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Abstract. We establish large deviation estimates related to the Darling—Kac theorem and
generalized arcsine laws for occupation and waiting times of ergodic transformations
preserving an infinite measure, such as non-uniformly expanding interval maps with
indifferent fixed points. For the proof, we imitate the study of generalized arcsine laws for
occupation times of one-dimensional diffusion processes and adopt a method of double
Laplace transform.
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1. Introduction

In the study of dynamical systems with an infinite invariant measure, a variety of ergodic
and probabilistic limit theorems have been established. They are often related to classical
limit theorems for renewal, Markov, or diffusion processes in probability theory. Among
this kind of research of dynamical systems, we are going to focus on three distributional
limit theorems, the Darling—Kac theorem for occupation times in sets of finite measure,
the Dynkin—Lamperti generalized arcsine law for the last time the orbit visits to sets of
finite measure, and the Lamperti generalized arcsine law for occupation times in sets of
infinite measure, studied by [1, 2, 11, 14, 17, 18, 24, 25, 27, 33]. The aim of the present
paper is to establish large deviation estimates related to these limit theorems under similar
abstract settings as in [11, 18, 27, 33]. Our abstract results can be applied to, for example,
intermittent maps, that is, non-uniformly expanding interval maps with indifferent fixed
points. We are motivated by the study of a large deviation estimate related to a generalized
arcsine law for occupation times of one-dimensional diffusion processes [10]. We also
refer the reader to [16] for another type of large deviations, which is related to the strong
arcsine law for a one-dimensional Brownian motion.
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2 T. Sera

In the remainder of this section, we recall known distributional limit theorems and
present our large deviation estimates, using Boole’s transformation as a representative
example for simplicity. Nonetheless, previous studies as well as our main results are
applicable to more general classes of infinite ergodic transformations.

Example 1.1. (Distributional limit theorems for Boole’s transformation) We refer the
reader to [3, 4, 25] for the details of Boole’s transformation. The map 7 : [0, 1] — [0, 1]
given by

x(1=x)/(1—x—x?), xel0,1/2],

1-7T{ —x), x e (1/2, 1],

Tx =

is conjugated to Boole’s transformation Tx=x— x1(x e R\ {0}). Indeed, let
¢(x)=(1— X))~ = x~Ix € (0, 1)), then T = ¢poTo ¢_1 on R\ {0}. It is easy to see
that 7T0=0,T1 =1, T'(0)=T'(1) =1, T" >00n (0,1/2) and T” < O on (1/2, 1).In
addition, we have Tx —x =1 —x — T(1 — x) ~ x>(x — 0). Thus, 7 is a special case of
Thaler’s maps, which will be explained in §8. The map 7 admits the invariant density &
given by

1
he) = = + x e (0, 1).

1
(1-x?%
Therefore, the invariant measure u given by du(x) = h(x) dx(x € [0, 1]) is an infi-
nite measure. Set y = V2—-1¢€ (0, 1/2), which is a 2-periodic point of 7. Indeed,
Ty =1—1y e (1/2,1)and hence, T?y = y. Let

Ag=1[0,y), Y=I[y,Tyl, A1=Ty,l1].

Then, 1(Y) = +/2 and w(Ap) = n(A1) = oco. In addition, Y dynamically separates Ag
and Aq, that is, A; N T_lAj = (i # j). For a non-negative integer n, a Borel subset
A C [0, 1],and x € [0, 1], set

n
S =D 1a(T* %), Z}(x) = max{k <n:TFx € A},
k=1

Here, it is understood that max ¢ = 0. In other words, S,f (x) denotes the occupation time
in A of the orbit {T*x};>( between time 1 and 1, and Z7! (x) denotes the last time the orbit
arrives in A until time n. Fix any Borel probability measure v(dx) absolutely continuous
with respect to the Lebesgue measure on [0, 1]. We interpret x as the initial point of the
orbit {Tkx}kzo and v(dx) as the initial distribution of the orbit. Then, the Darling—Kac
theorem [1, 2] yields that, as n — oo,

sy 2 [
v<n < t) — —/ e VT dy, t>0. (1.1)
Zﬁ T Jo
Next, the Dynkin—Lamperti generalized arcsine law for waiting times [24] shows that, as
n — 0o,
zY 2
v(—” < t) — Zarcsin«/f, t€]0,1]. (1.2)
n bid
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Large deviations for infinite ergodic transformations 3

Finally, the Lamperti generalized arcsine law for occupation times [25] implies that, as
n— 00,

S 2
v<n§§%—mmm@ tel0, 1], i=0,1. (1.3)
n T
We also remark that convergence rates of (1.1) and (1.2) were also studied in [12, 19-21],
and a large deviation estimate for the Perron—Frobenius operator related to (1.2) can be
found in [26].

We now illustrate our main results. Our aim is to estimate the left-hand sides of (1.1),
(1.2),and (1.3) as t — 0.

Example 1.2. (Large deviation estimates for Boole’s transformation) Under the setting
of Example 1.1, we further assume that v is a probability measure supported on [¢, 1 —
g] for some ¢ € (0, 1/2) and admits a Riemann integrable density. Then, there exists
some constants 0 < C; < C2 < oo such that, for any positive sequence {c(n)},>0 with
c(n) = 0and c(n)n — oco(n — o0), the following estimates hold:

C1 < timinf 2 < fim sup 2

=< <C
n—oo /c(n) n—00 c(n)

(53 = vem). oG em) wa (5 <)
pn)=v N cin)), v T_C(I’L) and v T_C(I’l .

Note that C; and C> may depend on v. These estimates are compatible with (1.1), (1.2),
and (1.3), respectively, since the right-hand side of (1.1) with t = 4/c(n) and those of (1.2)
and (1.3) with ¢ = c(n) are asymptotically equal to (2/m)+/c(n), as n — oo. Nevertheless,
(1.1), (1.2), and (1.3) do not imply (1.4) directly.

(1.4)

for

For the proof, we adopt a method of double Laplace transform as in [18], imitating
the study of generalized arcsine laws for occupation times of one-dimensional diffusion
processes [5, 10, 16, 28, 29]. Although moment methods were used in [11, 24, 25, 27, 33],
double Laplace transform is more adequate for our large deviation estimates. For example,
the probability v(ZY /n < c(n)) in Example 1.2 has a negligibly small contribution to the
kth moment f[o,l](Z,f /(c(m)n))¥ dv(k = 1,2, ...), while it has large contributions to the

Laplace transform
2z
exp | — dv (A>0)
[0,1] c(m)n

and the double Laplace transform

00 Azﬁﬂ
/ e“”(/ exp <— —) a’v) du (g, > 0).
0 [0,1] c(m)n

This is why we adopt a method of double Laplace transform rather than moment methods
to estimate v(ZY /n < c(n)).
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This paper is organized as follows. In §2, we recall some basic notions of infinite
ergodic theory and the theory of regular variation. In §3, we formulate large deviation
estimates related to the Darling—Kac theorem and generalized arcsine laws in abstract
settings. Section 4 is devoted to introduce some lemmas needed to calculate double Laplace
transform. In §§5, 6, and 7, we prove the large deviation estimates by using double Laplace
transform. In §8, we apply our abstract results to Thaler’s maps.

2. Preliminaries

Before presenting our main results, let us recall basic concepts of infinite ergodic theory.

We basically follow the settings of [11, 18, 27, 33]. We also refer the reader to [3] for the

foundations of infinite ergodic theory.

Throughout this paper, except in §§1 and 8, we assume the following condition.

e Let (X, A, u) be a o-finite measure space with u(X) = o0, and 7 : X — X be
a conservative, ergodic, measure-preserving transformation on (X, A, ), which is
abbreviated as CEMPT. In addition, let Y € A with u(Y) € (0, c0).

Let N denote the set of all positive integers and set No = N U {0}. For A € A, we write

14 for the indicator function of A. Since T is a CEMPT, we have Zn>0 lgoT" =00,

almost everywhere (a.e.) forany A € A with £(A) > 0. In other words, the orbit {T"x}n>0

visits A infinitely often for z1-almost every initial point x. For u € L' (), define the signed
measure i, on (X, A) as u, (A) = fA udu(A € A). The transfer operator T:L! (n) —

L'(w) is defined by Tu= d(uy o TV /du(u € L'(w)). This operator is characterized

by the equation [xyoTudu= [y v(Tu) dp for any v € L®(w) and u € L'(11). The

domain of T can be extended to all non-negative, measurable functions u : X — [0, 00).

Then, | X Tud w=/[ x U du for any non-negative, measurable function u.

We need to extend the concept of uniform sweeping of [27, 33] slightly. If, for
non-negative measurable functions H and G on (X, A, ), there is some C > 0 and
K € Ny such that C Zf:o TKH > G a.e., then H will be called uniformly sweeping (in K
steps) for G. Let ) U {G} be a family of measurable functions H : X — [0, 00). We say $
is uniformly sweeping (in K steps) for G if the following condition holds: there exist some
constants C > 0 and K € Ny such that, for any H € §, we have C Zf:o TkH > G a.e.

Let us recall regularly and slowly varying functions. We refer the reader to [6] for the
details. Let f, g : (0, 00) — (0, 0o0) be positive, measurable functions. If f(¢)/g(t) —
1(t — 1y), then we write f(t) ~ g(t) (t — to). We say f is regularly varying of index
p € R at oo (respectively at 0) if, for any A > 0,

fOu) ~ AP f(@) (t — oo) (respectively t — 0+).
In the case where p = 0, we say f is slowly varying at oo (respectively at 0). A positive
sequence {a(n)},>o is called regularly varying of index p if the function a([¢]) is regularly
varying of index p at co. Here, [] denotes the greatest integer that is less than or equal to 7.

Let ¢ : X — N U {oo} be the first return time to Y, that is,

e(x) =minfk > 1: T*x € Y} (x € X).
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Here, it is understood that min J = oco. Define disjoint sets Yy, Y1, Y2, ... € Aas

n—1
Yo=Y, Y,=(T7"Y)\ < U T‘kY> =Y'N{p=n} (neN).
k=0

As proved in [27, equation (2.3)],
ly, = Z T "ynppmty ae. (n € No), (2.1

k>n

and u(Y,) = (Y N{p > n}). Let {w,}:}nzo denote the wandering rate of Y, which is given
by

n—1 n—1 n—1
w, = u( U T"‘Y) =) ny=y /Y Ty, dp
k=0 k=0 k=0
n—1

- Z w¥ N{p >k} (neNy. (22)
k=0

Since T is a CEMPT, we see |, T"Y = X, a.e. and hence, w! — 00 (n — 00). For
s > 0, let Q¥ (s) be a Laplace transform of {w}l:r] — w,);}nzoz

Q)= e ™y, —w) =Y e u¥nip>n}) (s>0).

n>0 n>0

Then, 0 < QY (s) < co and Q¥ (s) = oo (s — 0+). Let o € (0, 1) and let £ : (0, 00) —
(0, 00) be a positive, measurable function slowly varying at co. By Karamata’s Tauberian
theorem [6, Theorem 1.7.1], the condition

w,{ ~n'"%m) (n - 00)

is equivalent to
0V () ~TQ2—a)s ™ (s > 04). (2.3)

Here, T'(z) = [~ e~'t~'< dt (z > 0) denotes the gamma function.

If {(w,}l’)_1 ’,:;é fklyk}nzl converges in L°°(u) as n — oo, then we call the limit
function H € L°°(u) as the asymptotic entrance density of Y. Since (w}f y~! Zz;é Tk Yi
is a p-probability density function supported on ¥, sois H. Let G € {u € L' () : u > 0}.
Then, H is uniformly sweeping in K steps for G if and only if there exists N € N such that
{(w,’;)’] ZZ;(I) Tk ly, }n>n is uniformly sweeping in K steps for G.

For non-negative sequences (a(n)),>o0 and (b(n)),>0, we write a(n) = o(b(n))
(n — o0) if, for any ¢ > 0, there exists ng € Ny such that a(n) < eb(n) for any n > ny.

LEMMA 2.1. Assume that there exists H € L°°(u) such that

1T Lyngg=n) — (Y N {p = n) H|| ooy = o(u(Y N{p =n})) (n — 00).

Then, H is the asymptotic entrance density of Y.
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Proof. Fix ¢ > 0 arbitrarily. Take ng € Ny large enough so that
IT" Lyngp=n) — £ (Y N {p = nD Hllzxgy < en(Y N{p =n}) foranyn >no. (2.4)
By (2.1) and (2.2),

n—1
Y Ty, —wiH
k=0 Lo°(u)
n—1 o0
=Y > T™yngg=m — 1Y N{p =mHH)
k=0 m=k+1 Leo(w)
no—1 ng
<0 T vgg=m) — 1Y N {9 = m) H | L
k=0 m=k+1
n—1 00
+Y > ATy — (Y N{p =mDH|1xq).  (25)
k=0 m=max{k,ng}+1
It follows from (2.4) and (2.2) that
n—1 00
S T vngg=m — (Y N {e = mDH| Lo
k=0 m=max{k,np}+1
n—1 oo
582 Z w(¥ N{p =m)) = ew!. (2.6)
k=0 m=k+1
Since w,f — oo(n — 00), we use (2.5) and (2.6) to obtain
1 n—1
lim sup H_YZTlek_H <e.
n—o0o wy, =0 L% (1)
The proof is complete, since ¢ > 0 was arbitrary. [

3. Main results
In the following, we are going to formulate three types of large deviation estimates, which
are related to already-known distributional limit theorems.

3.1. Large deviation estimates related to the Dynkin—Lamperti generalized arcsine law.
Letu : X — [0, o0) be a non-negative, p-integrable function. Recall u,, is defined as the
w-absolutely continuous finite measure on X with density function u with respect to u,
that is,

uu(A)=/Au(x) du(x) (AecA.

Let Z,’[ (x) denote the last time the orbit {Tkx}kzo arrives in Y until time 7, that is,

ZY(x) =max{k <n:T*x € Y} (neNy, x € X).
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THEOREM 3.1. Suppose the following conditions are satisfied:

(A1) w,’l/ ~n'=%(n)(n — o0) for some «a € (0,1) and some positive, measurable
function £ : (0, 00) — (0, 00) slowly varying at co;

(A2) there exists N € N such that {(l/w,};) ZZ;(I) T*1 Y n>N IS uniformly sweeping for
ly;

(A3) there exists H € L°°(u) such that

n—1
- — 00
lim_ o ];T ly, =H inL®(u)

Let {c(n)}n>0 be a positive sequence satisfying
cn)—> 0, cnn—> o0 (n— o0). 3.1)

Then,

Y : o
MH(Z > ~ sin(ra) c(n)*£(n) (n > 00). 32)

— <c(n)
n wta  L(c(n)n)
The proof of Theorem 3.1 will be given in §5.

Remark 3.2. Under the setting of Theorem 3.1, fix ¢ € (0, ) arbitrarily. Then, the Potter
bounds for slowly varying functions [6, Theorem 1.5.6] implies that there exist C, > 1 and
N, € N such that, for any n > N, we have c(n) < 1 and

< _tm) < Cec(n)~%.

~ L(c(n)n) —

Thus, the right-hand side of (3.2) converges to 0 as n — o0.

Cle(n)®

Remark 3.3. If we further assume

L(n)
W -1 (n— 00), (3.3)
then we obtain
v .
KH (Z_n = c(n)> - MC(H)“ (n — 00). G4
n Ta

Remark 3.4. Fix any positive, measurable function £ : (0, oo) — (0, c0) slowly varying
at oo. Then, there exists a non-increasing, positive sequence {c(n)},>o satisfying (3.1)
and (3.3). Indeed, we use the uniform convergence theorem for slowly varying functions
[6, Theorem 1.2.1] to take a strictly increasing sequence {My}y>1 C N so that

{ 110
sup m —

Setce(n) = 1forO0<n < Myande(n) = N"V2for My <n < Mpy+1(N € N). Itis easy
to check that {c(n)},>0 satisfies (3.1) and (3.3).

1
1‘:/\6[N_1,1], tzMN}gﬁ (N € N).

Remark 3.5. (Comparison with the Dynkin-Lamperti generalized arcsine law) Let us
recall the Dynkin—Lamperti generalized arcsine law for waiting times. Assume conditions
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(A1) and (A3) of Theorem 3.1 are fulfilled. Then, for any p-absolutely continuous
probability measure v on (X, A) and any 0 < ¢ < 1, we have

lim v(Z—’{ < t) _ sin(ra) (! 1 ds 7 (3.5)

n—00 n b4 0 ST —s)*
which follows from [33, Theorem 2.3]. See also [27, Theorem 3.3] and [11, Theorem 2.1].
The limit is the distribution function of the Beta(a, 1 — «)-distribution. In the case
where o = 1/2, this distribution is the usual arcsine distribution. We emphasize that the
right-hand side of (3.5) does not depend on the choice of v because of the ergodicity
of T. Note that the right-hand side of (3.4) is asymptotically the same as the right-hand
side of (3.5) with ¢t = c(n), as n — oco. Nevertheless, (3.4) does not follow from (3.5)
directly. We do not know whether (3.2) remains valid in the case pupy is replaced by
other suitable probability measures v except for w7z (see also Corollaries 3.6 and
3.7, Theorem 3.8, and Remark 3.9). The difficulty is that the L'-characterization of the

ergodicity [33, Theorem 3.1] is inadequate for this purpose, although it is significant
for (3.5).

In the following two corollaries, we will consider what happens when we replace ;g in
the left-hand side of (3.2) by other finite measures.

COROLLARY 3.6. Let k € Ny. Under the setting of Theorem 3.1,

<Z,{ o Tk - )(_ R (Z,f - ) _sin(wa) c(m)*L(n) N
UH = cn) |\ = ugey P c(n) ) ra 2eom (n — 00).

Proof of Corollary 3.6 by using Theorem 3.1. Note that Z,f o T¥ = max{0, Z,I;_k —k}
and hence, {Z} o TX < nc(n)} ={Z),, < nc(n) + k}. In addition,
nc(n) + k
n+k
In other words, (3.1) is satisfied with n and c(n) replaced by n + k and (nc(n) + k)/(n +
k), respectively. Therefore, Theorem 3.1 yields

ZY o Tk zr k
WH (L < C(n)> = uy( nth < e(n) + —)
n n n

=MH<Z{+k - nc(n)+k>

— 0 and nc(n) +k — oco(n — o0).

n+k - n+k
sin(ra) (c(m)n +k\* £L(n+k)
- T ( n—+k > Lic(n)n + k)
sin(wa) c(n)*€(n)
~ o L(c(n)n)
Here, we used the uniform convergence theorem for slowly varying functions. This
completes the proof. O

(n — 0).

COROLLARY 3.7. Suppose that conditions (Al), (A2), (A3) in Theorem 3.1 are fulfilled.
Let G € {u € L'(1) : u > 0}. Then, the following assertions hold.
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(1) Assume that G is uniformly sweeping for 1y. Then, there exists C1 € (0, 00) such
that, for any positive sequence {c(n)},>o satisfying (3.1), we have

L Le(mn) Z,
Ci < llnfglolgf WMG(T =< C(”))- (3.6)

(2) Assume that 1y is uniformly sweeping for G. Then, there exists Co € (0, 00) such
that, for any positive sequence {c(n)},>o satisfying (3.1), we have

£(c(n)n) <Z,’;

lim sup — < C(n)> < Ca. (3.7
n

n—oo cm)*L(n)

Proof of Corollary 3.7 by using Theorem 3.1. (1) By the assumption, G is also uni-
formly sweeping for H. Take K € N so large that Y &' TG > K~'H, ae. Let
ke{0,1,...,K}. Note that Z¥ o T + K > ZY and hence,

zY ZY o Tk K
| — <c) ) =z pg| —— <cn) — — ).
n n n

Therefore, Theorem 3.1 yields that

zY 1 & zvork K
uG| — <c) ) = ug| —— <cn) — —
n =0 n n

\%

N sin(ra) c(n)¥L(n)
K2ma £(c(n)n)

(n —> 00),

which implies the desired result.
(2) By the assumption, H is also uniformly sweeping for G. Take K € N so large that
G<K Z/f:_ol TFH , a.e. Then, we use Corollary 3.6 to obtain

zY = zZY o Tk
MG<7" < C(n)> <K un ("T < C(n))
k=0
~ K2 sin(ra) c(n)¥L(n)

o L(c(n)n) (n = 00),

as desired. O
We will also give the proof of the following theorem in §5.

THEOREM 3.8. Suppose that conditions (Al) and (A2) of Theorem 3.1 are fulfilled. Let
Gef{ue Ll(,u) :u > 0}. Then, assertion (2) of Corollary 3.7 holds.

In other words, assertion (2) of Corollary 3.7 remains valid without assuming the
existence of the asymptotic entrance density H. The reader may expect assertion (1) also
remains valid under a similar setting, but we do not know whether it is true. The reason is
that ug (Z}[ /n < c(n)) can be bounded above but not below by double Laplace transform
of ZY, as we shall see in the proof of Theorem 3.8.
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Remark 3.9. Leta € (0, 1) and let {c(n)},>0 be a non-increasing, (0, 1]-valued sequence
satisfying ¢(0) = 1 and c(n) — O(n — o0). Then, there exists a p-probability density
function G such that

ZY
lim sup ,uc;(—” < c(n)) = 00, (3.8)
n—o00 C(l’l)a n

as we shall see below. Indeed, let
No=0 and Ny =min{n > Ny_1: u(Y N{p =n}) >0} (keN).

Then, {N¢}r>0 C Np is strictly increasing. We define the p-probability density function
G:X — [0,00)as

G = | CW)Z = c(NO* ) /(¥ N{p = Nih) - on ¥ O {p = NiJ(k € N),
0 otherwise.

Then, (¢ > Ni) = c¢(Np)*/? and hence,

cN O\ N — = c(Np)®

1G(e > No) = c(N) ™% = 00 (k — 00),
which implies (3.8).

3.2. Large deviation estimates related to the Darling—Kac theorem. For A € A, let
S,’l4 (x) denote the occupation time in A of the orbit {Tkx}kzo from time 1 to time n, that is,

St =Y 14(T*x) (n €No, x € X).
k=1

In the following, we consider occupation times in a set of finite measure.

THEOREM 3.10. Suppose the following conditions are satisfied:

B1) w,’[ ~nl=%(n)(n — o) for some o € (0,1) and some positive, measurable
function £ : (0, 00) — (0, 00) slowly varying at co;

(B2) {(1/w)) 52y TFly hus1 is L (u)-bounded.

Fort > 0, set
1) = ’ ~ - (1 — 00)
T ) T T+l @ - t@) >
Let {¢(n)}n>0 be a positive sequence satisfying
¢n) = 0 and C¢(nan) = oo (n— ). (3.9)
Then,
Y .
my(S—" < E(n)) ~ ITD ) (1 00). (3.10)
a(n) To

The proof of Theorem 3.10 will be given in §6.
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Remark 3.11. (Comparison with the Darling—Kac theorem) Let us recall the Darling—Kac
theorem. Set

_1\k—1
F(t) = % /0 > 2—)‘ sin(rak)T (1 + ak)s*~ds (1 > 0),

which is the distribution function of the Mittag—Leffler distribution of order « with Laplace
transform

oo

foo eMdF(t =) et (A e R)
0 T (1+ak) '

See [7, 15] for the details. As a special case, the Mittag—Leffler distribution of order 1/2
is the half-normal distribution with mean 2/./7. Suppose conditions (A1), (A2), (A3) of
Theorem 3.1 are satisfied. Then, for any p-absolutely continuous probability measure v on
X and for any ¢ > 0, we have

sy t
Iim v 2 <t|=F| ——— |, 3.11)
n— 00 a(n) ra+ao)u)
which follows from [27, Theorem 3.1]. See also [33, Theorem 2.1] and [11, Theorem 2.1].

Note that

(n — 0).

F( ¢c(n) ) N sin(wa) ¢(n)
Fad+oa)u() Ta  u(Y)

Nevertheless, (3.10) does not follow from (3.11) directly.

COROLLARY 3.12. Let k € Ng. Under the setting of Theorem 3.10,

SzloTk<~ ><_ R ( sY - )) sin(ra) - N
M1y< o) scm) )| = npny, am =€ c(n) —a C) (> 00).

Proof of Corollary 3.12 by using Theorem 3.10. Since |SY — SY o T¥| < k, we see that

sY k SY o Tk - sY k
Hiy (a(n) C“‘ﬁ) < a(n) —C(”)> “”(a() cm + a(n))

By Theorem 3.10,

Y
(SL < 2m + ) ~ IOz = o0),
a(n) a(n) T

as desired. O]

COROLLARY 3.13. Suppose that conditions (B1) and (B2) of Theorem 3.10 are fulfilled.
Let G € {u € L'(1) : u > 0}. Then, the following assertions hold.

(1) Assume that G is uniformly sweeping for ly. Then, there exists C1 € (0, 00) such
that, for any positive sequence {¢(n)},>0 satisfying (3.9), we have

C; < liminf — ! N«G( SY (n)) (3.12)
n—00 ¢(n) a(n) —
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(2) Assume that ly is uniformly sweeping for G. Then, there exists C, € (0, 00) such
that, for any positive sequence {¢(n)},>¢ satisfying (3.9), we have

Y
lim sup ;ug<s—” < E(n)) < C. (3.13)
n—oo €(n) a(n)

Proof of Corollary 3.13 by using Theorem 3.10. (1) Take K € N so large that
K TG > K="y, ae. Let k € {0,1,2,...,K}. Then, S < SY o TF +k < §' o
T* + K and hence,

sy o) = SnYoTk<~ K
“(ﬁ = “’”) = “G( am =W ﬁ)

Note that

~ K - K
c(n)— —— — 0 and (c(n) — —)a(n) — 00 (n— 00).
a(n) a(n)

Hence, Theorem 3.10 with ¢(n) replaced by ¢(n) — (K /a(n)) implies
K—1
sy ) SYoTk K
< > K n < -
uc(ﬂw._dm>_ Z%“G<cwn =2 = 2o

> K_2M1 <S_’1’/ < E(n) — L)

- "\am) — a(n)
sin(ra)

~ =) (11— o0,

which implies the desired result.
(2) Take K € N large enough that G < K Z/f:_ol Tkly, a.e. Then, we use Corol-
lary 3.12 to obtain

sy - k-l S{ oTk
m(a(’;) < c(n)) <K 1;0 my( o = c(n))

~ 2T 0 o0,
T

as desired. O]

3.3. Large deviation estimates related to the Lamperti generalized arcsine law. In
the following, we consider occupation times in sets of infinite measure under certain
additional assumptions. Fix disjoint sets Y, Ay, Ay, ..., Ay € A with d e N, d > 2,
X=YU Uf:l A, 0 < u(¥) <oo, and u(A;) =o00(i =1,2,...,d). We assume Y
dynamically separates A1, Aa, . . ., Ag (under the action of T), that is, A; N T_lAj =0
whenever i # j. Then, the condition [x € A; and T"x € A;(i # j)] implies n > 2 and
the existence of k = k(x) € {1, ..., n — 1} for which T*x € Y. As shown in [27, (6.6)],

lyna = T M lyngeiannemr) ae meN, i=1,2....d), (3.14)

k>n
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and u(Y, NA) =pu(Y N(T'"A)N{p>n) meN,i=12....d).Let {wy*}u=0
denote the wandering rate of Y starting from A;, which is given by

n—1 n—1

w) A =u( U(TkY)ﬂA,'> Zu(YkﬂA ) —Zf T 1y, dp
k=0

n—1
= Z w¥Y N(T'ADN{p>k) (meNy, i=12,...,d). (3.15)
k=1

Since T is a CEMPT, we see Unzo(T_"Y)mAi = A;, a.e. and hence, w,{’A" —

oco(n —>o00,i=1,...,d). We write QY’A" (s) for Laplace transform of {wrfﬁi —
w;f’Ai }nzO:
YA, (S) Ze—nS(wnJ’_l _ wY Al)
n>0
= Z eSuY N (T 'ADN{p>n}) (>0 i=12,...,4d).

n>1
Then, w) = pn(Y) + Z 1 w,{A and QY (s) = u(¥) + Z?:l 0Y-4i(s). In addition,
0 < QYA,(S) < 00 and QYA'(s) —o0o(s > 0+,i=1,...,d).Leta, B1,B2,...,Bq €

(0, 1) with Z;j:l Bi =l and let £ : (0, o0) — (0, 0o0) be a positive, measurable function
slowly varying at co. By Karamata’s Tauberian theorem, the condition

wl A~ Bin'=%m) (n— o0, i=1,2,...,d)
is equivalent to
OV Ai(s) ~TQR—a)Bis T Gs™) (> 0+ i=1,2,....4d). (3.16)
The following lemma will be used in §8.
LEMMA 3.14. Fixi € {1,2,...,d)}. Assume that there exists H®) € L™ () such that

1T Lyt apngpmn — LY DT A N o = n)HO ||
=o(u(Y N(T'A)N{p=n}) (n— o).

Then,

1D, ( VA Z T 1yna, ) =HY in L®).
wn
We omit the proof of Lemma 3.14, since it is almost the same as that of Lemma 2.1.

THEOREM 3.15. Suppose the following conditions are satisfied.

(Cl) Ford e Nwithd >2,let Ay,...,A; € Awith X = YUU _1 Aj and u(A;) =
oo(i=1,2,...,d). In addition, Y, A1, Az, ..., Ag are disjoint sets, and Y
dynamically separates A1, Az, . .., Ag.
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C2) wit ~Bn'"Um)(n — o0, i =1,2,...,d) for some o, pi,Pa,....PuE
0, 1) with Z?:l Bi = 1 and for some positive, measurable function € : (0, co) —
(0, 00) slowly varying at oo.

(€3) {1 wp ) Y028 THyyna,tnz2 is L (w)-bounded.

(C4) There exists N > 2 such that {l/w,f’Ai Zz;é ?klymA,v >N, i=1...d—1 IS uni-
Sformly sweeping for ly.
(C5)  There exist HV, ..., HY=D e L(w) such that

Y
n—>00 \ o,

1 nflA -
lim ( o ZT"lykmAi) =HD nLl®Ww (=1,...,d—1).
k=0

Let Ay, ..., q—1 € (0, 00) and let {c(n)},>0 be a positive sequence satisfying (3.1). Set
H=Y9""B2HD. Then,

d—1 .
1 “L
ug(; >si < c(n)> ~p R TE sso. Ga)
i=1

The proof of Theorem 3.15 will be given in §7.

Remark 3.16. Under the setting of Theorem 3.15 with d = 2 and A; = 1, let us assume
(3.3). Then, we obtain

A .
Syt n
o <L < c(n)) o P2 e s oo, (3.18)
n B ma
Remark 3.17. If 1; = 0 for some i, then (3.17) does not remain valid. For example, let
d>3,A,..., -2 € (0,00),and Ay_; = 0. Then,

d-2 .
1 @y
ug(; Y hiSp < C(n)) ~ (Ba—1 + ﬂdfm:;“) Cﬁ((nc)(n)(nn)) (n — o0),
i=1

which follows from Theorem 3.15.

Remark 3.18. (Comparison with the Lamperti generalized arcsine law) Let us recall the
Lamperti generalized arcsine law for occupation times. Suppose conditions (C1), (C2),
(C5) of Theorem 3.15 and condition (A2) of Theorem 3.1 are fulfilled with d = 2. Set
b = B2/B1. Then, for any p-absolutely continuous probability measure v on (X, .A) and
for any 0 <t < 1, we have

. Sah ) _ bsinGra) /’ 5911 — )21 ds
V| — =
n—00 n - T o b252% 4+ 2bs*(1 — 5) cos(mma) + (1 — s5)2¢

1 1-n“
= — arccot | ——— + cot(ww) |, 3.19)
Ta b sin(ro)t®

as shown in [33, Theorem 2.2]. See also [27, Theorem 3.2] and [18, Theorem 2.7].
The limit is the distribution function of the Lamperti generalized arcsine distribution of
parameter (o, f1). In the case where o = 81 = B> = 1/2, this distribution is the usual
arcsine distribution. Note that the right-hand side of (3.18) is asymptotically the same as
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the right-hand side of (3.19) with t = c(n). Nevertheless, (3.18) does not follow from (3.19)
directly.

The proofs of the following two corollaries are almost the same as those of Corollaries
3.6,3.7,3.12, and 3.13, so we omit them.

COROLLARY 3.19. Let k € Ny. Under the setting of Theorem 3.15,

1 d—1 . : ay
Mg(; S hiSpio T < c(n)) ~ Ba Smf;“) CE(?C)(H);”)) (n — 00).
i=1

COROLLARY 3.20. Suppose that conditions (C1)—(C5) of Theorem 3.15 are satisfied.
Let G € {u e Ll(u) cu>0}and Ay, ..., q—1 € (0, 00). Then, the following assertions
hold.

(1) Assume that G is uniformly sweeping for ly. Then, there exists C1 € (0, 00) such
that, for any positive sequence {c(n)},>o satisfying (3.1), we have

d—1
.. Uc(n)n) 1 -y
€1 <t o (s st <o)

(2) Assume that 1y is uniformly sweeping for G. Then, there exists Co € (0, 00) such
that, for any positive sequence {c(n)},>o satisfying (3.1), we have

d—1
e (1
RSP e e G<n 2 hiSy = CW) =

Assertion (2) remains valid even if we drop condition (C5) of Theorem 3.15.

THEOREM 3.21. Suppose that conditions (C1)—(C4) of Theorem 3.15 are satisfied. Let
Ge{ue Ll(,u) cu >0} and Ay, ..., q—1 € (0,00). Then, assertion (2) of Corol-
lary 3.20 holds.

We will give the proof of Theorem 3.21 in §7.

4. Analytical tools
In this section, we prove lemmas needed in the following.

LEMMA 4.1. Let f,:(0,00) — [0,00)(n € NU {oo}) be non-increasing functions.
Assume there exists a non-empty open interval I C (0, 0o) such that for any q € I,

o o0

lim e 1 f,(u) du = / e " foo(u) du < oo.

Then, lim,—  fn(u) = foo(u) for all continuity points u € (0, 00) of feo-
See [18, Lemma 3.2] for the proof of Lemma 4.1.

LEMMA 4.2. Fix a constant C > 0. Let S,, : X — [0, Cn](n € No) be measurable func-
tions, and let A : (0, 00) — [0, 00) be a non-negative function with L(t) — 0(t — 00).
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Suppose v;(t > 0) are non-zero finite measures on X. Then, for any q > 0,

oo

> enar”! f exp(—=A(1)S,) dv;
n=0 X
~t /OO e_q”</ exp(—A(?)Stur)) dvt) du (t — 00). “.1)
0 X

Proof. For fixed g > 0, let [(¢) and r(¢) denote the left-hand and right-hand sides of (4.1),
respectively. Note that

00 (n+1)!
r(t) = Zz/ 1 e—q"</xexp(—)\(r)sn) dv,) du, (4.2)

n=0 r

and hence,

0<I@0) —r() <Y (7 — =Dy (X) = v (X).
n=0

In addition, since 0 < Sj,;; < Cut, we have

(1) > v (Xt /OO (—(q + CA()u) d v (X)
r v exp(— u)duy = —————.
= , Pl gt~ + CA(1)
Therefore, we obtain

1(t) —1

l1<—<14gqt7 +CA(t)—> 1 (t— 00).

r ()

This completes the proof. O

The following three lemmas are slight extensions of [27, Lemma 4.2].

LEMMA 4.3. Fixty > 0and K € Ny. Suppose that the following conditions are fulfilled.

(i) {Hi}i», U{G) C{u e L' (w) : u = 0}. In addition, {H;}t>1, is uniformly sweeping
in K steps for G.

(1)) Rps: X — (0, 1](n € Ng, t > 0) are measurable functions with

Ru; 0Tk
su e —
P Rn+k,t

n,keNy, 0<k<K, tzt0}<oo.
L ()

Then, for any g > 0, we have

P
sup Lnzo €™ Jx RuaG dp < 00
1=i0 ) =0 e—ngt~! Jx RuiH; du

Proof. By condition (i), there exists Co > 0 such that G < Cyp Zf:o Tk H; a.e. for any

t > fy. Moreover, by condition (ii), we can take C > Cy large enough so that R, ; o Tk <
CRy+k; a.e. forany n, k € Ng with 0 < k < K and for any ¢t > #y. Then,
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| RuGan<c | n,<ZT"H1)du czfmmoT)thu
X

<C? Z/ RyvikeHy du  (n € Ny, t > 10).
X

This implies
Ze—nqt—l / RusGdp < C2 ZZ —(n—k)qt™! f RusH, dpe
n>0 k=0 n>k
=< (C2 Z ekql01> ( Z et - / Ru:H, d/L) (t > 1y),
k=0 n>0
which completes the proof. O

LEMMA 4.4. (Integrating transforms) Under the assumptions of Lemma 4.3 with G = ly,
we further suppose the following condition.

(i) {Hi}izo U{H} C{u € L) 1 u > 0 and u is supported on Y} and H; — H in
L®(u)(t — 00).
Then, for any g > 0,

Z et / Ry:H;du ~ Z et / R, Hdu (t— 00).
n>0 n>0 Y
Proof. Note that H; is supported on Y. By Lemma 4.3 with G = 1y,
-1 —1
C = sup 2azo " Jy Rnsdp _ 2azo " Jx Ruely dpe < 00
1=i0 ) =0 e—ngi~! Jy RniH; du =i 200 e—nqt~! [y RuiH; dp
Therefore, for t > 1y,
P P
Yoaso€e M [y RugH dp 3 1‘ X us0€™ [y Ryy(H — Hy) dp
210 e—nat™! Jy RucHr di 210 enat! Jy RusHrdp

< CllH — HllLouy = 0 (1 — 00),

as desired. O

LEMMA 4.5. Let {vy}n>0 C {u € L*(w) : u > 0 and u is supported on Y} with
O<Ze ”S/ vpdu <oo (s > 0).

Let A :(0,00) — (0,00) be a positive function with A(t) — 0(t — 00). We define

H, € L'() as

Zn>0 7’“‘([)1)
H= 5 T > 0). 4.3)
n
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Then, the following assertions hold.

(1)  H; can be represented as

Ym0 € MO Y vk
Dm0 e MO o [y vedp

(2) Assume there exists N € Ng such that Z,I(VZO f y Vk diu > 0 and

Ht=

(r > 0).

{ k=0 Uk }

k=0 Jy vedi) =y
is uniformly sweeping in K steps for 1y. Then, there exists to > 0 such that {H;};>y,
is uniformly sweeping in K steps for ly.

(3) Assume there exists C > 0 such that, for any n € N,

n
<Cc> / v du. (4.4)
k=0"Y

n

> u

k=0

L)
Then, |Hy|lp= () < C foranyt > 0.
(4) Assume there exists H € L°°(u) such that
2 k=0 Vk
k=0 Jy vk dn
Then, H, — H in L*°(u)(t — 00).

— H inL*®(u) (1n— o00).

Proof. (1) By Fubini’s theorem,

Z efk)»(t)vk — Z <(1 _ e*)\.(l)) Z enx(t)>vk =(1- A(t)) Z efn)»(t) Z U,

k>0 k>0 n>k n=>0
and hence,
Y0 ¢ Oy Ym0 €O Yo e
M= Dkz0 ¢ O [y vedp N Ym0 €O Yo Jy vedi’
as desired.

(2) Take C > 0 large enough so that

> k=0 Vk )
C T" (— > 1y ae,foranyn > N,
Z Y=o Jy vedn

or, equivalently,

n

2

K
C Z T" v —/ Uk du) >0 ae.onY,foranyn > N.
k=0 Y

m=0
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Then,

N—-1 n

n K K
)RS (c > 7w [ u du) =Y Y (e M- [ u du)
k=0 N m=0 Y 0 k=0~  m=0 Y

n>0

N—1 n
z—ZZ/yvkdu a.e.onY.

n=0 k=0

We have used the fact that 7" v > 0, a.e. Then,

K — K S
C Z me 1 = ZnZO e nA®) ZZ:O(C Zm:O vak - fY Uk d/’L)
r— 1=
e Yonz0€ O Yo Jy vk dp

N—-1 n
- _ _ d
> 2n=0 2i=0 fy il ae. onv. 4.5)

T Xm0 O o [y vedu

Since ano e~ ZZ:O fY Vg du — oo(t — 00), we can take #yp > 0 large enough so
that, for any ¢ > #, the right-hand side of (4.5) is greater than —1/2. Thus, for any ¢ > fy,
we have 2C ani:o T™H; > ly a.e., and hence, {H;};>, is uniformly sweeping in K steps

for 1y.
(3) By (4.3) and (4.4),
IH Nl Loy = 120 €™ koo VellLq)
t o — = )
: douz0 € O3 o [y vedu
as desired.

(4) Fix ¢ > 0 arbitrarily. Take N € Ny large enough so that Z;(V:O fy v dp > 0 and

> k0 Vk

&=k " <eg¢ foranyn > N,
H k=0 Jy vk du

L)

or, equivalently,
n

Z(uk—nyukdu>

k=0

n

<eg kadu foranyn > N.
Lo°(u) k=0 Y

Hence,

Lo ()

n
+e 0y [odn,
>N k=0

L

n
Z oD Z (Uk _ H/ Vi d,u)
k=0 Y

n>0
Vg — H/ v dp
Y
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which implies

1> im0 €™ O S0 ook — H [y v dw) |l oo
Yops0 e O3 o Jy vk dp

_ Yo Yo vk — H fy v ditlligy
B Yon=0¢O Yo Jy vedn

—>¢& (t > 00).

|Hy — Hlpoo () =

This establishes the result, since ¢ > 0 was arbitrary. O

The following lemma ensures that condition (ii) in Lemma 4.3 is satisfied for
Ry =exp(=A()Z)).

LEMMA 4.6. Let X:(0,00) — [0,00) be a non-negative function with
At) = 0(t — 00). Set

Rns =exp(=A()ZY) (n e Ny, t > 0).

Then, there exists a positive constant tog > 0 such that for any n, k € Ng and t > ty, we
have

Ry o T* < e Ryipy.

Proof. Take to > 0 so large that A(f) < 1 for any ¢ > fg. Since Z}: o Tk > Z};k —k, we
have R, ; o Tk < exp(A(®)k)Rp+ks < ekR,,+k,, for any ¢ > 9. ]

We can also prove the following lemma in almost the same way.

LEMMA 4.7. Letd € Nand Ay, ...,Aqg € A. Let 1; : (0,00) — [0,00)(i =1,...,d)
be non-negative functions with A;(t) - 0(t - oo, i =1,...,d). Set

d
Rus = exp <— Z ,\i(t)s,j‘f) (n € No, 1 > 0).
i=1
Then, there exists a positive constant to > O such that for any n, k € No and t > ty, we
have
Ru;oTK <" Ryiis.

Proof. Take ty > 0 so large that Z?:l Ai(t) <1 for any ¢ > ty. Since S,’?i o Tk >

S:jrk —k,wehave R,; o TF < exp(Zf=1 Ai(OK) Ryt < € Ryyx, forany t > 1. O

5. Proofs of Theorems 3.1 and 3.8
In the following lemma, we give a representation of double Laplace transform of Z,’l/ in
terms of QY (s). A similar formula can be found in [27, Lemma 7.1].
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Large deviations for infinite ergodic transformations 21

LEMMA 5.1. Let sy > 0 and sy > 0. Then, we have
Y
151 exp(—s5, 27 —n(sihs) e __ Q60
/Y <X(:)e exp(—s2Z, ))(Zoe T lyn) du = oGt 6.1
n= n>

Proof. Note that Z) = ZY , o T¥ + k on {9 = k}(1 <k <n) and Z} =0 on {¢ > n},
and hence,

exp(—s2ZY , o TF)e ™2 on{p = k}(1 <k <n),
exp(—$2Z)) = {1 P n—k on (g = 1]

Therefore, for n € Ny,

/ (™™ exp(—s2Z,)) dp
Y

n
= / (Z e exp(—s2Zy 4 o T")e"”lm{wzk}) dp+ e (Y N{g > n))
Y
k=1

n
= [ D ("% exp(—s2Z)_ ) (e T TRy i) du
Y
k=1

+e " u N{p > n).

By taking the sum over n € Ny, we get

/ < Z e ™1 exp(—szZ,):)> du
Y

n>0
= / ( Y e exp(—2Z, )) ( > e’““lﬂz)f"lm{@:k}) dp+ Q" (s1),
Y N\ >0 k=1
and hence,
/ (Z e exp(—szzn>) <1Y -y e’“““z)?klm{w:k}) du=0"(s1). (5.2)
¥ N\ uzo0 k=1
As shown in [27, equation (5.3)],
ly =Y e BT ynpey =1 =€) Y e ™T"ly, ae. (s >0). (5.3)
k>1 n>0
Combining (5.2) with (5.3) completes the proof. ]

LEMMA 5.2. Assume that conditions (A2) and (A3) of Theorem 3.1 hold. Let g > 0 and
let A : (0, 00) — (0, 00) be a positive function with A(t) — 0(t — 00). Then, we have

/oo e_q"(f exp(—A() ZY )dw) du ~ L) (5.4)
0 y Lt} (g +1(OD)QY (gt~ + A1)’

ast — oQ.
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Proof. By substituting 51 = gt~"and s = A(¢) into (5.1), we have

/ <Ze ngt=! eXp(—)»(l‘)Z,’:))(Ze_n(qt1+)L(t))fn1Y,,) du

n>0 n>0

Y -1 Y -1
_ (qi ) . Q_ (gr) (t — o0). (3.5
1 —e—at™'=x@0)  gt=1 4+ A1)

Fort > 0, set

H, = ! > en@ T MO Py (5.6)

Q" (g1~ +2.(0)

Note that condition (A2) implies that the assumptions of Lemma 4.5(2) hold with

Lo /vdu (O

n>0

vnzfnlyn, /vndu—w
Y

and A(¢) replaced by gt~" + A(r). Hence, there exists 7; > 0 such that { H;};>, 1s uniformly
sweeping for 1y. In addition, condition (A3) implies that the assumptions in Lemma 4.5(4)
are satisfied, and hence, H;, — H in L*°(u)(t — 00). Moreover we can use Lemma 4.6
to take #9 > #; large enough so that exp(— A(t)ZY o Tk < &k exp(— A(t)Z 1) for any
t >ty and n, k € Ny. Consequently, the assumptions in Lemma 4.4 are fulfilled with
Ry = exp(—A(t)Z)). Therefore, we can apply Lemmas 4.2 and 4.4 with S, = Z} to

get
f (Ze " exp(=1(0)Z) ))(Z SO )du
n>0 n>0
( / Y e exp(—a()Z)) duy) 0" (g™ + (1))
n>0
~ (, /OO ﬂ“(/ exp(—A(D)Z}) duH> du)QY(qt_l + 1) (t = o0).
0 Y
(5.7)
Combining (5.5) with (5.7) completes the proof. O]

We now prove Theorems 3.1 and 3.8 by using Lemmas 5.1 and 5.2. We imitate the proof
of [10, Theorem 2].

Proof of Theorem 3.1. Set c(t) = c([t]) for t > 0. Let ¢, > > 0 be positive constants. By
substituting A(f) = A/(c(¢)t) into (5.4), we see that

> AZ], Y, —1
—qu [ut] - c()Q (gt~ ")
/0 ‘ </Y o ( c()1 > dMH) au QY (gt + he(t)~ 1t 1) (1= 00).
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By (2.3), (3.1), and the uniform convergence theorem for regular varying functions
[6, Theorem 1.5.2], we have QY (gt~ + Ac(t) 't~ ~ QY (he(®) '+~ 1)(t = o0) and

0"(qt™h RO L IO L i A U
Qg '+ a7 QY (e~ (e TG ()
_(acm\ Y e
< - > Teon (5.8)

Hence,

Le®n (= g / _’\Z[Ym> )
Ot Jo © (ye"p< e ) A ) du
—l4ay—a __ 1 (/oo —qu,,—o > —a
—q A _—F(l—a) A e "y~ du | (t = 00).

We use Lemma 4.1 to get, for 0 < u < oo,

£(c(0)1) < kzﬁ,q>
_— €X _—— d
c(H)YL(t) Jy c(t)t

1 o sin(noz)u_a

o
. / e Mg gs (1 — 00).
'l —a) T 0

Here, we used Euler’s reflection formula I'(@)['(1 — o) = 7/ sin(r«). By the extended
continuity theorem for Laplace transforms of locally finite measures [8, Ch. XIILI,
Theorem 2a], for 0 < 59 < 00,

£en (Z[Ym - SO)

coeey M\ e =
N sin(na)u,a /‘YU gl gg — M(s_()) t — 0). (5.9)
b 0 o u

Therefore, we substitute t = n and u = sg = 1 into (5.9), and then obtain

zY i ap
w2 < ey ~ TID D ) o),
n ma  £L(c(n)n)
which is the desired result. O]

Proof of Theorem 3.8. Set c(t) = c([t]) for t > 0. By Chebyshev’s inequality,

Ziy Ziy
,LL(;(T < c(t)) <e /X exp (— c(t)t) dug. (5.10)

For each >0, the map (0,00) > u > fX exp(—Zus/(c(@)t)) dug € [0, 00) is
non-increasing. Hence, we have
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Zj) 4 : Zj) due) d
_ < _
/xe"p( c(t)t) “G‘/o (/xexp( c(t)t) “G) “
<e/ooe”(/exp(—%>d,u(;)du
~—Jo X c(n)t

Y
-1 —nt~! Zn
E — Gdu. 5.11
<et e /X exp ( c(t)t) 7 (5.11)

n>0

Here, we also used (4.2). Define H; (¢t > 0) as in (5.6) with ¢ = 1. As shown in the proof
of Lemma 5.2, there exists #; > 0 such that {H;};>, is uniformly sweeping for 1y. Since
ly is uniformly sweeping for G, so is {H;};>;,. Moreover, by Lemma 4.6, we can take
to > t; large enough so that exp(—Z}[ o Tk/(c(t)t)) < ek exp(—Zlerk/(c(t)t)) for any
t > to and n, k € Ng. Consequently, the assumptions in Lemma 4.3 are fulfilled with
Ry = exp(—Z,f/(c(t)t)). Therefore, Lemma 4.3 implies

—nt~! _ 7Y
qup 220" Sy X2y /cONG (5.12)

1210 Y psg € [y exp(=Z) [(c()D) Hy dpe

By substituting g = 1 and A(¢) = c(t)" '+~ into (5.5) and making a similar estimate as in
(5.8), we see that

t_IZe_'”_]/exp —Z—'}'I H du
X cne)

n>0
! oY) e

T l—exp et QNG et e (t = 00).
(5.13)
Combining (5.10) with (5.11), (5.12), (5.13), we obtain
ZY
lim sup M <ﬂ < c(t)) < 00,
t—oo C(B)*L(1) t
as desired. O]

6. Proof of Theorem 3.10
Let us represent double Laplace transform of S,{ in terms of QY (s). We also refer the
reader to [27, Lemma 5.1] for a similar formula.

LEMMA 6.1. Let sy > 0 and sy > 0. Then, we have

(1 —e™2) / <Z e ™ exP(—szS,,y)> du
Y

n>0

+( - e—sl)e—Sz/ (Z e~ exp(—3255)>(z e—nslfnlYn) du
Y

n>0 n>0

= Q" (s1). (6.1)
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Proof. Ttis easy to see that SY =S¥ o TK + 1 on{p=k}(1 <k <n)and S} =0on
{¢ > n}, which implies

n

exp(—s28Y o TFe™2 on{p =k}, 1 <k <n,
exp(—szS,I[) = { k

on {¢ > n}.

Thus, for n € Ny,
/Y (1 exp(—:87)) die

n
= / 2(67"“ exp(—szS,ffk o Tk)efnlym{(p:k}) du+e ™ u¥ N{p > n})
Y =1

n
_ e_”/ D (e TP exp(=a () Sy )€ 2T Ly i) dps
Y k=1

+e (Y Nip > n}).

By taking the sum over n € Ny, we get

/ < Z e ™I exp(—sﬁ,’[)) du
Y

n>0
=e 7 / ( Z e ™ eXP(—8255)> ( Z eka ?leﬂ{yJ:k}) di+ QY (s1),
Y n>0 k>0
and hence,
(1—e7) / (Z e Ml exp(—szS,f)) du
Y n>0
+ e %2 / < Z e ™1 exp(—szS,f)> <1Y - Z e ks fklyn{(p:k}> du
LA ) k=0

= Q" (s1). (6.2)
The lemma follows from (6.2) and (5.3). O

LEMMA 6.2. Assume that condition (B2) of Theorem 3.10 holds. Let q > 0 and let
A1 (0, 00) — (0, 00) be a positive function with

Y, —1
At) — 0 and % -0 (- ). (6.3)
Then, we have
00 Y —1
—qu _ Y - 0" (qt™)
/0 e (/;exp( ONY d,u) du —A(t)t (t > 00). (6.4)
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Proof. By substituting 51 = gt~"and s, = A(¢) into (6.1), we have

—A(z))/ ( —nqt‘l exp(—k(t)S,l,’)> du
n>0

L (1= e e f < Z emat™! exp(—k(t)SZ)) ( Z enar! T"m) du

n=0 n>0
= 0" @™, 6.5)
Let /1(¢) and [;(¢t) denote the first and second terms of the left-hand side of (6.5),

respectively. Let us prove /»(¢) is negligibly small as t — oo. By condition (B2), the
assumptions of Lemma 4.5(3) are satisfied with

1 i~
_ Y _ —ngt
n—TlY,,, Ze’”/vndu—Q(s), H’_er " TnlY,,-
n>0 n>0
Hence, by Lemma 4.5(3), there exists C > 0 such that
3 et Ty, <co¥(gt™). (6.6)
n=0 L (u)
By using (6.3) and (6.6),
Lty C(1—e oY@t ™) Cq0Y¥(qt™!
052()5 (1—e )07 (g )5 q0" (q )—>0 (t = 00). ©67)
I(1) et — 1 At

However, Lemma 4.2 yields

o0
11 () ~ M)t / eq"(/ exp(—)»(t)S[{”]) du) du (t — 00). (6.8)
0 Y
The lemma follows from (6.5), (6.7), and (6.8). O]
We now prove Theorem 3.10 by using Lemma 6.2.

Proof of Theorem 3.10. Set ¢(¢) = ¢([t]) fort > 0. Let g, A > 0 be positive constants. By
substituting A(t) = A/(¢(¢t)a(t)) into (6.4), we have

L7 St R T
_ qu _ N
(@) /0 ¢ </Y exp ( 'E([)a(t)) du) du T +a) 207 () (t = 00).

(6.9)

Let r(¢) denote the right-hand side of (6.9). By (2.3),

—14aq—1 : 00 o0
r() — 4 > = sin(ra) </ e My« du) </ e ds) (t — 00).
ra+aow o 0 0

Hence, we use Lemma 4.1 to get, for 0 < u < oo,

/ ( [m ) dpu — Sin(ﬂa)u_“ /OO e ™ds (t > o0).
0] c(na(t) Ta 0
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By the extended continuity theorem for Laplace transforms, for 0 < so < oo,

SY . 50 .
NLMY _ [ut] <5) > s1n(mx)u_a / ds — sin(ra) 50 (t > 00).
c(1) c(t)a(t) To 0 To  u®

Substituting + = n and u = s9 = 1 completes the proof. O

7. Proofs of Theorems 3.15 and 3.21

We can also represent double Laplace transform of S,’? ‘i=1,...,d) in terms of
QY’A" (s)@ =1,...,d). We refer the reader to [27, Lemma 6.1] and [18, Proposition 5.1]
for similar formulas.

LEMMA 7.1. Suppose condition (Cl) of Theorem 3.15 is satisfied. Let s >0 and
$1, 82, ...,84 > 0. Then, we have

d
1—e%) f <Ze"” exp (— ZgS,?’)) du
Y ot

n>0

d d

+ E (e —efs)/ < E e ™ exp(— E st:j))< E e”(‘vﬂ")f”lynmAi) dn
4 Y °
i=1 j=1

n>0 n>1

d
=u)+ Y Q"M (s +5). (7.1)

i=1

Proof. Set

R, = exp (— ZsiS,‘:"), n € Np.

i=1

Note that, forn € N,

Ry_1oT onfp=1=T""Y,
Ry =1 (Ry_g o THe=®=Dsi on(T7'A)N{p=k}(1 <i<dand2 <k < n),
e IS on (T_IA[) N {(p > n}(l < i = d)

Hence, [, Rodu = pu(Y) and, forn € N,

/ e—nSRn d/.L
Y

Z/ e_"SRn_l T]YQT—IY d[,L
Y

d n
+e* Zf D e TR, ) (e ETVEEITRL gty At
i=l1 k=2

d
n Z e Ly N (T A) N{g > n)).

i=1
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By taking the sum over n € Ny, we get

J (g an

n>0
:/,L(Y)-'—e_s / <Ze_nsRn>?1YﬂT1Y d/,l,
Y n>0
d
+e Z/ (Z ensRn> <Z e(k])<S+si)TklYﬂ(T_lA,')ﬂ{(p=k}) du
i=1 7Y N\ >0 k=2

d
+ 0" +s).

i=1
By (3.14), we have

d
ly = Tlpay = Tlyppay + Z T1pnr-1y

i=1

d
~ ~
=Tlyar-1y + § E T* Lynr-1Apn{p=k}>
i=1 k>2

which implies

- [ (S emr)an
Y n>0
d
+ Z s / < Z e“Rn> ( Z(l — e(k])(SJrSi))Tk1ym(T—1Ai)ﬂ{w=k}> du
i=1 Y

n>0 k>2

d
=uM)+ Y 0" s +5). (7.2)

i=1

In addition, we use (3.14) to get, for ¢ > 0,

k—1
—(k=1)t\ Tk —nt \ 7k
Z(l — k=T lyna-1a)nip=k) = Z ((et -1 Z e m)T Lynr-14)nip=k
k>2 k>2 n=1
= (et — 1) Z efm Z Tleﬂ(T"A,')ﬁ{(ﬂ:k}
n>1 k>n
=@ -1 e T ly,na,. (7.3)
n>1
Combining (7.2) with (7.3) completes the proof. O]

LEMMA 7.2. Assume that conditions (Cl), (C3), and (C4) of Theorem 3.15 hold. Let
q > 0 be a positive constant and let 1; : (0, 00) — (0,00)(i =1, ...,d — 1) be positive
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functions with
2i(t) =0, M)t —o00 (i=1,...,d—1), (7.4)
QYA (qr") QYA (qr")
d=1 Y. A; (-1 % d—1 YA (p1—1
Yoy OV Ai(gtT + (1) Yoict M1 QYA (gr=1 + 2 (1))
ast — oo. Then,

d—1 d—1
> i@ [ < > e exp ( -y Aj(r)s,i‘f)) ( 3 e—"(q"'“f(’”f”lym,.) du
i=1 Y =1

n>0 n>1

—- 0, (75)

~ QY4 gr™ly (1 — oo).

Proof. Set

d—1 A

Ry =exp (— Z Aj(t)Snf> (n € Ng, t > 0), (7.6)
j=1

, et )Yy,
Ht(‘) = Z"zl YanA; t>0,i=1,...,d—1), (7.7)
QYA (gr=1 + 4 (1))
e\
HD — Don=1 WAL o)

QY-Ad (gt~
By substituting s = qt‘l, si=M@®)(i=1,...,d—1),and s; = 0 into (7.1), we have

(1= /Y (Ze"q“Rn,,) dp

n>0

d—1 » » )
+ ) (@10 — e A g (1) / (Z e ! Rn,,)Hf” dp

i=1 Y N so
+ (1= e g / ( Do Rn,t>H§"’ du

Y n>0
d—1
=pu(¥)+ Y 0 Mgt + 2 0)) + Q"M (gt (7.8)

i=1
Let [1(t), [>(¢), and [3(¢) denote the first, second, and third terms of the left-hand side of
(7.8), respectively, and r(¢) denote the right-hand side of (7.8). Note that

r() ~ 0" (g™t — o0), (7.9)

since QY’A" (s) > oo(s > 0+, i =1,...,d) and the assumption (7.5).

Let us prove /() is the leading term of the left-hand side of (7.8), and /1 (¢) and I3(¢)
are negligible as t — oo. Note that condition (C4) implies that the assumptions in Lemma
4.5(2) are satisfied with

Y.A; JAi - _ A
vy = T"1y,n4;, / vy dp = w, —w,):A, E e '”/ vp dp = QV4i(s),  (7.10)
Y Y
n>0
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MO =gt ), H=HY G(=1,...,d—1. (7.11)
t

.....

sweeping for ly. In addition, we use Lemma 4.7 to take fy > f; large enough so
that R, o Tk < ¢ R,k for any n, k € Ny and ¢ > 1. Consequently, the assumptions
in Lemma 4.3 are fulfilled with H, = H” (i =1,...,d — 1) and G = 1y. Therefore,
Lemma 4.3 implies

|
. Sy o €™ Ryg) dpt
C =limsup max < 00

t—oo I<i<d-1 ./Y(ano e—nqtfl Rn’t)H[(i) d/’L

Hence,

. h _ .. qC
0 < limsup -— < lim sup —— =0
t—oo (1) T umeon YT A0 QYA (g1 + i (1)

In addition, {H,(d)},>o is L°°(u)-bounded, which follows from condition (C3) and
Lemma 4.5(3) with

v, = ?”lynmA,,, Z e ™ / vpdp = 0V44(s), H, = H,(d).
n>0 Y
We use assumption (7.5) to see

I3(t
Oflimsupi)

t— 00 ZZ(t)

d .
< (sup ||H,( )||L°C(u)) ( lim sup
t>0 1—>00

qCQY’Ad(qt_l) ) —0
S i QYA (gt + 4 (1))

Therefore, we get

() + L) +13(0)

d—1
~ Y M gt + hi) / (Ze—"‘I'an,Z)H,@ dp (1 — 00). (112)
i=1 Y

n>0

The lemma follows from (7.8), (7.9), and (7.12). O
We now prove Theorems 3.15 and 3.21 by using Lemma 7.2.

Proof of Theorem 3.15. Set c(t) =c([t]) for t>0. Let g, A A1,..., -1 >0
and A;(t) = Ar;/(c(t)t). By (3.1), (3.16), and the uniform convergence theorem for
regular varying functions, we see QY’A" (qt_1 + Xi(t)) ~ QY’A" A@)({t —> o0, i =

I,...,d—1). By the Potter bounds for slowly varying functions, we see that
c(t) () /e(c(t)t) — oo and  c(t)*€(t)/L(c(t)t) — O(t — o). Thus, for i=
I...,d—1,

ol VMg BagT'T e )
Q A (gt + 1) QVAGNM)  BiOA)TIHE L(e(n))

— 00 (t > o)
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and

Q A (gr™h _ Bag”H e
A QY-Ai(gt= +ai(1) BN Lc())

Therefore, (7.4) and (7.5) are fulfilled. Define R,;(n € No, ¢ > 0) and H(t > 0,i =

—0 (t— oo). (7.13)

1,...,d —1)asin (7.6) and (7.7), respectively. By Lemma 7.2,
Z 20 Q A (qr ™!+ 2i(1) / (Z e Ry, ) HY dp
n>0
~ QYA (gl (1 — o0). (7.14)

Set ﬁ, = Zl 1 l)L"‘H(’)(t > (). Then, we use (7.13) and (7.14) to get

e a /l; <Z EnqthnJ> ﬁt du — ﬁdé]ilﬂl*“ (t = 00). (7.15)

c(1)®L(t) orer
As shown in the proof of Lemma 7.2, there exists fo > O such that the assumptions
of Lemma 4.3 are satisfied with H, = H,(’)(i =1,...,d—1) and G = ly, and hence,
with H; = H; and G = ly. Similarly, condition (C5) implies that the assumptions in
Lemma 4.5(4) are satisfied with (7.10), (7.11), and H = HO( = 1,...,d — 1). There-
fore, Lemma 4. 5(4) 1mphes that H(’) HY in L®(u)(t — o00,i =1, — 1), and
hence, H, — H= Z ﬂ A H (’) in Loo(u)(t — oo) Consequently, the assumptlons
of Lemma 4.4 are fulﬁlled w1th H, = H[ and H = H. Therefore, we use Lemmas 4.2 and
4.4 to get
/ (Ze—nqt 'R )ﬁ,d,uNI_I/ (Ze—nqt e )ﬁdu
n>0 n>0
o0
N/ e_q”(/ Riuns duﬁ) du (t — 0).
0 Y

(7.16)

By (7.15) and (7.16),
L(c(t)t)

c(t)®L(t)
Thus, we use similar arguments as in the proof of Theorem 3.1 to obtain
d—1 Aj .
te®n Zj:l kjS[”;] <so|— B sin(re) 50 : (t — 0o, s, u > 0)
coet" I\ ecwr =) T e \u %0 '

Substituting + = n and so = u = 1 completes the proof. O

q”(/ Rpuns duﬁ) du — ﬂdq*H“)f“ (t — 00).
Y

Proof of Theorem 3.21. Set c(t) = c([t])( > 0) and A; () = A;/(c(®)t)(t >0, i =
1,...,d —1). Define R, ;(n € Ng, t > 0) as in (7.6). By Chebyshev’s inequality,

_ A;

YUz A S

e (%m < c(t)) <e / Rine dpg. (7.17)
X
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Foreacht > 0, the map (0, o0) > u — fx Ryun,: dug € [0, 00) is non-increasing. Hence,

we have
1
/R[z],z dlLGS/ </ Rrurs dMG>
X 0 X
o0
=< e/ e”(/ Riuns dﬂG) du
0

o™ty e lf Rn,G dp. (7.18)

n>0

Define H'(t >0, i =1,...,d — 1) by (7.7) withg = 1,and set H, = Y%= ir¢H.
Recall from the proofs of Lemma 7.2 and Theorem 3.15 that there exists #; > 0 such that
{I-NIt}tZ,1 is uniformly sweeping for ly, and hence, for G. In addition, by Lemma 4.7,
we can take fo >t large enough so that R,; o Tk < ekRnJrkt for any n, k € Ny and
t > ty. Consequently, the assumptions in Lemma 4.3 are fulfilled with H; = Ht Therefore,
Lemma 4.3 implies

e ™! Gd
sup L0 Jx RnsG dpt < o0. (7.19)

R o e fy Rucll dp

By substituting ¢ = A = 1 into (7.15), we get

—1 —nt C([)ag(t)
,,Z(:) / nth du~ Ba———- 2D (t — 00). (7.20)
The result follows from (7.17), (7.18), (7.19), and (7.20). O

8. Applications to Thaler’s maps

Our abstract results in §3 are applicable to a variety of classes of ergodic transformations.
Indeed, the assumptions of Theorems 3.1, 3.10, and 3.15 are milder than those of [27,
Theorems 3.3, 3.1, and 3.2], respectively, which are verified for interval maps with
indifferent fixed points (see [27, §8] and [18, §2.4]), Markov chains on multiray [18, §2.5],
and random iterations of piecewise linear maps (as summarized in [9, Theorem 1.1, the
subsequent paragraph, and Lemma 3.5] and [13, Theorem 1.2, Remark 1.4, and §4.2])
under suitable settings. The assumptions of Theorems 3.8, 3.10, and 3.21 are also verified
for random walks driven by Gibbs—Markov maps, as shown in [33, §7.3]. For simplicity,
we are going to focus only on Thaler’s maps with two indifferent fixed points [25] in this
section.

Assumption 8.1. (Thaler’s map) Suppose that the map T : [0, 1] — [0, 1] satisfies the
following conditions.
(i) For some ¢ € (0, 1), the restrictions 7 : [0,c) — [0, 1) and T : (¢, 1] — (0, 1] are
strictly increasing, onto, and can be extended to Cc? maps Tp : [0, c] — [0, 1] and
Ti : [c, 1] — [0, 1], respectively.
(i) Ty>landTy >0o0n(0,c],7{ > land 7" <Oon|[c, 1),and 7'(0) = T'(1) = 1.
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(iii) For some p € (1, 00), a € (0, 00), and some positive, measurable function £* :
(0, 0c0) — (0, co) slowly varying at O such that

Tx —x~aP(l—x—TA=x))~xPT*x) (x> 0+4).

In the following, we always impose Assumption 8.1. Let us summarize the facts that are
shown in [22, 23, 25, 27, 30, 31]. After that, we will explain applications of our abstract
results to Thaler’s maps.

Let f; denote the inverse function of 7;(i = 0, 1). Then, T admits an invariant density
h of the form

h(x) = ho(x) - (x € (0, ),
(x = fo(x))(f1(x) — x)
where ho is continuous and positive on [0, 1]. In addition, # has bounded variation
on [g, 1 — ¢] for any ¢ € (0, 1/2). Define the o-finite measure p as du(x) = h(x) dx,
x € [0, 1]. Then, u([0, e]) = u([1 — ¢, 1]) = oo forany ¢ € (0, 1), and T is a CEMPT on
the o -finite measure space ([0, 1], 5([0, 1]), n).

Since fo(x) ~ x(x — 0+), we use the uniform convergence theorem for slowly varying

functions [6, Theorem 1.2.1] to get £*(fp(x)) ~ £*(x)(x — 0+) and

x — fo(x) = To(fo(x)) — folx)
~ fo)P e (fo(x)) ~ xPTe*(x)  (x — 04). 8.1)

Similarly, it is easily seen that 1 — f;(1 — x) ~ x(x — 0+) and
fil=x)—-1-x=1-01-f0-x)-T11-~1A- fi(1-x)))
~alxPTle(x)  (x = 04). (8.2)

Let y € (0, ¢) be a 2-periodic point of 7. Then, Ty € (c, 1). Take ¢p € (0, y] and
c1 € [Ty, 1) arbitrarily, and set

Ao=1[0,c0), Y =[co,c1], A= (e, 1] (8.3)
Then, u(Y) € (0, 00), u(A;) = oo(i =0, 1), and Y dynamically separates Ap and Aj.

LEMMA 8.2. Fori = 0, 1, there exists a ju-probability density function H® such that H®
is positive, continuous, supported, and has bounded variation on (T A;) \ A;, and satisfies

T" lynr-1apnig=n)

li =HD jpL® i =0,1).
A% (¥ N (T TA) N {g = ) mL7) =01

In addition,
u@¥ N (T 'A)N{p=n}) = / T" Ly =1 apip=n) A1
(TAD\A;
_[rofio@wam - gany -, i=0),

(8.4)
h©) LT O) — £1(0)  (n— oo, i = 1).
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Remark 8.3. By Lemmas 3.14 and 8.2, we have

1 n—1 N .
lim < v ZTHymAi) =H® inL®Ww (=0M1). (8.5)
k=0

—
n—oo wy,

Proof of Lemma 8.2. 'We proceed as in the proofs of [25, Lemma 3] and [27, Theorem 8.1].
As in the calculations in [25, p. 1301] and [27, p. 46], forn > 2,

T"Lyn 1 agnipmn = L@ aoaco fio fi= - (flo fo - (fg7/h ae. (8.6)

j:nlYﬂ(T—]Al)ﬂ{go:n} = laana, (ho foo fln_l) ~(fyo fln_l) . (fln_l)//h ae. (87

It is easily seen that fg_l — O and fl"_l — 1(n — 00) uniformly on [0, 1]. By applying
[25, Lemma 2] to f(x) = fo(x) and f(x) =1 — f1(1 — x), respectively, we see that there
exist continuous functions gop : (0, 1] — (0, oo) and g; : [0, 1) — (0, 0o) such that

§794E)
) —

— go(x) (n — 00), uniformly on compact subsets on (0,1], (8.8)

(i (x) .
m — g1(x) (n — 00), uniformly on compact subsets on [0,1), (8.9)
1 1
and
x f1(x)
/ go(y)dy = / g1(y)dy =1 foranyx € (0, 1). (8.10)
fox) x

It follows from the concavity of fj and (8.8) that go is non-increasing. Similarly, g; is
non-decreasing, which follows from the convexity of f{' and (8.9). Set

HD = 1rapagi/h (i =0,1),

which is positive, continuous, supported, and has bounded variation on (T A;)\
A;(i =0, 1). By (8.6), (8.7) (8.8), and (8.9),

Ty - _
lim —— 20T A= Oy ooy, (8.11)
=% h(c) f{O)(fy (1) — fo ™ (1)
. ’T\nlYﬁ(T*IA])ﬂ{(p:n} 1 .
lim - — =HY inL®). (8.12)
=% h(c) fo(D (77 (0) — f1(0))
By using diu(x) = h(x) dx and (8.10), we see that
T (co)
/ HO dp = f g dy =1, (8.13)
(T Ap)\Ao <o
5]
[ V= [ amar=t. (8.14)
(TAD\A, T(c1)
Hence, H® and H® are wu-probability density functions. We use (8.11), (8.12), (8.13),
and (8.14) to obtain the desired result. O
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LEMMA 8.4. There exists a function £y(x) slowly varying at oo such that
@ = W ~ p WP () (n - 00), (8.15)
F7H0) — 710 ~ (ap)'n Py (n — ). (8.16)

Proof. We follow the arguments of [25, Lemma 5] and [32, Remark 1]. Let

1 dy 1 dy
— - = 0, 1]). 8.17
o) / y = Roy Y f fi—p—(—y *eOI G
We use (8.1), (8.2), and Karamata’s theorem [6, Theorem 1.5.11] to see
1
uo(x) ~ m, uy(x) ~ m (x — 0+4). (8.18)

By (8.18), the map x — uo(x~") is regularly varying at oo of index p, and therefore, [6,
Theorem 1.5.12] implies that its inverse function 1/u,, Y(x) is regularly varying at oo of
index 1/p. Hence, there exists a function £o(x) slowly varying at co such that

ug ' (x) ~ xYPeo(x)  (x — o0).
Since u1(x) ~ a " Pug(x)(x — 00), we have
uy () ~ @ Pup) ) = uy@Px) ~ a7 x TPl (x)  (x — 00).
Using [23, Lemma 2] with f(x) = fo(x), an = fi (1) (respectively f(x) =1— fi(1 —
x) and a, =1 — f]'(0)), and g(x) =1, we see uo(fy (1)) ~ n(n — oo) (respectively

ui(1 — f1'(0)) ~ n(n — o00)). Hence, it follows from the uniform convergence theorem
for regular varying functions [6, Theorem 1.5.2] that

F3) = uy  wo(fF ) ~ uy' () ~n~Peo(n)  (n — o), (8.19)
1= f10) = uy (1= £ ) ~uy () ~a'n™Plo(n)  (n— o0).  (8.20)
Note that

M =Y = £, 1= 10 = (0 - o).

k>n k>n
In addition, (f'(1) — fg‘“(l)),,zo and (ff‘H(O) — f1'(0))n>0 are decreasing sequences,
since fo and f; are C% and 0 < fo). fi(y) < 1(x € (0, 1], y € [0, 1)). Hence, the

desired result follows from (8.19), (8.20), and the monotone density theorem [6,
Theorem 1.7.2]. O

LEMMA 8.5. Define o, By, B1 € (0, 1) by

I (O N T'(c-) L
= PR+ 0T T T+ Tena . PETR

Set

£(x) = h(e)(f{(0) + fiDaHa — p~H e ),
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which is slowly varying at co. Then,
wl A~ Bin'="m) (n— oo, i =0,1). (8.21)

Remark 8.6. For example, if £*(x) ~ C*(x — 0+) for some constant C* > 0 in Assump-
tion 8.1(iii), then £(x) ~ C(x — o0) for some constant C > 0.

Proof of Lemma 8.5. Combining (8.4) with (8.15) and (8.16), we have
w(¥ N (T 'A) N{p =n})
_fr@A©@p = UPem) (1 o0, i =0)
h(e) fi(D(ap)~'n= 1= WP eg(n)  (n — oo, i = 1)
~a(l —a)Bin~ ' "%(n) (n— 00, i=0,1). (8.22)

We use (3.15), (8.22), and apply Karamata’s theorem [6, Theorem 1.5.11] twice to obtain

n—1
w =Y ¥ (T AN N g > k) ~ Bin' ) (1 o0, i =0, 1),
k=1
as desired. O

By (8.5) and (8.21), we get

1 n—1 .
lim <—Y Z Tklyk> =BoHO + BHY = H in L®),
n—00 wn =0

and

w,); ~ w,{’AO + w,f’A‘ ~n'"% M) (n —> o).

Moreover, if G : [0, 1] — [0, co) is Riemann integrable on [0, 1] with /01 G(x)dx > 0,
then G is uniformly sweeping for 1¢ 1_¢) for any & € (0, 1/2), which follows from [27,
Theorem 8.1]. Therefore, H, H O HD are uniformly sweeping for 1[; 1) and hence, for
ly. So we use our main results in §3 to obtain the following theorems.

THEOREM 8.7. Let {c(n)}y>0 and {¢(n)},>0 be positive sequences satisfying (3.1) and
(3.9), respectively. Then, we have (3.2), (3.10), and

(S{,‘" ) 1 — i sin(ma) c(n)*L(n)
1Y5210) ~

— < c(n) (n—o00,1=0,1).

n Bi ma  L(c(n)n)
THEOREM 8.8. Assume G € {u € L'() : u > 0} admits a version that is Riemann
integrable on [0, 1] with fol G(x) dx > 0. Then, there exists some constant C1 € (0, 00)
such that, for any positive sequences {c(n)},>0 and {c(n)}n>0 satisfying (3.1) and (3.9),
we have (3.6), (3.12), and

o lemn) (S o
Ci < l}fggéf W,U«G<T < C(")) @=0,1).
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THEOREM 8.9. Assume G € {u € L*®(u) : u > 0} is supported on [e, 1 — g] for some
g € (0, 1/2). Then, there exists some constant C € (0, 00) such that, for any positive
sequences {c(n)}n>0 and {¢(n)},>0 satisfying (3.1) and (3.9), we have (3.7), (3.13), and

A.
. Lc(m)n) S .
lim sup ——— — < <C =0,1).
msup e M\ T = cm) ) =C (G )
Remark 8.10. Let v be a probability measure on [0, 1] that is supported on [¢, 1 — €] for
some ¢ € (0, 1/2) and admits a Riemann integrable density u with respect to the Lebesgue
measure. Then, G = u/h is also supported on [¢, 1 — ¢] and Riemann integrable, and
hence, Theorems 8.8 and 8.9 can be applied to v = ug.

Remark 8.11. Let0 < o < 1 andlet ¢; : (0, c0) — (0, 00)(i = 0, 1) be slowly varying at
00. As shown below, there exists 7 : [0, 1] — [0, 1] satisfying conditions (i) and (ii) of
Assumption 8.1 with ¢ = 1/2 and

wl A ~ din'=%0;(n) (n— o0, i =0,1) (8.23)

for some constant d; > 0, where Y and A; are chosen as in (8.3). Let us construct
such a map 7. Let ¢;(x) = x~*¢;(x). We may assume that ¢;(x) is bounded below on
(0, R) for any R > 0. Applying [6, Theorem 1.5.12] to fi(x) = 1/¢;(x), we can see
that the right-continuous inverse fi_l(y) :=sup{y € (0,00) : fi(y) > x} is a regularly
varying function at 0o of index 1/a satisfying f;(f; ' (x)) ~ £, (fi(x)) ~ x(x — o0).
By [6, Theorem 1.8.2], we can take a C* function v; : (0, c0) — (0, co) such that
Yi(x) ~ fi_l(x’l)(x — 0+4). Then, ¥;(x) is a regularly varying function at O of index
—1/a satisfying ¢; (¥ (x)) ~ x(x — 0+) and v; (¢; (x)) ~ x(x — 00). Set

x Yo dt
\I/i(x):/() </0 rw,-(r))dy’ x=0

Karamata’s theorem [6, Theorem 1.5.11] implies that W;(x) ~ 012(1 + a)_lx/l/f,- (x)
(x = 0+4). Take a constant b; > 0 so that ¥;(b;/2) = 1/2. We now define T : [0, 1] —
[0, 1] by

=

o [x+ woton). € [0, 1/2],
=i = x), x e

It is easily seen that T satisfies conditions (i) and (ii) of Assumption 8.1 with ¢ = 1/2. In

addition,
azb(l)-H/a azb}+l/a X
Tx —x~——m , 1—-—x)—TA—-—x)~ — (x — 0+).
1+a Yox) l+a Yi(x)

Define ug(x) and u(x) by (8.17). Then,

14+ o )
ui(x) ~ Tl/alﬁi(x) (x =0+, i=0,1),
ab;
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and hence,

w7 (x) ~ (%) $i(x) (x— o0, i =0,1).
ab;

1

Therefore, as in (8.21), we obtain (8.23) for some d; > 0.

Remark 8.12. Following [33, Example 7.1], let us construct 7 : [0, 1] — [0, 1] and
Y C [0, 1] satisfying conditions (A1) and (A2) of Theorem 3.1 and condition (B2) of
Theorem 3.10, but violating condition (A3) of Theorem 3.1. We can apply Theorems 3.8
and 3.10, but cannot apply Theorem 3.1 to such T and Y. Let £o(x) be a slowly varying
function at oo satisfying

lim inf £p(x) =0, lim sup £o(x) = oo. (8.24)
X—00 X—>00
An example of such a function can be found in [6, §1.3.3]. Let £;(x) = 1. By Remark 8.11,
there exists amap T : [0, 1] — [0, 1] satisfying conditions (i) and (ii) of Assumption 8.1
with ¢ = 1/2 and (8.23) for some constant d; > 0, where Y and A; are chosen as in (8.3)
with Tco < Tcy. Then, (T Ag) N (T A1) = @. In addition,

wy ~wl A0 wl A~ 0! (dolo(n) +di)  (n — o0),

and dpfo(x) + d; is slowly varying at oo, since, for any A > 0,

do(Lo(Ax) — £Lo(x)) -
dolo(x) + dy -

Lo(hx)
£o(x)

dolo(Ax) + dy _ ’ _
dolo(x) +dy

l’—)O (x = 00).

Therefore, condition (A1) is verified. Moreover, there exist p-probability density functions
HO HD :[0,1] — [0, 00) such that H® is supported and has bounded variation on
(TA)\ A; CY(@=0,1),and(8.5) holds. Note that condition (A3) does not hold because
HO #* HW and (8.24). By [27, Theorem 8.1], Hp and H; are uniformly sweeping for ly.
Hence, there exists N € N such that

n—1

1 ~
k
{ Y. A; ZT Lyina; )
Wy k=0 n>N;i=0,1

is L°°(u)-bounded and uniformly sweeping for 1y. Therefore, conditions (A2) and (B2)
are verified, as desired.
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