 𝑑𝑋1
𝑋1

𝑑𝑋2
𝑋2

𝑑𝑣+𝑑𝑣−

= −
∫
Γ̃red∩{𝐻−𝑣+𝑣−=0}

𝑒−𝑢𝑥
𝑑𝑋1
𝑋1

𝑑𝑋2
𝑋2

𝑑𝑣−

𝑣−
.

This integration is further reduced to the curve 𝐶 = {𝐻 (𝑒−𝑥 , 𝑒−𝑦) = 0} as follows:

𝐼 (𝑢) = −
∫
Γ̃red∩{𝐻−𝑣+𝑣−=0}

𝑒−𝑢𝑥𝑑𝑥𝑑𝑦
𝑑𝑣−

𝑣−
= 2

√
−1𝜋

∫
𝛾𝑠

𝑒−𝑢𝑥𝑦𝑑𝑥.

Notice that we use the fact that 𝑑 (𝑒−𝑢𝑥𝑦𝑑𝑥 𝑑𝑣−𝑣− ) = −𝑒−𝑢𝑥Ω near Γ̃red ∩ {𝐻 − 𝑣+𝑣− = 0}. �

The function 𝑑𝑦
𝑑𝑥 is a meromorphic function on the partially compactified curve �̄� with the only pole at

𝑥0. Its expansion at (𝑋,𝑌 ) = (0,−1+𝑂 (𝑠)) is a power series in X, while its expansion at (𝑋,𝑌 ) = (0, 0)
is a series in 𝑋

1
𝑓 . Denote 𝑔±(𝑥) = 𝑑𝑦

𝑑𝑥 |𝑧=±√𝑥−𝑥0 . Then 𝑔− is a power series in X and 𝑠𝑎, while 𝑔+ is a
power series in 𝑋

1
𝑓 and 𝑠𝑎. Since they are expansions of 𝑑𝑦

𝑑𝑥 = 𝑋𝑑𝑌
𝑌 𝑑𝑋 regarding the curve equation (38),

as series of (−1) 𝑓 𝑋 , (−1)𝑟𝑎 𝑠𝑎 and (−𝑋)
1
𝑓 , 𝑠𝑎 respectively, their coefficients are rational in 𝑟𝑎 and f by

Lemma A.1.
By Lemma A.2, the ‘classical Laplace transform’ is

𝔊(𝑢) =
∫
𝑥−𝑥0∈R+

𝑒−𝑢 (𝑥−𝑥0) (𝑔+(𝑥) − 𝑔−(𝑥))𝑑 (𝑥 − 𝑥0)

=
∫
𝑥−𝑥0∈R+

𝑒−𝑢 (𝑥−𝑥0)
(
𝑑𝑦

𝑑𝑥

)
𝑑 (𝑥 − 𝑥0) = 𝑢𝑒𝑢𝑥0

∫
𝛾𝑠

𝑒−𝑢𝑥𝑦𝑑𝑥

=
∑

𝑙1 ,...,𝑙𝑘 ≥0
𝑢𝑒𝑢𝑥0𝑒

√
−1𝜋 (−( 𝑓 +1)𝑢+

∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(𝑢)Γ( 𝑓 𝑢 +
∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(( 𝑓 + 1)𝑢 +
∑𝑘
𝑎=1 (𝑟𝑎 − 1)𝑙𝑎 + 1)

∏𝑘
𝑎=1 𝑠

𝑙𝑎
𝑎

𝑙1! . . . 𝑙𝑘 !
.

By the inverse Laplace transform formula,

(𝑔+ − 𝑔−) =
∫ 𝑢=+∞

√
−1+𝑇

𝑢=−∞
√
−1+𝑇

𝔊(𝑢)𝑒𝑢 (𝑥−𝑥0)𝑑𝑢,

where T is large enough that all poles of𝔊(𝑢) are on the left of the integration contour. Here the inverse
Laplace transform takes residues around poles of Γ(𝑢) and Γ( 𝑓 𝑢 +

∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎). Taking the residues
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around all poles (other than the possible pole at 𝑢 = 0) of Γ( 𝑓 𝑢 +
∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎) gives a series of (−𝑋)

1
𝑓

with coefficients rational in 𝑟𝑎 and f, denoted by ℎ+

ℎ+ =
∑

𝑙>0,𝑙1 ,...,𝑙𝑘 ≥0
ℎ+𝑙,𝑙1 ,...,𝑙𝑘

𝑘∏
𝑎=1

𝑠𝑙𝑎𝑎 ((−𝑋)
1
𝑓 )𝑙

=
∑

𝑙>0,𝑙1 ,...,𝑙𝑘 ≥0
(−𝑙/ 𝑓 )𝑒

√
−1𝜋 (− 𝑓 +1

𝑓 𝑙+
∑𝑘

𝑎=1 𝑟𝑎𝑙𝑎) (𝑋
1
𝑓 )𝑙

Γ(− 𝑙
𝑓 )Res𝑢=− 𝑙

𝑓
Γ( 𝑓 𝑢 +

∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(− 𝑙 ( 𝑓 +1)
𝑓 +

∑𝑘
𝑎=1 (𝑟𝑎 − 1)𝑙𝑎 + 1)

∏𝑘
𝑎=1 𝑠

𝑙𝑎
𝑎

𝑙1! . . . 𝑙𝑘 !

=
∑

𝑙>0,𝑙1 ,...,𝑙𝑘 ≥0
(−𝑙/ 𝑓 ) (−𝑋)

𝑙
𝑓

Γ(− 𝑙
𝑓 )

Γ(− 𝑙 ( 𝑓 +1)
𝑓 +

∑𝑘
𝑎=1(𝑟𝑎 − 1)𝑙𝑎 + 1) 𝑓

∏𝑘
𝑎=1 𝑠

𝑙𝑎
𝑎

𝑙!𝑙1! . . . 𝑙𝑘 !
;

while taking residues around the poles of Γ(𝑢) (other than the possible pole at 𝑢 = 0), we get a power
series in X

ℎ− =
∑

𝑙>0,𝑙1 ,...,𝑙𝑘 ≥0
(−𝑙)𝑋 𝑙𝑒

√
−1𝜋 (−( 𝑓 +1)𝑙+

∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Res𝑢=−𝑙 (Γ(𝑢))Γ(− 𝑓 𝑙 +
∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(−( 𝑓 + 1)𝑙 +
∑𝑘
𝑎=1 (𝑟𝑎 − 1)𝑙𝑎 + 1)

∏𝑘
𝑎=1 𝑠

𝑙𝑎
𝑎

𝑙1! . . . 𝑙𝑘 !

=
∑

𝑙>0,𝑙1 ,...,𝑙𝑘 ≥0
(−𝑙) ((−1) 𝑓 𝑋)𝑙

Γ(− 𝑓 𝑙 +
∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(−( 𝑓 + 1)𝑙 +
∑𝑘
𝑎=1 (𝑟𝑎 − 1)𝑙𝑎 + 1)𝑙!

∏𝑘
𝑎=1 ((−1)𝑟𝑎 𝑠𝑎)𝑙𝑎
𝑙1! . . . 𝑙𝑘 !

.

So 𝑔+ − 𝑔− = ℎ+ + ℎ− + const., where the constant difference (in X) arises since we don’t consider the
residue around 𝑢 = 0. For any degree 𝑙 ≥ 1, choose 𝑓 > 𝑙 such that the term ((−𝑋)

1
𝑓 )𝑙

∏𝑘
𝑎=1 𝑠

𝑙𝑎
𝑎 in 𝑔+

is not a monomial in X and thus can only come from ℎ+. Since the coefficient of the term is rational in
f, it has to be equal to the corresponding term ℎ+𝑙,𝑙1 ,...,𝑙𝑘 for all 𝑓 > 0. Therefore 𝑔+ = ℎ+ + const. and
−𝑔− = ℎ−. Note here that 𝑔− is the expansion of 𝑑𝑦

𝑑𝑥 , and since y is analytic in X at (𝑋,𝑌 ) = (0,−1+𝑂 (𝑠)),
−𝑔− has no degree 0 term and does not differ from ℎ− by a degree 0 term in X.

Suppose the expansion of y at (𝑋,𝑌 ) = (0,−1 +𝑂 (𝑠)) is 𝑦 = 𝐴0 +
∑
𝑙>0 𝐴𝑙𝑋

𝑙 , then the expansion of
𝑑𝑦
𝑑𝑥 at this point is

𝑔− =
𝑑𝑦

𝑑𝑥
= −

∑
𝑙>0

𝑙 𝐴𝑙𝑋
𝑙 .

Therefore, for 𝑙 ≥ 1,

𝐴𝑙 = −
∑

𝑙1 ,...,𝑙𝑘 ≥0
𝑒
√
−1𝜋 (− 𝑓 𝑙+

∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(− 𝑓 𝑙 +
∑𝑘
𝑎=1 𝑟𝑎𝑙𝑎)

Γ(−( 𝑓 + 1)𝑙 +
∑𝑘
𝑎=1 (𝑟𝑎 − 1)𝑙𝑎 + 1)

∏𝑘
𝑎=1 𝑠

𝑙𝑎
𝑎

𝑙1! . . . 𝑙𝑘 !
. (39)

We prove Lemma 4.7 by induction. The statement is true for 𝑘 = 0 trivially. Assume it is true for
𝑘 = 𝔪 − 1 (𝔪 ≥ 1). For 𝑘 = 𝔪, we first assume 𝑟𝔪 ∈ Z<0 and all other 𝑟𝑎 (𝑎 = 1, . . . ,𝔪 − 1) are
positive integers. By the induction assumption, we know the expansion is given as in Lemma 4.7 for
terms of degree 0 in 𝑡𝔪. Let 𝑓 = −𝑟𝔪. After a change of variables 𝑣 =

√
−1𝜋 − 𝑦, (−1)𝑟𝑎 𝑠𝑎 = 𝑡𝑎 for

𝑎 = 1, . . . ,𝔪 − 1 and 𝑋 = (−1) 𝑓 𝑡𝔪, we obtain Equation (38). Then from Equation (39), we know the
expansion of y for positive degree terms in X and thus conclude that for positive degree terms in 𝑡𝔪, the
lemma also holds. Then for all degrees, the lemma holds

𝑣 =
∞∑

𝑙1 ,...,𝑙𝑘=1
(𝑙1 ,...,𝑙𝑘 )≠0

(𝑟1𝑙1 + . . . 𝑟𝑘 𝑙𝑘 − 1)(𝑙1+···+𝑙𝑘−1)

𝑙1! . . . 𝑙𝑘 !
𝑡𝑙11 . . . 𝑡

𝑙𝑘
𝑘 .
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Each coefficient is a rational function of 𝑟1, . . . , 𝑟𝔪. The above equation holds for 𝑟1, . . . , 𝑟𝔪−1 ∈ Z>0
and 𝑟𝔪 ∈ Z<0, so it is true for all 𝑟𝑎 ∈ R.
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