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I. Introduction.

§ 1. In this note we wish to study some properties of a square

matrix of order n and of rank r,

1.1. A = ( a i k ) , i,k = 1,2, , n ,

whose coaxial minors \M\ of certain orders, or some of them, are

known to be zero. Our main results will lie in two directions,

according as the vanishing minors are, within certain limits, of an

arbitrary order (Part II) or of two consecutive orders only (Part III).

In Part II we will prove the two following theorems:

1.2. / / all coaxial minors of an order less than n — m of a square
matrix A of order n > 3m vanish, the upper bound1 for the number of
non-vanishing coaxial minors of order n — m of A is 2m.

1.3. A square matrix A of order n > 3 whose coaxial minors of order
less than n — 1 all vanish2, can by permuting its rows and columns in
the same manner be brought into one of the six following forms:

1.31. aik = 0 for i 2> k, other aik arbitrary;

1.32. aBl=f=O, all aii+1 =$=0, while all other aik vanish;

1.33. an2=^0, all â  i + 1 =|= 0 except a12, all alk except axl are arbitrary,

while all other aik vanish;

1.34. = 1.33, reflected at the main diagonal;

1.35. = 1.32, modified by a23 = 0, a13=j=0, a24=|=0;

1 This is at most one half and generally a much smaller fraction of the number
nCm of all coaxial minors of the same order.

- In the case n = 3, one more form appears.

https://doi.org/10.1017/S0013091500027462 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500027462


ON VANISHING COAXIAL MINORS 211

1.36. = 1.35 with a2s=\=0.

For the above cases, there are 0, 0, 1, 1, 2, 2 non-vanishing coaxial first

minors of A respectively, whilst | A | = 0 except for 1.32 and 1.36.

§ 2. If only minors of two consecutive orders of A are known to be
zero, we have Kantor's theorem1:

2.1. If all coaxial minors of order m o/ 1.1 are not zero, while those of
orders m + 1 and m + 2 all vanish, then r = m.

Let us suppose now that M is a given coaxial minor of A and
M_ is a grwew coaxial first minor of M. By the sign + we shall
denote simple coaxial bordering; i.e. M+ symbolises every coaxial
minor of A which has M for first minor, so M is a M _+. I t will be
assumed that M and M _ are formed by the first m and m — 1 rows
and columns of A respectively, which can always be attained by
permuting the rows and columns of A in the same manner. In Part
III the following generalisation of 2.1 will be obtained:

2.2. If all \M_+ |=)=0 while all \M_++\ and \M++\ vanish, then r = m.
2.1 can, however, also be obtained by means of §7.

For special matrices A the conditions of 2.2 can be replaced by
weaker ones2:

2.3. / / | M |=|=0 while all \M+\ and \M++\ vanish, then the rank of
the symmetrical (or antisymmetrical) matrix A is TO.

At the same time reasons will appear for the failure of a similar
statement recently given by W. H. Metzler3 for general matrices.

II. Minors of an arbitrary order.

§3. Before proving 1.2 and 1.3 we will establish the two following
lemmas4:

3.1. If \A\ and all the coaxial minors of A vanish, then all the n\ terms
of | A | = S ± au a22 .. . . ann vanish.

1 Giitt. Nachrichten (1899), 272-281.
2Kantor, loc. cit., Frobenius, Journal fur Math., 82 (1877), 230-315, and Sitzb. der

Preuss. Akad. Wiss. (1894), 241-256.
3Amer. Math. Monthly, XLI (1934), 607-608.
4 These are, for n > 3, contained in 1.3.
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3.2. / / \A =%=0, while all the coaxial minors of A vanish, then A, by
permuting its rows and columns in the same manner, can be brought
into the form 1.32.

The lemma 3.1 is trivial for n = 1 and n= 2; we may, therefore,
assume it valid for all orders less than n.

Then every term \L of a coaxial minor of A vanishes, and thus
also every term of j A j vanishes in which /x appears as a factor, i.e.
which contains a cycle of less than n indices. If, now, 3.1 were not
true, one of the remaining terms, say a = a12a23 .. . . anl, would be
different from zero. But then, every aik not contained in a must be
zero; e.g. ai2, because of /x = a23

 au aK a52 = 0, a2i a3i a45 =J= 0. There-
fore we have | A j = ± a =j= 0, while it was assumed that | A \ — 0.

Passing to 3.2, 3.1 applies to every coaxial minor of A, so again
every term of | 4̂ | vanishes which contains a cycle of less than n
indices. As |.4|=|=0, one of the remaining terms, say the above a,
must be different from zero. As before every aik not contained in a
is seen to vanish, so A has the form 1.32.

§4. In order to prove 1.2, let us first remark that, under the
suppositions there made, every non-vanishing coaxial minor | M j of
order n — m of A contains by 3.2 exactly n — m non-vanishing
elements. To these elements there corresponds a cycle /x of n — m
indices which may be called a non-vanishing cycle, and no shorter
cycle of the same kind exists. Incidentally we see that the number
m belonging to such a given matrix A depends only upon the position
of the zero elements of A.

We now remark that in our matrix A any three cycles fi0, filt

jn2 °f n — m indices must have at least one common index. For
let v0 denote the set composed of those indices 1, 2, . . . ., n which are
not contained in fx0, and define vlf v2 similarly. As v0, vlt v2 contain
each m indices and together at most 3m < n indices, there must exist
indices belonging to neither of them and therefore common to

§ 5. From these cycles /x0, /t1} /x2, . . - • a rectangular matrix M can
be constructed as follows. In the first line put the indices belonging
to ju.o, beginning with an arbitrary index and following each other as
in ix0. The next line is similarly formed of the indices belonging to
fj.u beginning, however, in a way to make at least one common index
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i of fx0 and fix (which by § 4 exists) stand in both in the same column.
If another common index k would be found in different columns, as in

= (a

= (S
k y
e k

).

where a, /?, . . . . denote groups of indices, a shorter non-vanishing
cycle (8 i /3 k £) could be constructed by combining indices of /x0 and
fiy. So if one common index of two cycles stands in both in the same
column, the same is true for all common indices.

Now put the indices of fx2 in the third line of M, making, as
before, its common indices with .̂0 stand in both in the same column,
and similarly for the other lines. Then every two lines of M, say
Hi and yu.2) have eo ipso their common indices standing in the same
column, because this is true for their common index with /n0 which
exists by § 4.

§ 6. The formation of the columns of M is thus seen to be inde-
pendent of the choice of /x0, and no two of these columns have an
index in common.

Let the number of different indices contained in the n — m
columns of M be clt c2, . . . . . cn_m; then the number of different
non-vanishing cycles of n — m indices, i.e. of lines of M, is clearly at

n— m

most c = II cK. The sum of a possible set of cK's must be less than

or equal to »; at least n — 2m of the cA's, therefore, are unity.
Modifying a given set with c, > 2, cA = 1 by putting c'«= cK — 1, c\ = 2,
we get a c' > c; the greatest value of c will thus be obtained if all
cA's are unity or two, the number of the latter being at most m.

As matrices A can be found without difficulty such that the
number of c '̂s equal to two is exactly m and the number of lines of
M exactly c, the upper bound required is c = 2m, as stated in 1.2.

As a concrete example with n = 7, m = 2, put

0 . 0 0 0 . 0
0 0 . 0 0 a 0
0 0 0 . 0 0 .

A = 0 0 0 0 . 0 6 i, ac = bd = 0,
. 0 0 0 0 0 0
0 c . 0 0 0 0
0 0 0 d . 0 0
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where the points denote arbitrary non-vanishing numbers; for this
A, we obtain

1 2 3 4 5

1 6 3 4 5
1 6 3 7 5

Ci = c3 = c5 = 1, c2 = c4 = 2, c = 4.

§7. Concerning the related question about the matrices A with
| ,4 | = 0 whose coaxial minors of every order greater than n — m
vanish, it may be mentioned that in the simplest case m = 2 these
matrices consist (i) of the matrices of rank less than n — 1; (ii) of
those matrices whose diagonal elements can be divided in two classes
I and II such that neither the rows containing I nor the columns
containing I I are linearly independent.

§8. Let us proceed to the enumeration given by 1.3. By 1.2 for
m = 1 there are at most two non-vanishing coaxial first minors of A.
If there are exactly two, the corresponding cycles ix of n — 1 indices
must have their common indices in the same order (§ 5), e.g.
(1245 . . . . n) and (1345 . . . . n); so, remembering that 023032 = 0, we
obtain the last two cases of 1.3.

Further, if the one existing )x is (23 .. . . n), alfc=)=0 and an=(=0
would belong to a cycle of less than n non-vanishing elements, so
then either all aXk or all aa must vanish; this gives 1.34 and 1.33
respectively.

Finally, if all coaxial minors of A including the first minors
vanish, |^4|=)=0 implies 1.32 as stated in 3.2: and if | A | = 0, the
rearrangement of its indices i = 1, 2, . . . . , n which brings A in the
form 1.31 can be made as follows.

§ 9. If, for a given pair of indices i, k, there exists a product of the
form a = ait a( t .. .. at k=\=0 (including the case of a product con-
sisting of one element only, i.e. a = aik=\=0), we say that i is " prior "
to k; then in virtue of 3.1 cycles of indices cannot appear in a, and
all the indices i, ix , ix, k must be different from one another.
Therefore we cannot have i prior to itself. Moreover, if i is prior to
k and k is prior to I, then i is prior to I. Hence i and k cannot both
be prior to the other.
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But there may be pairs of indices between which no relation of
priority holds. There may even exist indices which do not appear in
any such relation; let their set be Jo (which may be void). Let Jx be
the set of those i's which have no prior k, generally Jk be the set of
those i's which are not contained in Jo, Jx, . . . . , JX-i and which
have no prior k except in these sets; thus all the indices i belong
to the finite number of non-void t/'s. We then fix an arbitrary order
between the indices belonging to the same J, and place the indices
belonging to JK after those belonging to t/A_i.

In the new order, aii;=j=O implies i is prior to k; if, therefore,
the rows and columns of A are ordered accordingly, A has the form
1.31; this completes the proof of 1.3.

III. Minors of two consecutive orders.

§ 10. Let us first establish a decomposition for an arbitrary square
matrix A which has a non-vanishing coaxial minor M. M may be
assumed to be formed by the first in rows and columns of A. The
remaining rows and columns of A intersect in another coaxial minor
M3, so A may be written

\M2 Jk

thus defining Mx and Mz as rectangular matrices.

Then, as M =j=0, using the symbols 1 7 and X~x for the matrix
product and inverse matrix, we can put

Jf- i j f j =N = (nik), i = l , 2 , ,m, k = 1, 2, . . ."., n — m;
Tvf T\/f 1 P I iY\ \ ii 1 9 iy% <yyt Tn 1 O fyi-j .

J.M. 2 -"•*- -*• \Jrik/> fc S 5 . . • . j ft lib) Hi J. j Zij . . . . j lib j

M3-PMN = Q = (qik), i = l , 2 , , n — m, k = 1, 2, , n-m;

so that 10.1 becomes
/ M MN

1 0 2 - ~ \PM PMN + Q

Conversely, the matrices M, N, P, Q, with the indicated numbers
of rows and columns, may be prescribed arbitrarily and independently
of one another, and A is then uniquely given by 10.2.

Subtracting appropriate multiples of the first m columns of A
from the other columns we obtain

PM QJ = WI<2 I

by use of Laplace's theorem. An analogous relation holds for every
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minor of A containing M. Therefore, as M | =j= 0, we can state that
10.3. Any minor of A containing M as a minor vanishes if, and only
if, the corresponding minor of Q vanishes.

Thus r = m implies Q = 0, i.e. all qa. = 0; conversely, from Q = 0
it follows by 10.2 that the last n — m columns of A are linear com-
binations of the first m columns. As | M | =[=0, the rank r cannot be
less than m. So we have1:

10.4. / / | M 14= 0, r = m holds if, and only if, Q~0.

§ 11. I t is equally easy to express the vanishing of all M+ and M++

as a property of Q. We deduce first from 10.3 that qti — 0 for all i,
and then that

11.1. / / \M =f=0, all | M + | and j M
+J~ \ vanish if, and only if, all

qik qki vanish.
The suppostions of 11.1 are of course contained in those of 10.4.

Let G be a condition which, taken in conjunction with the former,
will imply the latter. We may remark that even the vanishing of all
coaxial minors of A containing M as a minor is not a condition C as
it only ensures that Q is of the forms 1.31 or 1.32 (after a certain
permutation), so that r may be any number between m and n
inclusive.

W. H. Metzler's statement2 amounts to saying that, M_ being
given, " all M_+ but one do not vanish" is such a condition C. This,
however, can be replaced by " nmi =j= 0, pim =|= 0 for all i's but one,"
conditions which do not affect Q and are thus irrelevant for the truth
of r = m. Counter examples are indeed easily found, e.g. for m = '2,

1 0 0 0 0
0 1 0 1 1

\A\= 0 0 0 1 0 = 1 .
0 1 0 1 2
0 1 1 1 1 .

§ 12. To conclude that qik = 0 from q^qa = 0 it is however sufficient
to assume qik = qki or qik = — qki. But qik = ± qki, nik = pki is a
consequence of aik = ± «ii for all i, k. Hence this last assumption is
a condition C, whereby 2.3 is established.

1 Kronecker, Journal fur Math., 72 (1870), 152-175.
- loc nit., p.
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Another condition C, of a different kind from the previous one
and similar to Metzler's condition, is given by 2.2. We verify it by
remarking that a | M_++ | which is not a M+ can be written:

M_
«lm nmk

Pim O>m\

Pkm a«l

Pim O'mm - 1

Ptm 0>mm -1

Pim am

mi+9ki

Pirn

Pkm <*

As the minor | Mt | , formed by the first m rows and columns of
this \M_++|, is a |M_+ |, its factors nmi and pim must be different from
zero; similarly nmi=j=O, Ptm^O. If now qik = 0, say, qH=0, we
subtract the last row but one of this \M_++1, multiplied by
from the last row, getting \M_++ | = (— qkinmklnmi) \ Mt\.
in = °. Q = 0= and by 10.4 we obtain 2.2.

Hence
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