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Abstract. We establish large deviation estimates related to the Darling–Kac theorem and
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1. Introduction
In the study of dynamical systems with an infinite invariant measure, a variety of ergodic
and probabilistic limit theorems have been established. They are often related to classical
limit theorems for renewal, Markov, or diffusion processes in probability theory. Among
this kind of research of dynamical systems, we are going to focus on three distributional
limit theorems, the Darling–Kac theorem for occupation times in sets of finite measure,
the Dynkin–Lamperti generalized arcsine law for the last time the orbit visits to sets of
finite measure, and the Lamperti generalized arcsine law for occupation times in sets of
infinite measure, studied by [1, 2, 11, 14, 17, 18, 24, 25, 27, 33]. The aim of the present
paper is to establish large deviation estimates related to these limit theorems under similar
abstract settings as in [11, 18, 27, 33]. Our abstract results can be applied to, for example,
intermittent maps, that is, non-uniformly expanding interval maps with indifferent fixed
points. We are motivated by the study of a large deviation estimate related to a generalized
arcsine law for occupation times of one-dimensional diffusion processes [10]. We also
refer the reader to [16] for another type of large deviations, which is related to the strong
arcsine law for a one-dimensional Brownian motion.
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2 T. Sera

In the remainder of this section, we recall known distributional limit theorems and
present our large deviation estimates, using Boole’s transformation as a representative
example for simplicity. Nonetheless, previous studies as well as our main results are
applicable to more general classes of infinite ergodic transformations.

Example 1.1. (Distributional limit theorems for Boole’s transformation) We refer the
reader to [3, 4, 25] for the details of Boole’s transformation. The map T : [0, 1] → [0, 1]
given by

T x =
{
x(1 − x)/(1 − x − x2), x ∈ [0, 1/2],

1 − T (1 − x), x ∈ (1/2, 1],

is conjugated to Boole’s transformation T̃ x = x − x−1(x ∈ R \ {0}). Indeed, let
φ(x) = (1 − x)−1 − x−1(x ∈ (0, 1)), then T̃ = φ ◦ T ◦ φ−1 on R \ {0}. It is easy to see
that T 0 = 0, T 1 = 1, T ′(0) = T ′(1) = 1, T ′′ > 0 on (0, 1/2) and T ′′ < 0 on (1/2, 1). In
addition, we have T x − x = 1 − x − T (1 − x) ∼ x3(x → 0). Thus, T is a special case of
Thaler’s maps, which will be explained in §8. The map T admits the invariant density h
given by

h(x) = 1
x2 + 1

(1 − x)2
, x ∈ (0, 1).

Therefore, the invariant measure μ given by dμ(x) = h(x) dx(x ∈ [0, 1]) is an infi-
nite measure. Set γ = √

2 − 1 ∈ (0, 1/2), which is a 2-periodic point of T. Indeed,
T γ = 1 − γ ∈ (1/2, 1) and hence, T 2γ = γ . Let

A0 = [0, γ ), Y = [γ , T γ ], A1 = (T γ , 1].

Then, μ(Y ) = √
2 and μ(A0) = μ(A1) = ∞. In addition, Y dynamically separates A0

and A1, that is, Ai ∩ T −1Aj = ∅(i �= j). For a non-negative integer n, a Borel subset
A ⊂ [0, 1], and x ∈ [0, 1], set

SAn (x) =
n∑
k=1

1A(T kx), ZAn (x) = max{k ≤ n : T kx ∈ A}.

Here, it is understood that max ∅ = 0. In other words, SAn (x) denotes the occupation time
in A of the orbit {T kx}k≥0 between time 1 and n, and ZAn (x) denotes the last time the orbit
arrives in A until time n. Fix any Borel probability measure ν(dx) absolutely continuous
with respect to the Lebesgue measure on [0, 1]. We interpret x as the initial point of the
orbit {T kx}k≥0 and ν(dx) as the initial distribution of the orbit. Then, the Darling–Kac
theorem [1, 2] yields that, as n → ∞,

ν

(
πSYn

2
√
n

≤ t

)
→ 2

π

∫ t

0
e−y2/π dy, t ≥ 0. (1.1)

Next, the Dynkin–Lamperti generalized arcsine law for waiting times [24] shows that, as
n → ∞,

ν

(
ZYn

n
≤ t

)
→ 2

π
arcsin

√
t , t ∈ [0, 1]. (1.2)
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Large deviations for infinite ergodic transformations 3

Finally, the Lamperti generalized arcsine law for occupation times [25] implies that, as
n → ∞,

ν

(
S
Ai
n

n
≤ t

)
→ 2

π
arcsin

√
t , t ∈ [0, 1], i = 0, 1. (1.3)

We also remark that convergence rates of (1.1) and (1.2) were also studied in [12, 19–21],
and a large deviation estimate for the Perron–Frobenius operator related to (1.2) can be
found in [26].

We now illustrate our main results. Our aim is to estimate the left-hand sides of (1.1),
(1.2), and (1.3) as t → 0.

Example 1.2. (Large deviation estimates for Boole’s transformation) Under the setting
of Example 1.1, we further assume that ν is a probability measure supported on [ε, 1 −
ε] for some ε ∈ (0, 1/2) and admits a Riemann integrable density. Then, there exists
some constants 0 < C1 ≤ C2 < ∞ such that, for any positive sequence {c(n)}n≥0 with
c(n) → 0 and c(n)n → ∞(n → ∞), the following estimates hold:

C1 ≤ lim inf
n→∞

p(n)√
c(n)

≤ lim sup
n→∞

p(n)√
c(n)

≤ C2 (1.4)

for

p(n) = ν

(
πSYn

2
√
n

≤ √
c(n)

)
, ν

(
ZYn

n
≤ c(n)

)
and ν

(
S
Ai
n

n
≤ c(n)

)
.

Note that C1 and C2 may depend on ν. These estimates are compatible with (1.1), (1.2),
and (1.3), respectively, since the right-hand side of (1.1) with t = √

c(n) and those of (1.2)
and (1.3) with t = c(n) are asymptotically equal to (2/π)

√
c(n), as n → ∞. Nevertheless,

(1.1), (1.2), and (1.3) do not imply (1.4) directly.

For the proof, we adopt a method of double Laplace transform as in [18], imitating
the study of generalized arcsine laws for occupation times of one-dimensional diffusion
processes [5, 10, 16, 28, 29]. Although moment methods were used in [11, 24, 25, 27, 33],
double Laplace transform is more adequate for our large deviation estimates. For example,
the probability ν(ZYn /n ≤ c(n)) in Example 1.2 has a negligibly small contribution to the
kth moment

∫
[0,1](Z

Y
n /(c(n)n))

k dν(k = 1, 2, . . .), while it has large contributions to the
Laplace transform ∫

[0,1]
exp

(
− λZYn

c(n)n

)
dν (λ > 0)

and the double Laplace transform∫ ∞

0
e−qu

( ∫
[0,1]

exp
(

− λZY[un]

c(n)n

)
dν

)
du (q, λ > 0).

This is why we adopt a method of double Laplace transform rather than moment methods
to estimate ν(ZYn /n ≤ c(n)).
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4 T. Sera

This paper is organized as follows. In §2, we recall some basic notions of infinite
ergodic theory and the theory of regular variation. In §3, we formulate large deviation
estimates related to the Darling–Kac theorem and generalized arcsine laws in abstract
settings. Section 4 is devoted to introduce some lemmas needed to calculate double Laplace
transform. In §§5, 6, and 7, we prove the large deviation estimates by using double Laplace
transform. In §8, we apply our abstract results to Thaler’s maps.

2. Preliminaries
Before presenting our main results, let us recall basic concepts of infinite ergodic theory.
We basically follow the settings of [11, 18, 27, 33]. We also refer the reader to [3] for the
foundations of infinite ergodic theory.

Throughout this paper, except in §§1 and 8, we assume the following condition.
• Let (X, A, μ) be a σ -finite measure space with μ(X) = ∞, and T : X → X be

a conservative, ergodic, measure-preserving transformation on (X, A, μ), which is
abbreviated as CEMPT. In addition, let Y ∈ A with μ(Y ) ∈ (0, ∞).

Let N denote the set of all positive integers and set N0 = N ∪ {0}. For A ∈ A, we write
1A for the indicator function of A. Since T is a CEMPT, we have

∑
n≥0 1A ◦ T n = ∞,

almost everywhere (a.e.) for anyA ∈ A with μ(A) > 0. In other words, the orbit {T nx}n≥0

visits A infinitely often for μ-almost every initial point x. For u ∈ L1(μ), define the signed
measure μu on (X, A) as μu(A) = ∫

A
u dμ(A ∈ A). The transfer operator T̂ : L1(μ) →

L1(μ) is defined by T̂ u = d(μu ◦ T −1)/dμ(u ∈ L1(μ)). This operator is characterized
by the equation

∫
X
(v ◦ T )u dμ = ∫

X
v(T̂ u) dμ for any v ∈ L∞(μ) and u ∈ L1(μ). The

domain of T̂ can be extended to all non-negative, measurable functions u : X → [0, ∞).
Then,

∫
X
T̂ u dμ = ∫

X
u dμ for any non-negative, measurable function u.

We need to extend the concept of uniform sweeping of [27, 33] slightly. If, for
non-negative measurable functions H and G on (X, A, μ), there is some C > 0 and
K ∈ N0 such that C

∑K
k=0 T̂

kH ≥ G a.e., then H will be called uniformly sweeping (in K
steps) for G. Let H ∪ {G} be a family of measurable functionsH : X → [0, ∞). We say H

is uniformly sweeping (in K steps) for G if the following condition holds: there exist some
constants C > 0 and K ∈ N0 such that, for any H ∈ H, we have C

∑K
k=0 T̂

kH ≥ G a.e.
Let us recall regularly and slowly varying functions. We refer the reader to [6] for the

details. Let f , g : (0, ∞) → (0, ∞) be positive, measurable functions. If f (t)/g(t) →
1(t → t0), then we write f (t) ∼ g(t) (t → t0). We say f is regularly varying of index
ρ ∈ R at ∞ (respectively at 0) if, for any λ > 0,

f (λt) ∼ λρf (t) (t → ∞) (respectively t → 0+).

In the case where ρ = 0, we say f is slowly varying at ∞ (respectively at 0). A positive
sequence {a(n)}n≥0 is called regularly varying of index ρ if the function a([t]) is regularly
varying of index ρ at ∞. Here, [t] denotes the greatest integer that is less than or equal to t.

Let ϕ : X → N ∪ {∞} be the first return time to Y, that is,

ϕ(x) = min{k ≥ 1 : T kx ∈ Y } (x ∈ X).
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Here, it is understood that min ∅ = ∞. Define disjoint sets Y0, Y1, Y2, . . . ∈ A as

Y0 = Y , Yn = (T −nY ) \
( n−1⋃
k=0

T −kY
)

= Y c ∩ {ϕ = n} (n ∈ N).

As proved in [27, equation (2.3)],

1Yn =
∑
k>n

T̂ k−n1Y∩{ϕ=k} a.e. (n ∈ N0), (2.1)

andμ(Yn) = μ(Y ∩ {ϕ > n}). Let {wYn }n≥0 denote the wandering rate of Y, which is given
by

wYn = μ

( n−1⋃
k=0

T −kY
)

=
n−1∑
k=0

μ(Yk) =
n−1∑
k=0

∫
Y

T̂ k1Yk dμ

=
n−1∑
k=0

μ(Y ∩ {ϕ > k}) (n ∈ N0). (2.2)

Since T is a CEMPT, we see
⋃
n≥0 T

−nY = X, a.e. and hence, wYn → ∞ (n → ∞). For
s > 0, let QY (s) be a Laplace transform of {wYn+1 − wYn }n≥0:

QY (s) =
∑
n≥0

e−ns(wYn+1 − wYn ) =
∑
n≥0

e−nsμ(Y ∩ {ϕ > n}) (s > 0).

Then, 0 < QY (s) < ∞ and QY (s) → ∞ (s → 0+). Let α ∈ (0, 1) and let � : (0, ∞) →
(0, ∞) be a positive, measurable function slowly varying at ∞. By Karamata’s Tauberian
theorem [6, Theorem 1.7.1], the condition

wYn ∼ n1−α�(n) (n → ∞)

is equivalent to

QY (s) ∼ 
(2 − α)s−1+α�(s−1) (s → 0+). (2.3)

Here, 
(z) = ∫ ∞
0 e−t t−1+z dt (z > 0) denotes the gamma function.

If {(wYn )−1 ∑n−1
k=0 T̂

k1Yk }n≥1 converges in L∞(μ) as n → ∞, then we call the limit
function H ∈ L∞(μ) as the asymptotic entrance density of Y. Since (wYn )

−1 ∑n−1
k=0 T̂

k1Yk
is a μ-probability density function supported on Y, so is H. Let G ∈ {u ∈ L1(μ) : u ≥ 0}.
Then, H is uniformly sweeping in K steps for G if and only if there exists N ∈ N such that
{(wYn )−1 ∑n−1

k=0 T̂
k1Yk }n≥N is uniformly sweeping in K steps for G.

For non-negative sequences (a(n))n≥0 and (b(n))n≥0, we write a(n) = o(b(n))

(n → ∞) if, for any ε > 0, there exists n0 ∈ N0 such that a(n) ≤ εb(n) for any n > n0.

LEMMA 2.1. Assume that there exists H ∈ L∞(μ) such that

‖T̂ n1Y∩{ϕ=n} − μ(Y ∩ {ϕ = n})H‖L∞(μ) = o(μ(Y ∩ {ϕ = n})) (n → ∞).

Then, H is the asymptotic entrance density of Y.
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6 T. Sera

Proof. Fix ε > 0 arbitrarily. Take n0 ∈ N0 large enough so that

‖T̂ n1Y∩{ϕ=n} − μ(Y ∩ {ϕ = n})H‖L∞(μ) ≤ εμ(Y ∩ {ϕ = n}) for any n > n0. (2.4)

By (2.1) and (2.2),∥∥∥∥ n−1∑
k=0

T̂ k1Yk − wYn H

∥∥∥∥
L∞(μ)

=
∥∥∥∥ n−1∑
k=0

∞∑
m=k+1

(T̂ m1Y∩{ϕ=m} − μ(Y ∩ {ϕ = m})H)
∥∥∥∥
L∞(μ)

≤
n0−1∑
k=0

n0∑
m=k+1

‖T̂ m1Y∩{ϕ=m} − μ(Y ∩ {ϕ = m})H‖L∞(μ)

+
n−1∑
k=0

∞∑
m=max{k,n0}+1

‖T̂ m1Y∩{ϕ=m} − μ(Y ∩ {ϕ = m})H‖L∞(μ). (2.5)

It follows from (2.4) and (2.2) that

n−1∑
k=0

∞∑
m=max{k,n0}+1

‖T̂ m1Y∩{ϕ=m} − μ(Y ∩ {ϕ = m})H‖L∞(μ)

≤ ε

n−1∑
k=0

∞∑
m=k+1

μ(Y ∩ {ϕ = m}) = εwYn . (2.6)

Since wYn → ∞(n → ∞), we use (2.5) and (2.6) to obtain

lim sup
n→∞

∥∥∥∥ 1
wYn

n−1∑
k=0

T̂ k1Yk −H

∥∥∥∥
L∞(μ)

≤ ε.

The proof is complete, since ε > 0 was arbitrary.

3. Main results
In the following, we are going to formulate three types of large deviation estimates, which
are related to already-known distributional limit theorems.

3.1. Large deviation estimates related to the Dynkin–Lamperti generalized arcsine law.
Let u : X → [0, ∞) be a non-negative, μ-integrable function. Recall μu is defined as the
μ-absolutely continuous finite measure on X with density function u with respect to μ,
that is,

μu(A) =
∫
A

u(x) dμ(x) (A ∈ A).

Let ZYn (x) denote the last time the orbit {T kx}k≥0 arrives in Y until time n, that is,

ZYn (x) = max{k ≤ n : T kx ∈ Y } (n ∈ N0, x ∈ X).
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THEOREM 3.1. Suppose the following conditions are satisfied:
(A1) wYn ∼ n1−α�(n)(n → ∞) for some α ∈ (0, 1) and some positive, measurable

function � : (0, ∞) → (0, ∞) slowly varying at ∞;
(A2) there exists N ∈ N such that {(1/wYn )

∑n−1
k=0 T̂

k1Yk }n≥N is uniformly sweeping for
1Y ;

(A3) there exists H ∈ L∞(μ) such that

lim
n→∞

1
wYn

n−1∑
k=0

T̂ k1Yk = H in L∞(μ).

Let {c(n)}n≥0 be a positive sequence satisfying

c(n) → 0, c(n)n → ∞ (n → ∞). (3.1)

Then,

μH

(
ZYn

n
≤ c(n)

)
∼ sin(πα)

πα

c(n)α�(n)

�(c(n)n)
(n → ∞). (3.2)

The proof of Theorem 3.1 will be given in §5.

Remark 3.2. Under the setting of Theorem 3.1, fix ε ∈ (0, α) arbitrarily. Then, the Potter
bounds for slowly varying functions [6, Theorem 1.5.6] implies that there exist Cε ≥ 1 and
Nε ∈ N such that, for any n ≥ Nε, we have c(n) ≤ 1 and

C−1
ε c(n)ε ≤ �(n)

�(c(n)n)
≤ Cεc(n)

−ε.

Thus, the right-hand side of (3.2) converges to 0 as n → ∞.

Remark 3.3. If we further assume
�(n)

�(c(n)n)
→ 1 (n → ∞), (3.3)

then we obtain

μH

(
ZYn

n
≤ c(n)

)
∼ sin(πα)

πα
c(n)α (n → ∞). (3.4)

Remark 3.4. Fix any positive, measurable function � : (0, ∞) → (0, ∞) slowly varying
at ∞. Then, there exists a non-increasing, positive sequence {c(n)}n≥0 satisfying (3.1)
and (3.3). Indeed, we use the uniform convergence theorem for slowly varying functions
[6, Theorem 1.2.1] to take a strictly increasing sequence {MN }N≥1 ⊂ N so that

sup
{∣∣∣∣ �(t)�(λt)

− 1
∣∣∣∣ : λ ∈ [N−1, 1], t ≥ MN

}
≤ 1
N

(N ∈ N).

Set c(n) = 1 for 0 ≤ n < M1 and c(n) = N−1/2 for MN ≤ n < MN+1(N ∈ N). It is easy
to check that {c(n)}n≥0 satisfies (3.1) and (3.3).

Remark 3.5. (Comparison with the Dynkin–Lamperti generalized arcsine law) Let us
recall the Dynkin–Lamperti generalized arcsine law for waiting times. Assume conditions
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(A1) and (A3) of Theorem 3.1 are fulfilled. Then, for any μ-absolutely continuous
probability measure ν on (X, A) and any 0 ≤ t ≤ 1, we have

lim
n→∞ ν

(
ZYn

n
≤ t

)
= sin(πα)

π

∫ t

0

ds

s1−α(1 − s)α
, (3.5)

which follows from [33, Theorem 2.3]. See also [27, Theorem 3.3] and [11, Theorem 2.1].
The limit is the distribution function of the Beta(α, 1 − α)-distribution. In the case
where α = 1/2, this distribution is the usual arcsine distribution. We emphasize that the
right-hand side of (3.5) does not depend on the choice of ν because of the ergodicity
of T. Note that the right-hand side of (3.4) is asymptotically the same as the right-hand
side of (3.5) with t = c(n), as n → ∞. Nevertheless, (3.4) does not follow from (3.5)
directly. We do not know whether (3.2) remains valid in the case μH is replaced by
other suitable probability measures ν except for μT̂ kH (see also Corollaries 3.6 and
3.7, Theorem 3.8, and Remark 3.9). The difficulty is that the L1-characterization of the
ergodicity [33, Theorem 3.1] is inadequate for this purpose, although it is significant
for (3.5).

In the following two corollaries, we will consider what happens when we replace μH in
the left-hand side of (3.2) by other finite measures.

COROLLARY 3.6. Let k ∈ N0. Under the setting of Theorem 3.1,

μH

(
ZYn ◦ T k

n
≤ c(n)

)(
= μT̂ kH

(
ZYn

n
≤ c(n)

))
∼ sin(πα)

πα

c(n)α�(n)

�(c(n)n)
(n → ∞).

Proof of Corollary 3.6 by using Theorem 3.1. Note that ZYn ◦ T k = max{0, ZYn+k − k}
and hence, {ZYn ◦ T k ≤ nc(n)} = {ZYn+k ≤ nc(n)+ k}. In addition,

nc(n)+ k

n+ k
→ 0 and nc(n)+ k → ∞(n → ∞).

In other words, (3.1) is satisfied with n and c(n) replaced by n+ k and (nc(n)+ k)/(n+
k), respectively. Therefore, Theorem 3.1 yields

μH

(
ZYn ◦ T k

n
≤ c(n)

)
= μH

(
ZYn+k
n

≤ c(n)+ k

n

)
= μH

(
ZYn+k
n+ k

≤ nc(n)+ k

n+ k

)
∼ sin(πα)

πα

(
c(n)n+ k

n+ k

)α
�(n+ k)

�(c(n)n+ k)

∼ sin(πα)
πα

c(n)α�(n)

�(c(n)n)
(n → ∞).

Here, we used the uniform convergence theorem for slowly varying functions. This
completes the proof.

COROLLARY 3.7. Suppose that conditions (A1), (A2), (A3) in Theorem 3.1 are fulfilled.
Let G ∈ {u ∈ L1(μ) : u ≥ 0}. Then, the following assertions hold.
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(1) Assume that G is uniformly sweeping for 1Y . Then, there exists C1 ∈ (0, ∞) such
that, for any positive sequence {c(n)}n≥0 satisfying (3.1), we have

C1 ≤ lim inf
n→∞

�(c(n)n)

c(n)α�(n)
μG

(
ZYn

n
≤ c(n)

)
. (3.6)

(2) Assume that 1Y is uniformly sweeping for G. Then, there exists C2 ∈ (0, ∞) such
that, for any positive sequence {c(n)}n≥0 satisfying (3.1), we have

lim sup
n→∞

�(c(n)n)

c(n)α�(n)
μG

(
ZYn

n
≤ c(n)

)
≤ C2. (3.7)

Proof of Corollary 3.7 by using Theorem 3.1. (1) By the assumption, G is also uni-
formly sweeping for H. Take K ∈ N so large that

∑K−1
k=0 T̂ kG ≥ K−1H , a.e. Let

k ∈ {0, 1, . . . , K}. Note that ZYn ◦ T k +K ≥ ZYn and hence,

μG

(
ZYn

n
≤ c(n)

)
≥ μG

(
ZYn ◦ T k

n
≤ c(n)− K

n

)
.

Therefore, Theorem 3.1 yields that

μG

(
ZYn

n
≤ c(n)

)
≥ 1
K

K−1∑
k=0

μG

(
ZYn ◦ T k

n
≤ c(n)− K

n

)

≥ 1
K2μH

(
ZYn

n
≤ c(n)− K

n

)
∼ sin(πα)

K2πα

c(n)α�(n)

�(c(n)n)
(n → ∞),

which implies the desired result.
(2) By the assumption, H is also uniformly sweeping for G. Take K ∈ N so large that

G ≤ K
∑K−1
k=0 T̂ kH , a.e. Then, we use Corollary 3.6 to obtain

μG

(
ZYn

n
≤ c(n)

)
≤ K

K−1∑
k=0

μH

(
ZYn ◦ T k

n
≤ c(n)

)
∼ K2 sin(πα)

πα

c(n)α�(n)

�(c(n)n)
(n → ∞),

as desired.

We will also give the proof of the following theorem in §5.

THEOREM 3.8. Suppose that conditions (A1) and (A2) of Theorem 3.1 are fulfilled. Let
G ∈ {u ∈ L1(μ) : u ≥ 0}. Then, assertion (2) of Corollary 3.7 holds.

In other words, assertion (2) of Corollary 3.7 remains valid without assuming the
existence of the asymptotic entrance density H. The reader may expect assertion (1) also
remains valid under a similar setting, but we do not know whether it is true. The reason is
that μG(ZYn /n ≤ c(n)) can be bounded above but not below by double Laplace transform
of ZYn , as we shall see in the proof of Theorem 3.8.
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Remark 3.9. Let α ∈ (0, 1) and let {c(n)}n≥0 be a non-increasing, (0, 1]-valued sequence
satisfying c(0) = 1 and c(n) → 0(n → ∞). Then, there exists a μ-probability density
function G such that

lim sup
n→∞

1
c(n)α

μG

(
ZYn

n
≤ c(n)

)
= ∞, (3.8)

as we shall see below. Indeed, let

N0 = 0 and Nk = min{n > Nk−1 : μ(Y ∩ {ϕ = n}) > 0} (k ∈ N).

Then, {Nk}k≥0 ⊂ N0 is strictly increasing. We define the μ-probability density function
G : X → [0, ∞) as

G =
{
(c(Nk−1)

α/2 − c(Nk)
α/2)/μ(Y ∩ {ϕ = Nk}) on Y ∩ {ϕ = Nk}(k ∈ N),

0 otherwise.

Then, μG(ϕ > Nk) = c(Nk)
α/2 and hence,

1
c(Nk)α

μG

(
ZYNk

Nk
≤ c(Nk)

)
≥ 1
c(Nk)α

μG(ϕ > Nk) = c(Nk)
−α/2 → ∞ (k → ∞),

which implies (3.8).

3.2. Large deviation estimates related to the Darling–Kac theorem. For A ∈ A, let
SAn (x) denote the occupation time in A of the orbit {T kx}k≥0 from time 1 to time n, that is,

SAn (x) =
n∑
k=1

1A(T kx) (n ∈ N0, x ∈ X).

In the following, we consider occupation times in a set of finite measure.

THEOREM 3.10. Suppose the following conditions are satisfied:
(B1) wYn ∼ n1−α�(n)(n → ∞) for some α ∈ (0, 1) and some positive, measurable

function � : (0, ∞) → (0, ∞) slowly varying at ∞;
(B2) {(1/wYn )

∑n−1
k=0 T̂

k1Yk }n≥1 is L∞(μ)-bounded.
For t > 0, set

a(t) = t


(1 + α)QY (t−1)
∼ tα


(1 + α)
(2 − α)�(t)
(t → ∞).

Let {̃c(n)}n≥0 be a positive sequence satisfying

c̃(n) → 0 and c̃(n)a(n) → ∞ (n → ∞). (3.9)

Then,

μ1Y

(
SYn

a(n)
≤ c̃(n)

)
∼ sin(πα)

πα
c̃(n) (n → ∞). (3.10)

The proof of Theorem 3.10 will be given in §6.
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Remark 3.11. (Comparison with the Darling–Kac theorem) Let us recall the Darling–Kac
theorem. Set

F(t) = 1
πα

∫ t

0

∞∑
k=1

(−1)k−1

k!
sin(παk)
(1 + αk)sk−1 ds (t ≥ 0),

which is the distribution function of the Mittag–Leffler distribution of order α with Laplace
transform ∫ ∞

0
e−λt dF (t) =

∞∑
k=0

(−λ)k

(1 + αk)

(λ ∈ R).

See [7, 15] for the details. As a special case, the Mittag–Leffler distribution of order 1/2
is the half-normal distribution with mean 2/

√
π . Suppose conditions (A1), (A2), (A3) of

Theorem 3.1 are satisfied. Then, for any μ-absolutely continuous probability measure ν on
X and for any t ≥ 0, we have

lim
n→∞ ν

(
SYn

a(n)
≤ t

)
= F

(
t


(1 + α)μ(Y )

)
, (3.11)

which follows from [27, Theorem 3.1]. See also [33, Theorem 2.1] and [11, Theorem 2.1].
Note that

F

(
c̃(n)


(1 + α)μ(Y )

)
∼ sin(πα)

πα

c̃(n)

μ(Y )
(n → ∞).

Nevertheless, (3.10) does not follow from (3.11) directly.

COROLLARY 3.12. Let k ∈ N0. Under the setting of Theorem 3.10,

μ1Y

(
SYn ◦ T k
a(n)

≤ c̃(n)

)(
= μT̂ k1Y

(
SYn

a(n)
≤ c̃(n)

))
∼ sin(πα)

πα
c̃(n) (n → ∞).

Proof of Corollary 3.12 by using Theorem 3.10. Since |SYn − SYn ◦ T k| ≤ k, we see that

μ1Y

(
SYn

a(n)
≤ c̃(n)− k

a(n)

)
≤ μ1Y

(
SYn ◦ T k
a(n)

≤ c̃(n)

)
≤ μ1Y

(
SYn

a(n)
≤ c̃(n)+ k

a(n)

)
.

By Theorem 3.10,

μ1Y

(
SYn

a(n)
≤ c̃(n)± k

a(n)

)
∼ sin(πα)

πα
c̃(n) (n → ∞),

as desired.

COROLLARY 3.13. Suppose that conditions (B1) and (B2) of Theorem 3.10 are fulfilled.
Let G ∈ {u ∈ L1(μ) : u ≥ 0}. Then, the following assertions hold.
(1) Assume that G is uniformly sweeping for 1Y . Then, there exists C1 ∈ (0, ∞) such

that, for any positive sequence {̃c(n)}n≥0 satisfying (3.9), we have

C1 ≤ lim inf
n→∞

1
c̃(n)

μG

(
SYn

a(n)
≤ c̃(n)

)
. (3.12)
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(2) Assume that 1Y is uniformly sweeping for G. Then, there exists C2 ∈ (0, ∞) such
that, for any positive sequence {̃c(n)}n≥0 satisfying (3.9), we have

lim sup
n→∞

1
c̃(n)

μG

(
SYn

a(n)
≤ c̃(n)

)
≤ C2. (3.13)

Proof of Corollary 3.13 by using Theorem 3.10. (1) Take K ∈ N so large that∑K−1
k=0 T̂ kG ≥ K−11Y , a.e. Let k ∈ {0, 1, 2, . . . , K}. Then, SYn ≤ SYn ◦ T k + k ≤ SYn ◦

T k +K and hence,

μG

(
SYn

a(n)
≤ c̃(n)

)
≥ μG

(
SYn ◦ T k
a(n)

≤ c̃(n)− K

a(n)

)
.

Note that

c̃(n)− K

a(n)
→ 0 and

(
c̃(n)− K

a(n)

)
a(n) → ∞ (n → ∞).

Hence, Theorem 3.10 with c̃(n) replaced by c̃(n)− (K/a(n)) implies

μG

(
SYn

a(n)
≤ c̃(n)

)
≥ K−1

K−1∑
k=0

μG

(
SYn ◦ T k
a(n)

≤ c̃(n)− K

a(n)

)

≥ K−2μ1Y

(
SYn

a(n)
≤ c̃(n)− K

a(n)

)
∼ sin(πα)

K2πα
c̃(n) (n → ∞),

which implies the desired result.
(2) Take K ∈ N large enough that G ≤ K

∑K−1
k=0 T̂ k1Y , a.e. Then, we use Corol-

lary 3.12 to obtain

μG

(
SYn

a(n)
≤ c̃(n)

)
≤ K

K−1∑
k=0

μ1Y

(
SYn ◦ T k
a(n)

≤ c̃(n)

)
∼ K2 sin(πα)

πα
c̃(n) (n → ∞),

as desired.

3.3. Large deviation estimates related to the Lamperti generalized arcsine law. In
the following, we consider occupation times in sets of infinite measure under certain
additional assumptions. Fix disjoint sets Y , A1, A2, . . . , Ad ∈ A with d ∈ N, d ≥ 2,
X = Y ∪ ⋃d

i=1 Ai , 0 < μ(Y ) < ∞, and μ(Ai) = ∞(i = 1, 2, . . . , d). We assume Y
dynamically separates A1, A2, . . . , Ad (under the action of T), that is, Ai ∩ T −1Aj = ∅
whenever i �= j . Then, the condition [x ∈ Ai and T nx ∈ Aj(i �= j)] implies n ≥ 2 and
the existence of k = k(x) ∈ {1, . . . , n− 1} for which T kx ∈ Y . As shown in [27, (6.6)],

1Yn∩Ai =
∑
k>n

T̂ k−n1Y∩(T −1Ai)∩{ϕ=k} a.e. (n ∈ N, i = 1, 2, . . . , d), (3.14)
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and μ(Yn ∩ Ai) = μ(Y ∩ (T −1Ai) ∩ {ϕ > n}) (n ∈ N, i = 1, 2, . . . , d). Let {wY ,Ai
n }n≥0

denote the wandering rate of Y starting from Ai , which is given by

wY ,Ai
n = μ

( n−1⋃
k=0

(T −kY ) ∩ Ai
)

=
n−1∑
k=0

μ(Yk ∩ Ai) =
n−1∑
k=0

∫
Y

T̂ k1Yk∩Ai dμ

=
n−1∑
k=1

μ(Y ∩ (T −1Ai) ∩ {ϕ > k}) (n ∈ N0, i = 1, 2, . . . , d). (3.15)

Since T is a CEMPT, we see
⋃
n≥0(T

−nY ) ∩ Ai = Ai , a.e. and hence, wY ,Ai
n →

∞(n → ∞, i = 1, . . . , d). We write QY ,Ai (s) for Laplace transform of {wY ,Ai
n+1 −

w
Y ,Ai
n }n≥0:

QY ,Ai (s) =
∑
n≥0

e−ns(wY ,Ai
n+1 − wY ,Ai

n )

=
∑
n≥1

e−nsμ(Y ∩ (T −1Ai) ∩ {ϕ > n}) (s > 0, i = 1, 2, . . . , d).

Then, wYn = μ(Y )+ ∑d
i=1 w

Y ,Ai
n and QY (s) = μ(Y )+ ∑d

i=1 Q
Y ,Ai (s). In addition,

0 < QY ,Ai (s) < ∞ andQY ,Ai (s) → ∞(s → 0+, i = 1, . . . , d). Let α, β1, β2, . . . , βd ∈
(0, 1) with

∑d
i=1 βi = 1 and let � : (0, ∞) → (0, ∞) be a positive, measurable function

slowly varying at ∞. By Karamata’s Tauberian theorem, the condition

wY ,Ai
n ∼ βin

1−α�(n) (n → ∞, i = 1, 2, . . . , d)

is equivalent to

QY ,Ai (s) ∼ 
(2 − α)βis
−1+α�(s−1) (s → 0+, i = 1, 2, . . . , d). (3.16)

The following lemma will be used in §8.

LEMMA 3.14. Fix i ∈ {1, 2, . . . , d}. Assume that there exists H(i) ∈ L∞(μ) such that

‖T̂ n1Y∩(T −1Ai)∩{ϕ=n} − μ(Y ∩ (T −1Ai) ∩ {ϕ = n})H (i)‖L∞(μ)

= o(μ(Y ∩ (T −1Ai) ∩ {ϕ = n})) (n → ∞).

Then,

lim
n→∞

(
1

w
Y ,Ai
n

n−1∑
k=0

T̂ k1Yk∩Ai
)

= H(i) in L∞(μ).

We omit the proof of Lemma 3.14, since it is almost the same as that of Lemma 2.1.

THEOREM 3.15. Suppose the following conditions are satisfied.
(C1) For d ∈ N with d ≥ 2, let A1, . . . , Ad ∈ A with X = Y ∪ ⋃d

i=1 Ai and μ(Ai) =
∞(i = 1, 2, . . . , d). In addition, Y , A1, A2, . . . , Ad are disjoint sets, and Y
dynamically separates A1, A2, . . . , Ad .
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(C2) w
Y ,Ai
n ∼ βin

1−α�(n)(n → ∞, i = 1, 2, . . . , d) for some α, β1, β2, . . . , βd ∈
(0, 1) with

∑d
i=1 βi = 1 and for some positive, measurable function � : (0, ∞) →

(0, ∞) slowly varying at ∞.
(C3) {(1/wY ,Ad

n )
∑n−1
k=0 T̂

k1Yk∩Ad }n≥2 is L∞(μ)-bounded.
(C4) There exists N ≥ 2 such that {1/wY ,Ai

n

∑n−1
k=0 T̂

k1Yk∩Ai }n≥N , i=1,...,d−1 is uni-
formly sweeping for 1Y .

(C5) There exist H(1), . . . , H(d−1) ∈ L∞(μ) such that

lim
n→∞

(
1

w
Y ,Ai
n

n−1∑
k=0

T̂ k1Yk∩Ai
)

= H(i) in L∞(μ) (i = 1, . . . , d − 1).

Let λ1, . . . , λd−1 ∈ (0, ∞) and let {c(n)}n≥0 be a positive sequence satisfying (3.1). Set
H̃ = ∑d−1

i=1 βiλ
α
i H

(i). Then,

μH̃

(
1
n

d−1∑
i=1

λiS
Ai
n ≤ c(n)

)
∼ βd

sin(πα)
πα

c(n)α�(n)

�(c(n)n)
(n → ∞). (3.17)

The proof of Theorem 3.15 will be given in §7.

Remark 3.16. Under the setting of Theorem 3.15 with d = 2 and λ1 = 1, let us assume
(3.3). Then, we obtain

μH(1)

(
S
A1
n

n
≤ c(n)

)
∼ β2

β1

sin(πα)
πα

c(n)α (n → ∞). (3.18)

Remark 3.17. If λi = 0 for some i, then (3.17) does not remain valid. For example, let
d ≥ 3, λ1, . . . , λd−2 ∈ (0, ∞), and λd−1 = 0. Then,

μH̃

(
1
n

d−2∑
i=1

λiS
Ai
n ≤ c(n)

)
∼ (βd−1 + βd)

sin(πα)
πα

c(n)α�(n)

�(c(n)n)
(n → ∞),

which follows from Theorem 3.15.

Remark 3.18. (Comparison with the Lamperti generalized arcsine law) Let us recall the
Lamperti generalized arcsine law for occupation times. Suppose conditions (C1), (C2),
(C5) of Theorem 3.15 and condition (A2) of Theorem 3.1 are fulfilled with d = 2. Set
b = β2/β1. Then, for any μ-absolutely continuous probability measure ν on (X, A) and
for any 0 ≤ t ≤ 1, we have

lim
n→∞ ν

(
S
A1
n

n
≤ t

)
= b sin(πα)

π

∫ t

0

sα−1(1 − s)α−1 ds

b2s2α + 2bsα(1 − s)α cos(πα)+ (1 − s)2α

= 1
πα

arccot
(

(1 − t)α

b sin(πα)tα
+ cot(πα)

)
, (3.19)

as shown in [33, Theorem 2.2]. See also [27, Theorem 3.2] and [18, Theorem 2.7].
The limit is the distribution function of the Lamperti generalized arcsine distribution of
parameter (α, β1). In the case where α = β1 = β2 = 1/2, this distribution is the usual
arcsine distribution. Note that the right-hand side of (3.18) is asymptotically the same as
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the right-hand side of (3.19) with t = c(n). Nevertheless, (3.18) does not follow from (3.19)
directly.

The proofs of the following two corollaries are almost the same as those of Corollaries
3.6, 3.7, 3.12, and 3.13, so we omit them.

COROLLARY 3.19. Let k ∈ N0. Under the setting of Theorem 3.15,

μH̃

(
1
n

d−1∑
i=1

λiS
Ai
n ◦ T k ≤ c(n)

)
∼ βd

sin(πα)
πα

c(n)α�(n)

�(c(n)n)
(n → ∞).

COROLLARY 3.20. Suppose that conditions (C1)–(C5) of Theorem 3.15 are satisfied.
Let G ∈ {u ∈ L1(μ) : u ≥ 0} and λ1, . . . , λd−1 ∈ (0, ∞). Then, the following assertions
hold.
(1) Assume that G is uniformly sweeping for 1Y . Then, there exists C1 ∈ (0, ∞) such

that, for any positive sequence {c(n)}n≥0 satisfying (3.1), we have

C1 ≤ lim inf
n→∞

�(c(n)n)

c(n)α�(n)
μG

(
1
n

d−1∑
i=1

λiS
Ai
n ≤ c(n)

)
.

(2) Assume that 1Y is uniformly sweeping for G. Then, there exists C2 ∈ (0, ∞) such
that, for any positive sequence {c(n)}n≥0 satisfying (3.1), we have

lim sup
n→∞

�(c(n)n)

c(n)α�(n)
μG

(
1
n

d−1∑
i=1

λiS
Ai
n ≤ c(n)

)
≤ C2.

Assertion (2) remains valid even if we drop condition (C5) of Theorem 3.15.

THEOREM 3.21. Suppose that conditions (C1)–(C4) of Theorem 3.15 are satisfied. Let
G ∈ {u ∈ L1(μ) : u ≥ 0} and λ1, . . . , λd−1 ∈ (0, ∞). Then, assertion (2) of Corol-
lary 3.20 holds.

We will give the proof of Theorem 3.21 in §7.

4. Analytical tools
In this section, we prove lemmas needed in the following.

LEMMA 4.1. Let fn : (0, ∞) → [0, ∞)(n ∈ N ∪ {∞}) be non-increasing functions.
Assume there exists a non-empty open interval I ⊂ (0, ∞) such that for any q ∈ I ,

lim
n→∞

∫ ∞

0
e−qufn(u) du =

∫ ∞

0
e−quf∞(u) du < ∞.

Then, limn→∞ fn(u) = f∞(u) for all continuity points u ∈ (0, ∞) of f∞.

See [18, Lemma 3.2] for the proof of Lemma 4.1.

LEMMA 4.2. Fix a constant C > 0. Let Sn : X → [0, Cn](n ∈ N0) be measurable func-
tions, and let λ : (0, ∞) → [0, ∞) be a non-negative function with λ(t) → 0(t → ∞).
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Suppose νt (t > 0) are non-zero finite measures on X. Then, for any q > 0,

∞∑
n=0

e−nqt−1
∫
X

exp(−λ(t)Sn) dνt

∼ t

∫ ∞

0
e−qu

( ∫
X

exp(−λ(t)S[ut]) dνt

)
du (t → ∞). (4.1)

Proof. For fixed q > 0, let l(t) and r(t) denote the left-hand and right-hand sides of (4.1),
respectively. Note that

r(t) =
∞∑
n=0

t

∫ (n+1)t−1

nt−1
e−qu

( ∫
X

exp(−λ(t)Sn) dνt
)
du, (4.2)

and hence,

0 ≤ l(t)− r(t) ≤
∞∑
n=0

(e−nqt−1 − e−(n+1)qt−1
)νt (X) = νt (X).

In addition, since 0 ≤ S[ut] ≤ Cut , we have

r(t) ≥ νt (X)t

∫ ∞

0
exp(−(q + Cλ(t)t)u) du = νt (X)

qt−1 + Cλ(t)
.

Therefore, we obtain

1 ≤ l(t)

r(t)
≤ 1 + qt−1 + Cλ(t) → 1 (t → ∞).

This completes the proof.

The following three lemmas are slight extensions of [27, Lemma 4.2].

LEMMA 4.3. Fix t0 > 0 and K ∈ N0. Suppose that the following conditions are fulfilled.
(i) {Ht }t≥t0 ∪ {G} ⊂ {u ∈ L1(μ) : u ≥ 0}. In addition, {Ht }t≥t0 is uniformly sweeping

in K steps for G.
(ii) Rn,t : X → (0, 1](n ∈ N0, t > 0) are measurable functions with

sup
{∥∥∥∥Rn,t ◦ T k

Rn+k,t

∥∥∥∥
L∞(μ)

: n, k ∈ N0, 0 ≤ k ≤ K , t ≥ t0

}
< ∞.

Then, for any q > 0, we have

sup
t≥t0

∑
n≥0 e

−nqt−1 ∫
X
Rn,tG dμ∑

n≥0 e
−nqt−1 ∫

X
Rn,tHt dμ

< ∞.

Proof. By condition (i), there exists C0 > 0 such that G ≤ C0
∑K
k=0 T̂

kHt a.e. for any
t ≥ t0. Moreover, by condition (ii), we can take C ≥ C0 large enough so that Rn,t ◦ T k ≤
CRn+k,t a.e. for any n, k ∈ N0 with 0 ≤ k ≤ K and for any t ≥ t0. Then,
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∫
X

Rn,tG dμ ≤ C

∫
X

Rn,t

( K∑
k=0

T̂ kHt

)
dμ = C

K∑
k=0

∫
X

(Rn,t ◦ T k)Ht dμ

≤ C2
K∑
k=0

∫
X

Rn+k,tHt dμ (n ∈ N0, t ≥ t0).

This implies

∑
n≥0

e−nqt−1
∫
X

Rn,tG dμ ≤ C2
K∑
k=0

∑
n≥k

e−(n−k)qt−1
∫
X

Rn,tHt dμ

≤
(
C2

K∑
k=0

ekqt
−1
0

)( ∑
n≥0

e−nqt−1
∫
X

Rn,tHt dμ

)
(t ≥ t0),

which completes the proof.

LEMMA 4.4. (Integrating transforms) Under the assumptions of Lemma 4.3 withG = 1Y ,
we further suppose the following condition.
(iii) {Ht }t≥t0 ∪ {H } ⊂ {u ∈ L∞(μ) : u ≥ 0 and u is supported on Y } and Ht → H in

L∞(μ)(t → ∞).
Then, for any q > 0,∑

n≥0

e−nqt−1
∫
Y

Rn,tHt dμ ∼
∑
n≥0

e−nqt−1
∫
Y

Rn,tH dμ (t → ∞).

Proof. Note that Ht is supported on Y. By Lemma 4.3 with G = 1Y ,

C := sup
t≥t0

∑
n≥0 e

−nqt−1 ∫
Y
Rn,t dμ∑

n≥0 e
−nqt−1 ∫

Y
Rn,tHt dμ

= sup
t≥t0

∑
n≥0 e

−nqt−1 ∫
X
Rn,t1Y dμ∑

n≥0 e
−nqt−1 ∫

X
Rn,tHt dμ

< ∞.

Therefore, for t ≥ t0,∣∣∣∣
∑
n≥0 e

−nqt−1 ∫
Y
Rn,tH dμ∑

n≥0 e
−nqt−1 ∫

Y
Rn,tHt dμ

− 1
∣∣∣∣ = | ∑

n≥0 e
−nqt−1 ∫

Y
Rn,t (H −Ht) dμ|∑

n≥0 e
−nqt−1 ∫

Y
Rn,tHt dμ

≤ C‖H −Ht‖L∞(μ) → 0 (t → ∞),

as desired.

LEMMA 4.5. Let {vn}n≥0 ⊂ {u ∈ L∞(μ) : u ≥ 0 and u is supported on Y } with

0 <
∑
n≥0

e−ns
∫
Y

vn dμ < ∞ (s > 0).

Let λ : (0, ∞) → (0, ∞) be a positive function with λ(t) → 0(t → ∞). We define
Ht ∈ L1(μ) as

Ht =
∑
n≥0 e

−nλ(t)vn∑
n≥0 e

−nλ(t) ∫
Y
vn dμ

(t > 0). (4.3)
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Then, the following assertions hold.
(1) Ht can be represented as

Ht =
∑
n≥0 e

−nλ(t) ∑n
k=0 vk∑

n≥0 e
−nλ(t) ∑n

k=0
∫
Y
vk dμ

(t > 0).

(2) Assume there exists N ∈ N0 such that
∑N
k=0

∫
Y
vk dμ > 0 and{ ∑n

k=0 vk∑n
k=0

∫
Y
vk dμ

}
n≥N

is uniformly sweeping in K steps for 1Y . Then, there exists t0 > 0 such that {Ht }t≥t0
is uniformly sweeping in K steps for 1Y .

(3) Assume there exists C > 0 such that, for any n ∈ N0,∥∥∥∥ n∑
k=0

vk

∥∥∥∥
L∞(μ)

≤ C

n∑
k=0

∫
Y

vk dμ. (4.4)

Then, ‖Ht‖L∞(μ) ≤ C for any t > 0.
(4) Assume there exists H ∈ L∞(μ) such that∑n

k=0 vk∑n
k=0

∫
Y
vk dμ

→ H in L∞(μ) (n → ∞).

Then, Ht → H in L∞(μ)(t → ∞).

Proof. (1) By Fubini’s theorem,

∑
k≥0

e−kλ(t)vk =
∑
k≥0

(
(1 − e−λ(t))

∑
n≥k

e−nλ(t)
)
vk = (1 − e−λ(t))

∑
n≥0

e−nλ(t)
n∑
k=0

vk ,

and hence,

Ht =
∑
k≥0 e

−kλ(t)vk∑
k≥0 e

−kλ(t) ∫
Y
vk dμ

=
∑
n≥0 e

−nλ(t) ∑n
k=0 vk∑

n≥0 e
−nλ(t) ∑n

k=0
∫
Y
vk dμ

,

as desired.
(2) Take C > 0 large enough so that

C

K∑
m=0

T m
( ∑n

k=0 vk∑n
k=0

∫
Y
vk dμ

)
≥ 1Y a.e., for any n ≥ N ,

or, equivalently,

n∑
k=0

(
C

K∑
m=0

T̂ mvk −
∫
Y

vk dμ

)
≥ 0 a.e. on Y , for any n ≥ N .
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Then,

∑
n≥0

e−nλ(t)
n∑
k=0

(
C

K∑
m=0

T̂ mvk −
∫
Y

vk dμ

)
≥
N−1∑
n=0

e−nλ(t)
n∑
k=0

(
C

K∑
m=0

T̂ mvk −
∫
Y

vk dμ

)

≥ −
N−1∑
n=0

n∑
k=0

∫
Y

vk dμ a.e. on Y .

We have used the fact that T̂ mvk ≥ 0, a.e. Then,

C

K∑
m=0

T̂ mHt − 1 =
∑
n≥0 e

−nλ(t) ∑n
k=0(C

∑K
m=0 T̂

mvk − ∫
Y
vk dμ)∑

n≥0 e
−nλ(t) ∑n

k=0
∫
Y
vk dμ

≥ − ∑N−1
n=0

∑n
k=0

∫
Y
vk dμ∑

n≥0 e
−nλ(t) ∑n

k=0
∫
Y
vk dμ

a.e. on Y . (4.5)

Since
∑
n≥0 e

−nλ(t) ∑n
k=0

∫
Y
vk dμ → ∞(t → ∞), we can take t0 > 0 large enough so

that, for any t ≥ t0, the right-hand side of (4.5) is greater than −1/2. Thus, for any t ≥ t0,
we have 2C

∑K
m=0 T̂

mHt ≥ 1Y a.e., and hence, {Ht }t≥t0 is uniformly sweeping in K steps
for 1Y .

(3) By (4.3) and (4.4),

‖Ht‖L∞(μ) = ‖∑
n≥0 e

−nλ(t) ∑n
k=0 vk‖L∞(μ)∑

n≥0 e
−nλ(t) ∑n

k=0
∫
Y
vk dμ

≤ C,

as desired.
(4) Fix ε > 0 arbitrarily. Take N ∈ N0 large enough so that

∑N
k=0

∫
Y
vk dμ > 0 and∥∥∥∥ ∑n

k=0 vk∑n
k=0

∫
Y
vk dμ

−H

∥∥∥∥
L∞(μ)

≤ ε for any n ≥ N ,

or, equivalently,

∥∥∥∥ n∑
k=0

(
vk −H

∫
Y

vk dμ

)∥∥∥∥
L∞(μ)

≤ ε

n∑
k=0

∫
Y

vk dμ for any n ≥ N .

Hence, ∥∥∥∥ ∑
n≥0

e−nλ(t)
n∑
k=0

(
vk −H

∫
Y

vk dμ

)∥∥∥∥
L∞(μ)

≤
N−1∑
n=0

n∑
k=0

∥∥∥∥vk −H

∫
Y

vk dμ

∥∥∥∥
L∞(μ)

+ ε
∑
n≥N

e−nλ(t)
n∑
k=0

∫
Y

vk dμ,
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which implies

‖Ht −H‖L∞(μ) = ‖∑
n≥0 e

−nλ(t) ∑n
k=0(vk −H

∫
Y
vk dμ)‖L∞(μ)∑

n≥0 e
−nλ(t) ∑n

k=0
∫
Y
vk dμ

≤
∑N−1
n=0

∑n
k=0 ‖vk −H

∫
Y
vk dμ‖L∞(μ)∑

n≥0 e
−nλ(t) ∑n

k=0
∫
Y
vk dμ

+ ε

→ ε (t → ∞).

This establishes the result, since ε > 0 was arbitrary.

The following lemma ensures that condition (ii) in Lemma 4.3 is satisfied for
Rn,t = exp(−λ(t)ZYn ).

LEMMA 4.6. Let λ : (0, ∞) → [0, ∞) be a non-negative function with
λ(t) → 0(t → ∞). Set

Rn,t = exp(−λ(t)ZYn ) (n ∈ N0, t > 0).

Then, there exists a positive constant t0 > 0 such that for any n, k ∈ N0 and t ≥ t0, we
have

Rn,t ◦ T k ≤ ekRn+k,t .

Proof. Take t0 > 0 so large that λ(t) ≤ 1 for any t ≥ t0. Since ZYn ◦ T k ≥ ZYn+k − k, we
have Rn,t ◦ T k ≤ exp(λ(t)k)Rn+k,t ≤ ekRn+k,t for any t ≥ t0.

We can also prove the following lemma in almost the same way.

LEMMA 4.7. Let d ∈ N and A1, . . . , Ad ∈ A. Let λi : (0, ∞) → [0, ∞)(i = 1, . . . , d)
be non-negative functions with λi(t) → 0(t → ∞, i = 1, . . . , d). Set

Rn,t = exp
(

−
d∑
i=1

λi(t)S
Ai
n

)
(n ∈ N0, t > 0).

Then, there exists a positive constant t0 > 0 such that for any n, k ∈ N0 and t ≥ t0, we
have

Rn,t ◦ T k ≤ ekRn+k,t .

Proof. Take t0 > 0 so large that
∑d
i=1 λi(t) ≤ 1 for any t ≥ t0. Since S

Ai
n ◦ T k ≥

S
Ai
n+k − k, we have Rn,t ◦ T k ≤ exp(

∑d
i=1 λi(t)k)Rn+k,t ≤ ekRn+k,t for any t ≥ t0.

5. Proofs of Theorems 3.1 and 3.8
In the following lemma, we give a representation of double Laplace transform of ZYn in
terms of QY (s). A similar formula can be found in [27, Lemma 7.1].
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LEMMA 5.1. Let s1 > 0 and s2 ≥ 0. Then, we have∫
Y

( ∑
n≥0

e−ns1 exp(−s2ZYn )
)( ∑

n≥0

e−n(s1+s2)T̂ n1Yn

)
dμ = QY (s1)

1 − e−(s1+s2)
. (5.1)

Proof. Note that ZYn = ZYn−k ◦ T k + k on {ϕ = k}(1 ≤ k ≤ n) and ZYn = 0 on {ϕ > n},
and hence,

exp(−s2ZYn ) =
{

exp(−s2ZYn−k ◦ T k)e−ks2 on {ϕ = k}(1 ≤ k ≤ n),

1 on {ϕ > n}.
Therefore, for n ∈ N0,∫

Y

(e−ns1 exp(−s2ZYn )) dμ

=
∫
Y

( n∑
k=1

e−ns1 exp(−s2ZYn−k ◦ T k)e−ks2 1Y∩{ϕ=k}
)
dμ+ e−ns1μ(Y ∩ {ϕ > n})

=
∫
Y

n∑
k=1

(e−(n−k)s1 exp(−s2ZYn−k))(e−k(s1+s2)T̂ k1Y∩{ϕ=k}) dμ

+ e−ns1μ(Y ∩ {ϕ > n}).
By taking the sum over n ∈ N0, we get∫

Y

( ∑
n≥0

e−ns1 exp(−s2ZYn )
)
dμ

=
∫
Y

( ∑
n≥0

e−ns1 exp(−s2ZYn )
)( ∑

k≥1

e−k(s1+s2)T̂ k1Y∩{ϕ=k}
)
dμ+QY (s1),

and hence,∫
Y

( ∑
n≥0

e−ns1 exp(−s2Zn)
)(

1Y −
∑
k≥1

e−k(s1+s2)T̂ k1Y∩{ϕ=k}
)
dμ = QY (s1). (5.2)

As shown in [27, equation (5.3)],

1Y −
∑
k≥1

e−ks T̂ k1Y∩{ϕ=k} = (1 − e−s)
∑
n≥0

e−ns T̂ n1Yn a.e. (s > 0). (5.3)

Combining (5.2) with (5.3) completes the proof.

LEMMA 5.2. Assume that conditions (A2) and (A3) of Theorem 3.1 hold. Let q > 0 and
let λ : (0, ∞) → (0, ∞) be a positive function with λ(t) → 0(t → ∞). Then, we have∫ ∞

0
e−qu

( ∫
Y

exp(−λ(t)ZY[ut]) dμH
)
du ∼ QY (qt−1)

(q + λ(t)t)QY (qt−1 + λ(t))
, (5.4)

as t → ∞.
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Proof. By substituting s1 = qt−1 and s2 = λ(t) into (5.1), we have∫
Y

( ∑
n≥0

e−nqt−1
exp(−λ(t)ZYn )

)( ∑
n≥0

e−n(qt−1+λ(t))T̂ n1Yn

)
dμ

= QY (qt−1)

1 − e−qt−1−λ(t) ∼ QY (qt−1)

qt−1 + λ(t)
(t → ∞). (5.5)

For t > 0, set

Ht = 1
QY (qt−1 + λ(t))

∑
n≥0

e−n(qt−1+λ(t))T̂ n1Yn . (5.6)

Note that condition (A2) implies that the assumptions of Lemma 4.5(2) hold with

vn = T̂ n1Yn ,
∫
Y

vn dμ = wYn+1 − wYn ,
∑
n≥0

e−ns
∫
Y

vn dμ = QY (s),

and λ(t) replaced by qt−1 + λ(t). Hence, there exists t1 > 0 such that {Ht }t≥t1 is uniformly
sweeping for 1Y . In addition, condition (A3) implies that the assumptions in Lemma 4.5(4)
are satisfied, and hence, Ht → H in L∞(μ)(t → ∞). Moreover, we can use Lemma 4.6
to take t0 ≥ t1 large enough so that exp(−λ(t)ZYn ◦ T k) ≤ ek exp(−λ(t)ZYn+k) for any
t ≥ t0 and n, k ∈ N0. Consequently, the assumptions in Lemma 4.4 are fulfilled with
Rn,t = exp(−λ(t)ZYn ). Therefore, we can apply Lemmas 4.2 and 4.4 with Sn = ZYn to
get ∫

Y

( ∑
n≥0

e−nqt−1
exp(−λ(t)ZYn )

)( ∑
n≥0

e−n(qt−1+λ(t))T̂ n1Yn

)
dμ

∼
( ∫

Y

∑
n≥0

e−nqt−1
exp(−λ(t)ZYn ) dμH

)
QY (qt−1 + λ(t))

∼
(
t

∫ ∞

0
e−qu

( ∫
Y

exp(−λ(t)ZY[ut]) dμH
)
du

)
QY (qt−1 + λ(t)) (t → ∞).

(5.7)

Combining (5.5) with (5.7) completes the proof.

We now prove Theorems 3.1 and 3.8 by using Lemmas 5.1 and 5.2. We imitate the proof
of [10, Theorem 2].

Proof of Theorem 3.1. Set c(t) = c([t]) for t > 0. Let q, λ > 0 be positive constants. By
substituting λ(t) = λ/(c(t)t) into (5.4), we see that∫ ∞

0
e−qu

( ∫
Y

exp
(
− λZY[ut]

c(t)t

)
dμH

)
du ∼ c(t)QY (qt−1)

λQY (qt−1 + λc(t)−1t−1)
(t → ∞).
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By (2.3), (3.1), and the uniform convergence theorem for regular varying functions
[6, Theorem 1.5.2], we have QY (qt−1 + λc(t)−1t−1) ∼ QY (λc(t)−1t−1)(t → ∞) and

QY (qt−1)

QY (qt−1 + λc(t)−1t−1)
∼ QY (qt−1)

QY (λc(t)−1t−1)
∼ (qt−1)−1+α�(q−1t)

(λc(t)−1t−1)−1+α�(λ−1c(t)t)

∼
(
qc(t)

λ

)−1+α
�(t)

�(c(t)t)
(t → ∞). (5.8)

Hence,

�(c(t)t)

c(t)α�(t)

∫ ∞

0
e−qu

( ∫
Y

exp
(
− λZY[ut]

c(t)t

)
dμH

)
du

→ q−1+αλ−α = 1

(1 − α)

( ∫ ∞

0
e−quu−α du

)
λ−α (t → ∞).

We use Lemma 4.1 to get, for 0 < u < ∞,

�(c(t)t)

c(t)α�(t)

∫
Y

exp
(
− λZY[ut]

c(t)t

)
dμH

→ 1

(1 − α)

u−αλ−α = sin(πα)
π

u−α
∫ ∞

0
e−λss−1+α ds (t → ∞).

Here, we used Euler’s reflection formula 
(α)
(1 − α) = π/ sin(πα). By the extended
continuity theorem for Laplace transforms of locally finite measures [8, Ch. XIII.1,
Theorem 2a], for 0 ≤ s0 < ∞,

�(c(t)t)

c(t)α�(t)
μH

(
ZY[ut]

c(t)t
≤ s0

)

→ sin(πα)
π

u−α
∫ s0

0
s−1+α ds = sin(πα)

πα

(
s0

u

)α
(t → ∞). (5.9)

Therefore, we substitute t = n and u = s0 = 1 into (5.9), and then obtain

μH

(
ZYn

n
≤ c(n)

)
∼ sin(πα)

πα

c(n)α�(n)

�(c(n)n)
(n → ∞),

which is the desired result.

Proof of Theorem 3.8. Set c(t) = c([t]) for t > 0. By Chebyshev’s inequality,

μG

(
ZY[t]

t
≤ c(t)

)
≤ e

∫
X

exp
(

− ZY[t]

c(t)t

)
dμG. (5.10)

For each t > 0, the map (0, ∞) � u �→ ∫
X

exp(−Z[ut]/(c(t)t)) dμG ∈ [0, ∞) is
non-increasing. Hence, we have
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∫
X

exp
(

− ZY[t]

c(t)t

)
dμG ≤

∫ 1

0

( ∫
X

exp
(

− ZY[ut]

c(t)t

)
dμG

)
du

≤ e

∫ ∞

0
e−u

( ∫
X

exp
(

− ZY[ut]

c(t)t

)
dμG

)
du

≤ et−1
∑
n≥0

e−nt−1
∫
X

exp
(

− ZYn

c(t)t

)
G dμ. (5.11)

Here, we also used (4.2). Define Ht(t > 0) as in (5.6) with q = 1. As shown in the proof
of Lemma 5.2, there exists t1 > 0 such that {Ht }t≥t1 is uniformly sweeping for 1Y . Since
1Y is uniformly sweeping for G, so is {Ht }t≥t1 . Moreover, by Lemma 4.6, we can take
t0 ≥ t1 large enough so that exp(−ZYn ◦ T k/(c(t)t)) ≤ ek exp(−ZYn+k/(c(t)t)) for any
t ≥ t0 and n, k ∈ N0. Consequently, the assumptions in Lemma 4.3 are fulfilled with
Rn,t = exp(−ZYn /(c(t)t)). Therefore, Lemma 4.3 implies

sup
t≥t0

∑
n≥0 e

−nt−1 ∫
X

exp(−ZYn /(c(t)t))G dμ∑
n≥0 e

−nt−1 ∫
X

exp(−ZYn /(c(t)t))Ht dμ
< ∞. (5.12)

By substituting q = 1 and λ(t) = c(t)−1t−1 into (5.5) and making a similar estimate as in
(5.8), we see that

t−1
∑
n≥0

e−nt−1
∫
X

exp
(

− ZYn

c(t)t

)
Ht dμ

= t−1

1 − exp(t−1 + c(t)−1t−1)
· QY (t−1)

QY (t−1 + c(t)−1t−1)
∼ c(t)α�(t)

�(c(t)t)
(t → ∞).

(5.13)

Combining (5.10) with (5.11), (5.12), (5.13), we obtain

lim sup
t→∞

�(c(t)t)

c(t)α�(t)
μG

(
ZY[t]

t
≤ c(t)

)
< ∞,

as desired.

6. Proof of Theorem 3.10
Let us represent double Laplace transform of SYn in terms of QY (s). We also refer the
reader to [27, Lemma 5.1] for a similar formula.

LEMMA 6.1. Let s1 > 0 and s2 ≥ 0. Then, we have

(1 − e−s2)
∫
Y

( ∑
n≥0

e−ns1 exp(−s2SYn )
)
dμ

+ (1 − e−s1)e−s2
∫
Y

( ∑
n≥0

e−ns1 exp(−s2SYn )
)( ∑

n≥0

e−ns1 T̂ n1Yn

)
dμ

= QY (s1). (6.1)
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Proof. It is easy to see that SYn = SYn−k ◦ T k + 1 on {ϕ = k}(1 ≤ k ≤ n) and SYn = 0 on
{ϕ > n}, which implies

exp(−s2SYn ) =
{

exp(−s2SYn−k ◦ T k)e−s2 on {ϕ = k}, 1 ≤ k ≤ n,

1 on {ϕ > n}.

Thus, for n ∈ N0,∫
Y

(e−ns1 exp(−s2SYn )) dμ

=
∫
Y

n∑
k=1

(e−ns1 exp(−s2SYn−k ◦ T k)e−s2 1Y∩{ϕ=k}) dμ+ e−ns1μ(Y ∩ {ϕ > n})

= e−s2
∫
Y

n∑
k=1

(e−(n−k)s1 exp(−λ(t)SYn−k))(e−ks2 T̂ k1Y∩{ϕ=k}) dμ

+ e−ns1μ(Y ∩ {ϕ > n}).

By taking the sum over n ∈ N0, we get∫
Y

( ∑
n≥0

e−ns1 exp(−s2SYn )
)
dμ

= e−s2
∫
Y

( ∑
n≥0

e−ns1 exp(−s2SYn )
)( ∑

k≥0

e−ks1 T̂ k1Y∩{ϕ=k}
)
dμ+QY (s1),

and hence,

(1 − e−s2)
∫
Y

( ∑
n≥0

e−ns1 exp(−s2SYn )
)
dμ

+ e−s2
∫
Y

( ∑
n≥0

e−ns1 exp(−s2SYn )
)(

1Y −
∑
k≥0

e−ks1 T̂ k1Y∩{ϕ=k}
)
dμ

= QY (s1). (6.2)

The lemma follows from (6.2) and (5.3).

LEMMA 6.2. Assume that condition (B2) of Theorem 3.10 holds. Let q > 0 and let
λ : (0, ∞) → (0, ∞) be a positive function with

λ(t) → 0 and
QY (qt−1)

λ(t)t
→ 0 (t → ∞). (6.3)

Then, we have∫ ∞

0
e−qu

( ∫
Y

exp(−λ(t)SY[ut]) dμ
)
du ∼ QY (qt−1)

λ(t)t
(t → ∞). (6.4)
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Proof. By substituting s1 = qt−1 and s2 = λ(t) into (6.1), we have

(1 − e−λ(t))
∫
Y

( ∑
n≥0

e−nqt−1
exp(−λ(t)SYn )

)
dμ

+ (1 − e−qt−1
)e−λ(t)

∫
Y

( ∑
n≥0

e−nqt−1
exp(−λ(t)SYn )

)( ∑
n≥0

e−nqt−1
T̂ n1Yn

)
dμ

= QY (qt−1). (6.5)

Let l1(t) and l2(t) denote the first and second terms of the left-hand side of (6.5),
respectively. Let us prove l2(t) is negligibly small as t → ∞. By condition (B2), the
assumptions of Lemma 4.5(3) are satisfied with

vn = T̂ n1Yn ,
∑
n≥0

e−ns
∫
Y

vn dμ = QY (s), Ht = 1
QY (qt−1)

∑
n≥0

e−nqt−1
T̂ n1Yn .

Hence, by Lemma 4.5(3), there exists C > 0 such that∥∥∥∥ ∑
n≥0

e−nqt−1
T̂ n1Yn

∥∥∥∥
L∞(μ)

≤ CQY (qt−1). (6.6)

By using (6.3) and (6.6),

0 ≤ l2(t)

l1(t)
≤ C(1 − e−qt−1

)QY (qt−1)

eλ(t) − 1
≤ CqQY (qt−1)

λ(t)t
→ 0 (t → ∞). (6.7)

However, Lemma 4.2 yields

l1(t) ∼ λ(t)t

∫ ∞

0
e−qu

( ∫
Y

exp(−λ(t)SY[ut]) dμ
)
du (t → ∞). (6.8)

The lemma follows from (6.5), (6.7), and (6.8).

We now prove Theorem 3.10 by using Lemma 6.2.

Proof of Theorem 3.10. Set c̃(t) = c̃([t]) for t > 0. Let q, λ > 0 be positive constants. By
substituting λ(t) = λ/(̃c(t)a(t)) into (6.4), we have

1
c̃(t)

∫ ∞

0
e−qu

( ∫
Y

exp
(
− λSY[ut]

c̃(t)a(t)

)
dμ

)
du ∼ 1


(1 + α)

QY (qt−1)

λQY (t−1)
(t → ∞).

(6.9)

Let r(t) denote the right-hand side of (6.9). By (2.3),

r(t) → q−1+αλ−1


(1 + α)
= sin(πα)

πα

( ∫ ∞

0
e−quu−α du

)( ∫ ∞

0
e−λs ds

)
(t → ∞).

Hence, we use Lemma 4.1 to get, for 0 < u < ∞,

1
c̃(t)

∫
Y

exp
(
− λSY[ut]

c̃(t)a(t)

)
dμ → sin(πα)

πα
u−α

∫ ∞

0
e−λs ds (t → ∞).
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By the extended continuity theorem for Laplace transforms, for 0 ≤ s0 < ∞,

1
c̃(t)

μ1Y

(
SY[ut]

c̃(t)a(t)
≤ s0

)
→ sin(πα)

πα
u−α

∫ s0

0
ds = sin(πα)

πα

s0

uα
(t → ∞).

Substituting t = n and u = s0 = 1 completes the proof.

7. Proofs of Theorems 3.15 and 3.21
We can also represent double Laplace transform of SAin (i = 1, . . . , d) in terms of
QY ,Ai (s)(i = 1, . . . , d). We refer the reader to [27, Lemma 6.1] and [18, Proposition 5.1]
for similar formulas.

LEMMA 7.1. Suppose condition (C1) of Theorem 3.15 is satisfied. Let s > 0 and
s1, s2, . . . , sd ≥ 0. Then, we have

(1 − e−s)
∫
Y

( ∑
n≥0

e−ns exp
(

−
d∑
j=1

sj S
Aj
n

))
dμ

+
d∑
i=1

(esi − e−s)
∫
Y

( ∑
n≥0

e−ns exp
(

−
d∑
j=1

sj S
Aj
n

))( ∑
n≥1

e−n(s+si )T̂ n1Yn∩Ai
)
dμ

= μ(Y )+
d∑
i=1

QY ,Ai (s + si). (7.1)

Proof. Set

Rn = exp
(

−
d∑
i=1

siS
Ai
n

)
, n ∈ N0.

Note that, for n ∈ N,

Rn =

⎧⎪⎪⎨⎪⎪⎩
Rn−1 ◦ T on {ϕ = 1} = T −1Y ,

(Rn−k ◦ T k)e−(k−1)si on (T −1Ai) ∩ {ϕ = k}(1 ≤ i ≤ d and 2 ≤ k ≤ n),

e−nsi on (T −1Ai) ∩ {ϕ > n}(1 ≤ i ≤ d).

Hence,
∫
Y
R0 dμ = μ(Y ) and, for n ∈ N,∫

Y

e−nsRn dμ

=
∫
Y

e−nsRn−1 T̂ 1Y∩T −1Y dμ

+ e−s
d∑
i=1

∫
Y

n∑
k=2

(e−(n−k)sRn−k) (e−(k−1)(s+si )T̂ k1Y∩(T −1Ai)∩{ϕ=k}) dμ

+
d∑
i=1

e−n(s+si )μ(Y ∩ (T −1Ai) ∩ {ϕ > n}).
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By taking the sum over n ∈ N0, we get∫
Y

( ∑
n≥0

e−nsRn
)
dμ

= μ(Y )+ e−s
∫
Y

( ∑
n≥0

e−nsRn
)
T̂ 1Y∩T −1Y dμ

+ e−s
d∑
i=1

∫
Y

( ∑
n≥0

e−nsRn
) ( ∑

k≥2

e−(k−1)(s+si )T̂ k1Y∩(T −1Ai)∩{ϕ=k}
)
dμ

+
d∑
i=1

QY ,Ai (s + si).

By (3.14), we have

1Y = T̂ 1T −1Y = T̂ 1Y∩T −1Y +
d∑
i=1

T̂ 1Ai∩T −1Y

= T̂ 1Y∩T −1Y +
d∑
i=1

∑
k≥2

T̂ k1Y∩(T −1Ai)∩{ϕ=k},

which implies

(1 − e−s)
∫
Y

( ∑
n≥0

e−nsRn
)
dμ

+
d∑
i=1

e−s
∫
Y

( ∑
n≥0

e−nsRn
)( ∑

k≥2

(1 − e−(k−1)(s+si ))T̂ k1Y∩(T −1Ai)∩{ϕ=k}
)
dμ

= μ(Y )+
d∑
i=1

QY ,Ai (s + si). (7.2)

In addition, we use (3.14) to get, for t > 0,

∑
k≥2

(1 − e−(k−1)t )T̂ k1Y∩(T −1Ai)∩{ϕ=k} =
∑
k≥2

(
(et − 1)

k−1∑
n=1

e−nt
)
T̂ k1Y∩(T −1Ai)∩{ϕ=k}

= (et − 1)
∑
n≥1

e−nt
∑
k>n

T̂ k1Y∩(T −1Ai)∩{ϕ=k}

= (et − 1)
∑
n≥1

e−nt T̂ n1Yn∩Ai . (7.3)

Combining (7.2) with (7.3) completes the proof.

LEMMA 7.2. Assume that conditions (C1), (C3), and (C4) of Theorem 3.15 hold. Let
q > 0 be a positive constant and let λi : (0, ∞) → (0, ∞)(i = 1, . . . , d − 1) be positive
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functions with

λi(t) → 0, λi(t)t → ∞ (i = 1, . . . , d − 1), (7.4)

QY ,Ad (qt−1)∑d−1
i=1 Q

Y ,Ai (qt−1 + λi(t))
→ ∞,

QY ,Ad (qt−1)∑d−1
i=1 λi(t)tQ

Y ,Ai (qt−1 + λi(t))
→ 0, (7.5)

as t → ∞. Then,
d−1∑
i=1

λi(t)

∫
Y

( ∑
n≥0

e−nqt−1
exp

(
−
d−1∑
j=1

λj (t)S
Aj
n

))( ∑
n≥1

e−n(qt−1+λi(t))T̂ n1Yn∩Ai
)
dμ

∼ QY ,Ad (qt−1) (t → ∞).

Proof. Set

Rn,t = exp
(

−
d−1∑
j=1

λj (t)S
Aj
n

)
(n ∈ N0, t > 0), (7.6)

H
(i)
t =

∑
n≥1 e

−n(qt−1+λi(t))T̂ n1Yn∩Ai
QY ,Ai (qt−1 + λi(t))

(t > 0, i = 1, . . . , d − 1), (7.7)

H
(d)
t =

∑
n≥1 e

−nqt−1
T̂ n1Yn∩Ad

QY ,Ad (qt−1)
(t > 0).

By substituting s = qt−1, si = λi(t)(i = 1, . . . , d − 1), and sd = 0 into (7.1), we have

(1 − e−qt−1
)

∫
Y

( ∑
n≥0

e−nqt−1
Rn,t

)
dμ

+
d−1∑
i=1

(eλi(t) − e−qt−1
)QY ,Ai (qt−1 + λi(t))

∫
Y

( ∑
n≥0

e−nqt−1
Rn,t

)
H
(i)
t dμ

+ (1 − e−qt−1
)QY ,Ad (qt−1)

∫
Y

( ∑
n≥0

e−nqt−1
Rn,t

)
H
(d)
t dμ

= μ(Y )+
d−1∑
i=1

QY ,Ai (qt−1 + λi(t))+QY ,Ad (qt−1). (7.8)

Let l1(t), l2(t), and l3(t) denote the first, second, and third terms of the left-hand side of
(7.8), respectively, and r(t) denote the right-hand side of (7.8). Note that

r(t) ∼ QY ,Ad (qt−1) (t → ∞), (7.9)

since QY ,Ai (s) → ∞(s → 0+, i = 1, . . . , d) and the assumption (7.5).
Let us prove l2(t) is the leading term of the left-hand side of (7.8), and l1(t) and l3(t)

are negligible as t → ∞. Note that condition (C4) implies that the assumptions in Lemma
4.5(2) are satisfied with

vn = T̂ n1Yn∩Ai ,
∫
Y

vn dμ = w
Y ,Ai
n+1 − wY ,Ai

n ,
∑
n≥0

e−ns
∫
Y

vn dμ = QY ,Ai (s), (7.10)
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λ(t) = qt−1 + λi(t), Ht = H
(i)
t (i = 1, . . . , d − 1). (7.11)

Hence, by Lemma 4.5(2), there exists t1 > 0 such that {H(i)
t }t≥t1, i=1,...,d−1 is uniformly

sweeping for 1Y . In addition, we use Lemma 4.7 to take t0 ≥ t1 large enough so
that Rn,t ◦ T k ≤ ekRn+k,t for any n, k ∈ N0 and t ≥ t0. Consequently, the assumptions
in Lemma 4.3 are fulfilled with Ht = H

(i)
t (i = 1, . . . , d − 1) and G = 1Y . Therefore,

Lemma 4.3 implies

C = lim sup
t→∞

max
1≤i≤d−1

∫
Y
(
∑
n≥0 e

−nqt−1
Rn,t ) dμ∫

Y
(
∑
n≥0 e

−nqt−1
Rn,t )H

(i)
t dμ

< ∞.

Hence,

0 ≤ lim sup
t→∞

l1(t)

l2(t)
≤ lim sup

t→∞
qC∑d−1

i=1 λi(t)t Q
Y ,Ai (qt−1 + λi(t))

= 0.

In addition, {H(d)
t }t>0 is L∞(μ)-bounded, which follows from condition (C3) and

Lemma 4.5(3) with

vn = T̂ n1Yn∩Ad ,
∑
n≥0

e−ns
∫
Y

vn dμ = QY ,Ad (s), Ht = H
(d)
t .

We use assumption (7.5) to see

0 ≤ lim sup
t→∞

l3(t)

l2(t)

≤
(

sup
t>0

‖H(d)
t ‖L∞(μ)

)(
lim sup
t→∞

qCQY ,Ad (qt−1)∑d−1
i=1 λi(t)t Q

Y ,Ai (qt−1 + λi(t))

)
= 0.

Therefore, we get

l1(t)+ l2(t)+ l3(t)

∼
d−1∑
i=1

λi(t)Q
Y ,Ai (qt−1 + λi(t))

∫
Y

( ∑
n≥0

e−nqt−1
Rn,t

)
H
(i)
t dμ (t → ∞). (7.12)

The lemma follows from (7.8), (7.9), and (7.12).

We now prove Theorems 3.15 and 3.21 by using Lemma 7.2.

Proof of Theorem 3.15. Set c(t) = c([t]) for t > 0. Let q, λ, λ1, . . . , λd−1 > 0
and λi(t) = λλi/(c(t)t). By (3.1), (3.16), and the uniform convergence theorem for
regular varying functions, we see QY ,Ai (qt−1 + λi(t)) ∼ QY ,Ai (λi(t))(t → ∞, i =
1, . . . , d − 1). By the Potter bounds for slowly varying functions, we see that
c(t)−1+α�(t)/�(c(t)t) → ∞ and c(t)α�(t)/�(c(t)t) → 0(t → ∞). Thus, for i =
1, . . . , d − 1,

QY ,Ad (qt−1)

QY ,Ai (qt−1 + λi(t))
∼ QY ,Ad (qt−1)

QY ,Ai (λi(t))
∼ βdq

−1+α

βi(λλi)−1+α
c(t)−1+α�(t)
�(c(t)t)

→ ∞ (t → ∞)
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and

QY ,Ad (qt−1)

λi(t)tQY ,Ai (qt−1 + λi(t))
∼ βdq

−1+α

βi(λλi)α

c(t)α�(t)

�(c(t)t)
→ 0 (t → ∞). (7.13)

Therefore, (7.4) and (7.5) are fulfilled. Define Rn,t (n ∈ N0, t > 0) and H(i)
t (t > 0, i =

1, . . . , d − 1) as in (7.6) and (7.7), respectively. By Lemma 7.2,

d−1∑
i=1

λi(t)Q
Y ,Ai (qt−1 + λi(t))

∫
Y

( ∑
n≥0

e−nqt−1
Rn,t

)
H
(i)
t dμ

∼ QY ,Ad (qt−1) (t → ∞). (7.14)

Set H̃t = ∑d−1
i=1 βiλ

α
i H

(i)
t (t > 0). Then, we use (7.13) and (7.14) to get

�(c(t)t)

c(t)α�(t)
t−1

∫
Y

( ∑
n≥0

e−nqt−1
Rn,t

)
H̃t dμ → βdq

−1+αλ−α (t → ∞). (7.15)

As shown in the proof of Lemma 7.2, there exists t0 > 0 such that the assumptions
of Lemma 4.3 are satisfied with Ht = H

(i)
t (i = 1, . . . , d − 1) and G = 1Y , and hence,

with Ht = H̃t and G = 1Y . Similarly, condition (C5) implies that the assumptions in
Lemma 4.5(4) are satisfied with (7.10), (7.11), and H = H(i)(i = 1, . . . , d − 1). There-
fore, Lemma 4.5(4) implies that H(i)

t → H(i) in L∞(μ)(t → ∞, i = 1, . . . , d − 1), and
hence, H̃t → H̃ = ∑d−1

i=1 βiλ
α
i H

(i) in L∞(μ)(t → ∞). Consequently, the assumptions
of Lemma 4.4 are fulfilled with Ht = H̃t and H = H̃ . Therefore, we use Lemmas 4.2 and
4.4 to get

t−1
∫
Y

( ∑
n≥0

e−nqt−1
Rn,t

)
H̃t dμ ∼ t−1

∫
Y

( ∑
n≥0

e−nqt−1
Rn,t

)
H̃ dμ

∼
∫ ∞

0
e−qu

( ∫
Y

R[ut],t dμH̃

)
du (t → ∞).

(7.16)

By (7.15) and (7.16),

�(c(t)t)

c(t)α�(t)

∫ ∞

0
e−qu

( ∫
Y

R[ut],t dμH̃

)
du → βdq

−1+αλ−α (t → ∞).

Thus, we use similar arguments as in the proof of Theorem 3.1 to obtain

�(c(t)t)

c(t)α�(t)
μH̃

(∑d−1
j=1 λjS

Aj
[ut]

c(t)t
≤ s0

)
→ βd

sin(πα)
πα

(
s0

u

)α
(t → ∞, s0, u > 0).

Substituting t = n and s0 = u = 1 completes the proof.

Proof of Theorem 3.21. Set c(t) = c([t])(t > 0) and λi(t) = λi/(c(t)t)(t > 0, i =
1, . . . , d − 1). Define Rn,t (n ∈ N0, t > 0) as in (7.6). By Chebyshev’s inequality,

μG

(∑d−1
j=1 λjS

Aj
[t]

t
≤ c(t)

)
≤ e

∫
X

R[t],t dμG. (7.17)
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For each t > 0, the map (0, ∞) � u �→ ∫
X
R[ut],t dμG ∈ [0, ∞) is non-increasing. Hence,

we have ∫
X

R[t],t dμG ≤
∫ 1

0

( ∫
X

R[ut],t dμG

)
du

≤ e

∫ ∞

0
e−u

( ∫
X

R[ut],t dμG

)
du

≤ et−1
∑
n≥0

e−nt−1
∫
X

Rn,tG dμ. (7.18)

DefineH(i)
t (t > 0, i = 1, . . . , d − 1) by (7.7) with q = 1, and set H̃t = ∑d−1

i=1 βiλ
α
i H

(i)
t .

Recall from the proofs of Lemma 7.2 and Theorem 3.15 that there exists t1 > 0 such that
{H̃t }t≥t1 is uniformly sweeping for 1Y , and hence, for G. In addition, by Lemma 4.7,
we can take t0 ≥ t1 large enough so that Rn,t ◦ T k ≤ ekRn+k,t for any n, k ∈ N0 and
t ≥ t0. Consequently, the assumptions in Lemma 4.3 are fulfilled withHt = H̃t . Therefore,
Lemma 4.3 implies

sup
t≥t0

∑
n≥0 e

−nt−1 ∫
X
Rn,tG dμ∑

n≥0 e
−nt−1 ∫

X
Rn,t H̃t dμ

< ∞. (7.19)

By substituting q = λ = 1 into (7.15), we get

t−1
∑
n≥0

e−nt−1
∫
X

Rn,t H̃t dμ ∼ βd
c(t)α�(t)

�(c(t)t)
(t → ∞). (7.20)

The result follows from (7.17), (7.18), (7.19), and (7.20).

8. Applications to Thaler’s maps
Our abstract results in §3 are applicable to a variety of classes of ergodic transformations.
Indeed, the assumptions of Theorems 3.1, 3.10, and 3.15 are milder than those of [27,
Theorems 3.3, 3.1, and 3.2], respectively, which are verified for interval maps with
indifferent fixed points (see [27, §8] and [18, §2.4]), Markov chains on multiray [18, §2.5],
and random iterations of piecewise linear maps (as summarized in [9, Theorem 1.1, the
subsequent paragraph, and Lemma 3.5] and [13, Theorem 1.2, Remark 1.4, and §4.2])
under suitable settings. The assumptions of Theorems 3.8, 3.10, and 3.21 are also verified
for random walks driven by Gibbs–Markov maps, as shown in [33, §7.3]. For simplicity,
we are going to focus only on Thaler’s maps with two indifferent fixed points [25] in this
section.

Assumption 8.1. (Thaler’s map) Suppose that the map T : [0, 1] → [0, 1] satisfies the
following conditions.

(i) For some c ∈ (0, 1), the restrictions T : [0, c) → [0, 1) and T : (c, 1] → (0, 1] are
strictly increasing, onto, and can be extended to C2 maps T0 : [0, c] → [0, 1] and
T1 : [c, 1] → [0, 1], respectively.

(ii) T ′
0 > 1 and T ′′

0 > 0 on (0, c], T ′
1 > 1 and T ′′

1 < 0 on [c, 1), and T ′(0) = T ′(1) = 1.
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(iii) For some p ∈ (1, ∞), a ∈ (0, ∞), and some positive, measurable function �∗ :
(0, ∞) → (0, ∞) slowly varying at 0 such that

T x − x ∼ a−p(1 − x − T (1 − x)) ∼ xp+1�∗(x) (x → 0+).

In the following, we always impose Assumption 8.1. Let us summarize the facts that are
shown in [22, 23, 25, 27, 30, 31]. After that, we will explain applications of our abstract
results to Thaler’s maps.

Let fi denote the inverse function of Ti(i = 0, 1). Then, T admits an invariant density
h of the form

h(x) = h0(x)
x(1 − x)

(x − f0(x))(f1(x)− x)
(x ∈ (0, 1)),

where h0 is continuous and positive on [0, 1]. In addition, h has bounded variation
on [ε, 1 − ε] for any ε ∈ (0, 1/2). Define the σ -finite measure μ as dμ(x) = h(x) dx,
x ∈ [0, 1]. Then, μ([0, ε]) = μ([1 − ε, 1]) = ∞ for any ε ∈ (0, 1), and T is a CEMPT on
the σ -finite measure space ([0, 1], B([0, 1]), μ).

Since f0(x) ∼ x(x → 0+), we use the uniform convergence theorem for slowly varying
functions [6, Theorem 1.2.1] to get �∗(f0(x)) ∼ �∗(x)(x → 0+) and

x − f0(x) = T0(f0(x))− f0(x)

∼ f0(x)
p+1�∗(f0(x)) ∼ xp+1�∗(x) (x → 0+). (8.1)

Similarly, it is easily seen that 1 − f1(1 − x) ∼ x(x → 0+) and

f1(1 − x)− (1 − x) = 1 − (1 − f1(1 − x))− T1(1 − (1 − f1(1 − x)))

∼ apxp+1�∗(x) (x → 0+). (8.2)

Let γ ∈ (0, c) be a 2-periodic point of T. Then, T γ ∈ (c, 1). Take c0 ∈ (0, γ ] and
c1 ∈ [T γ , 1) arbitrarily, and set

A0 = [0, c0), Y = [c0, c1], A1 = (c1, 1]. (8.3)

Then, μ(Y ) ∈ (0, ∞), μ(Ai) = ∞(i = 0, 1), and Y dynamically separates A0 and A1.

LEMMA 8.2. For i = 0, 1, there exists aμ-probability density functionH(i) such thatH(i)

is positive, continuous, supported, and has bounded variation on (T Ai) \ Ai , and satisfies

lim
n→∞

T̂ n1Y∩(T −1Ai)∩{ϕ=n}
μ(Y ∩ (T −1Ai) ∩ {ϕ = n}) = H(i) in L∞(μ) (i = 0, 1).

In addition,

μ(Y ∩ (T −1Ai) ∩ {ϕ = n}) =
∫
(T Ai)\Ai

T̂ n1Y∩(T −1Ai)∩{ϕ=n} dμ

∼
{
h(c)f ′

1(0)(f
n
0 (1)− f n+1

0 (1)) (n → ∞, i = 0),

h(c)f ′
0(1)(f

n+1
1 (0)− f n1 (0)) (n → ∞, i = 1).

(8.4)
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Remark 8.3. By Lemmas 3.14 and 8.2, we have

lim
n→∞

(
1

w
Y ,Ai
n

n−1∑
k=0

T̂ k1Yk∩Ai
)

= H(i) in L∞(μ) (i = 0, 1). (8.5)

Proof of Lemma 8.2. We proceed as in the proofs of [25, Lemma 3] and [27, Theorem 8.1].
As in the calculations in [25, p. 1301] and [27, p. 46], for n ≥ 2,

T̂ n1Y∩(T −1A0)∩{ϕ=n} = 1(T A0)\A0(h ◦ f1 ◦ f n−1
0 ) · (f ′

1 ◦ f n−1
0 ) · (f n−1

0 )′/h a.e., (8.6)

T̂ n1Y∩(T −1A1)∩{ϕ=n} = 1(T A1)\A1(h ◦ f0 ◦ f n−1
1 ) · (f ′

0 ◦ f n−1
1 ) · (f n−1

1 )′/h a.e. (8.7)

It is easily seen that f n−1
0 → 0 and f n−1

1 → 1(n → ∞) uniformly on [0, 1]. By applying
[25, Lemma 2] to f (x) = f0(x) and f (x) = 1 − f1(1 − x), respectively, we see that there
exist continuous functions g0 : (0, 1] → (0, ∞) and g1 : [0, 1) → (0, ∞) such that

(f n0 )
′(x)

f n0 (1)− f n+1
0 (1)

→ g0(x) (n → ∞), uniformly on compact subsets on (0,1], (8.8)

(f n1 )
′(x)

f n+1
1 (0)− f n1 (0)

→ g1(x) (n → ∞), uniformly on compact subsets on [0,1), (8.9)

and ∫ x

f0(x)
g0(y) dy =

∫ f1(x)

x

g1(y) dy = 1 for any x ∈ (0, 1). (8.10)

It follows from the concavity of f n0 and (8.8) that g0 is non-increasing. Similarly, g1 is
non-decreasing, which follows from the convexity of f n1 and (8.9). Set

H(i) = 1(T Ai)\Ai gi/h (i = 0, 1),

which is positive, continuous, supported, and has bounded variation on (T Ai) \
Ai(i = 0, 1). By (8.6), (8.7) (8.8), and (8.9),

lim
n→∞

T̂ n1Y∩(T −1A0)∩{ϕ=n}
h(c)f ′

1(0)(f
n
0 (1)− f n+1

0 (1))
= H(0) in L∞(μ), (8.11)

lim
n→∞

T̂ n1Y∩(T −1A1)∩{ϕ=n}
h(c)f ′

0(1)(f
n+1
1 (0)− f n1 (0))

= H(1) in L∞(μ). (8.12)

By using dμ(x) = h(x) dx and (8.10), we see that∫
(T A0)\A0

H(0) dμ =
∫ T (c0)

c0

g0(y) dy = 1, (8.13)

∫
(T A1)\A1

H(1) dμ =
∫ c1

T (c1)
g1(y) dy = 1. (8.14)

Hence, H(0) and H(1) are μ-probability density functions. We use (8.11), (8.12), (8.13),
and (8.14) to obtain the desired result.
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LEMMA 8.4. There exists a function �0(x) slowly varying at ∞ such that

f n0 (1)− f n+1
0 (1) ∼ p−1n−1−(1/p)�0(n) (n → ∞), (8.15)

f n+1
1 (0)− f n1 (0) ∼ (ap)−1n−1−(1/p)�0(n) (n → ∞). (8.16)

Proof. We follow the arguments of [25, Lemma 5] and [32, Remark 1]. Let

u0(x) =
∫ 1

x

dy

y − f0(y)
, u1(x) =

∫ 1

x

dy

f1(1 − y)− (1 − y)
(x ∈ (0, 1]). (8.17)

We use (8.1), (8.2), and Karamata’s theorem [6, Theorem 1.5.11] to see

u0(x) ∼ 1
pxp�∗(x)

, u1(x) ∼ 1
papxp�∗(x)

(x → 0+). (8.18)

By (8.18), the map x �→ u0(x
−1) is regularly varying at ∞ of index p, and therefore, [6,

Theorem 1.5.12] implies that its inverse function 1/u−1
0 (x) is regularly varying at ∞ of

index 1/p. Hence, there exists a function �0(x) slowly varying at ∞ such that

u−1
0 (x) ∼ x−1/p�0(x) (x → ∞).

Since u1(x) ∼ a−pu0(x)(x → ∞), we have

u−1
1 (x) ∼ (a−pu0)

−1(x) = u−1
0 (apx) ∼ a−1x−1/p�0(x) (x → ∞).

Using [23, Lemma 2] with f (x) = f0(x), an = f n0 (1) (respectively f (x) = 1 − f1(1 −
x) and an = 1 − f n1 (0)), and g(x) ≡ 1, we see u0(f

n
0 (1)) ∼ n(n → ∞) (respectively

u1(1 − f n1 (0)) ∼ n(n → ∞)). Hence, it follows from the uniform convergence theorem
for regular varying functions [6, Theorem 1.5.2] that

f n0 (1) = u−1
0 (u0(f

n
0 (1))) ∼ u−1

0 (n) ∼ n−1/p�0(n) (n → ∞), (8.19)

1 − f n1 (0) = u−1
1 (u1(1 − f n1 (0))) ∼ u−1

1 (n) ∼ a−1n−1/p�0(n) (n → ∞). (8.20)

Note that

f n0 (1) =
∑
k≥n
(f k0 (1)− f k+1

0 (1)), 1 − f n1 (0) =
∑
k≥n
(f k+1

1 (0)− f k1 (0)).

In addition, (f n0 (1)− f n+1
0 (1))n≥0 and (f n+1

1 (0)− f n1 (0))n≥0 are decreasing sequences,
since f0 and f1 are C2 and 0 < f ′

0(x), f
′
1(y) < 1(x ∈ (0, 1], y ∈ [0, 1)). Hence, the

desired result follows from (8.19), (8.20), and the monotone density theorem [6,
Theorem 1.7.2].

LEMMA 8.5. Define α, β0, β1 ∈ (0, 1) by

α = 1
p

, β0 = f ′
1(0)

f ′
1(0)+ f ′

0(1)a
−1 = T ′(c−)

T ′(c−)+ T ′(c+)a−1 , β1 = 1 − β0.

Set

�(x) = h(c)(f ′
1(0)+ f ′

0(1)a
−1)(1 − p−1)−1�0(x),
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which is slowly varying at ∞. Then,

wY ,Ai
n ∼ βin

1−α�(n) (n → ∞, i = 0, 1). (8.21)

Remark 8.6. For example, if �∗(x) ∼ C∗(x → 0+) for some constant C∗ > 0 in Assump-
tion 8.1(iii), then �(x) ∼ C(x → ∞) for some constant C > 0.

Proof of Lemma 8.5. Combining (8.4) with (8.15) and (8.16), we have

μ(Y ∩ (T −1Ai) ∩ {ϕ = n})

∼
{
h(c)f ′

1(0)p
−1n−1−(1/p)�0(n) (n → ∞, i = 0)

h(c)f ′
0(1)(ap)

−1n−1−(1/p)�0(n) (n → ∞, i = 1)

∼ α(1 − α)βin
−1−α�(n) (n → ∞, i = 0, 1). (8.22)

We use (3.15), (8.22), and apply Karamata’s theorem [6, Theorem 1.5.11] twice to obtain

wY ,Ai
n =

n−1∑
k=1

μ(Y ∩ (T −1Ai) ∩ {ϕ > k}) ∼ βin
1−α�(n) (n → ∞, i = 0, 1),

as desired.

By (8.5) and (8.21), we get

lim
n→∞

(
1
wYn

n−1∑
k=0

T̂ k1Yk

)
= β0H

(0) + β1H
(1) =: H in L∞(μ),

and

wYn ∼ wY ,A0
n + wY ,A1

n ∼ n1−α�(n) (n → ∞).

Moreover, if G : [0, 1] → [0, ∞) is Riemann integrable on [0, 1] with
∫ 1

0 G(x) dx > 0,
then G is uniformly sweeping for 1[ε,1−ε] for any ε ∈ (0, 1/2), which follows from [27,
Theorem 8.1]. Therefore,H , H(0), H(1) are uniformly sweeping for 1[ε,1−ε] and hence, for
1Y . So we use our main results in §3 to obtain the following theorems.

THEOREM 8.7. Let {c(n)}n≥0 and {̃c(n)}n≥0 be positive sequences satisfying (3.1) and
(3.9), respectively. Then, we have (3.2), (3.10), and

μH(i)

(
S
Ai
n

n
≤ c(n)

)
∼ 1 − βi

βi

sin(πα)
πα

c(n)α�(n)

�(c(n)n)
(n → ∞, i = 0, 1).

THEOREM 8.8. Assume G ∈ {u ∈ L1(μ) : u ≥ 0} admits a version that is Riemann
integrable on [0, 1] with

∫ 1
0 G(x) dx > 0. Then, there exists some constant C1 ∈ (0, ∞)

such that, for any positive sequences {c(n)}n≥0 and {̃c(n)}n≥0 satisfying (3.1) and (3.9),
we have (3.6), (3.12), and

C1 ≤ lim inf
n→∞

�(c(n)n)

c(n)α�(n)
μG

(
S
Ai
n

n
≤ c(n)

)
(i = 0, 1).
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THEOREM 8.9. Assume G ∈ {u ∈ L∞(μ) : u ≥ 0} is supported on [ε, 1 − ε] for some
ε ∈ (0, 1/2). Then, there exists some constant C2 ∈ (0, ∞) such that, for any positive
sequences {c(n)}n≥0 and {̃c(n)}n≥0 satisfying (3.1) and (3.9), we have (3.7), (3.13), and

lim sup
n→∞

�(c(n)n)

c(n)α�(n)
μG

(
S
Ai
n

n
≤ c(n)

)
≤ C2 (i = 0, 1).

Remark 8.10. Let ν be a probability measure on [0, 1] that is supported on [ε, 1 − ε] for
some ε ∈ (0, 1/2) and admits a Riemann integrable density u with respect to the Lebesgue
measure. Then, G = u/h is also supported on [ε, 1 − ε] and Riemann integrable, and
hence, Theorems 8.8 and 8.9 can be applied to ν = μG.

Remark 8.11. Let 0 < α < 1 and let �i : (0, ∞) → (0, ∞)(i = 0, 1) be slowly varying at
∞. As shown below, there exists T : [0, 1] → [0, 1] satisfying conditions (i) and (ii) of
Assumption 8.1 with c = 1/2 and

wY ,Ai
n ∼ din

1−α�i(n) (n → ∞, i = 0, 1) (8.23)

for some constant di > 0, where Y and Ai are chosen as in (8.3). Let us construct
such a map T. Let φi(x) = x−α�i(x). We may assume that φi(x) is bounded below on
(0, R) for any R > 0. Applying [6, Theorem 1.5.12] to fi(x) = 1/φi(x), we can see
that the right-continuous inverse f−1

i (y) := sup{y ∈ (0, ∞) : fi(y) > x} is a regularly
varying function at ∞ of index 1/α satisfying fi(f−1

i (x)) ∼ f−1
i (fi(x)) ∼ x(x → ∞).

By [6, Theorem 1.8.2], we can take a C∞ function ψi : (0, ∞) → (0, ∞) such that
ψi(x) ∼ f−1

i (x−1)(x → 0+). Then, ψi(x) is a regularly varying function at 0 of index
−1/α satisfying φi(ψi(x)) ∼ x(x → 0+) and ψi(φi(x)) ∼ x(x → ∞). Set

�i(x) =
∫ x

0

( ∫ y

0

dt

tψi(t)

)
dy, x ≥ 0.

Karamata’s theorem [6, Theorem 1.5.11] implies that �i(x) ∼ α2(1 + α)−1x/ψi(x)

(x → 0+). Take a constant bi > 0 so that �i(bi/2) = 1/2. We now define T : [0, 1] →
[0, 1] by

T x =
{
x +�0(b0x), x ∈ [0, 1/2],

x −�1(b1(1 − x)), x ∈ (1/2, 1].

It is easily seen that T satisfies conditions (i) and (ii) of Assumption 8.1 with c = 1/2. In
addition,

T x − x ∼ α2b
1+1/α
0

1 + α

x

ψ0(x)
, (1 − x)− T (1 − x) ∼ α2b

1+1/α
1

1 + α

x

ψ1(x)
(x → 0+).

Define u0(x) and u1(x) by (8.17). Then,

ui(x) ∼ 1 + α

αb
1+1/α
i

ψi(x) (x → 0+, i = 0, 1),
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and hence,

u−1
i (x) ∼

(
1 + α

αb
1+1/α
i

)α
φi(x) (x → ∞, i = 0, 1).

Therefore, as in (8.21), we obtain (8.23) for some di > 0.

Remark 8.12. Following [33, Example 7.1], let us construct T : [0, 1] → [0, 1] and
Y ⊂ [0, 1] satisfying conditions (A1) and (A2) of Theorem 3.1 and condition (B2) of
Theorem 3.10, but violating condition (A3) of Theorem 3.1. We can apply Theorems 3.8
and 3.10, but cannot apply Theorem 3.1 to such T and Y. Let �0(x) be a slowly varying
function at ∞ satisfying

lim inf
x→∞ �0(x) = 0, lim sup

x→∞
�0(x) = ∞. (8.24)

An example of such a function can be found in [6, §1.3.3]. Let �1(x) ≡ 1. By Remark 8.11,
there exists a map T : [0, 1] → [0, 1] satisfying conditions (i) and (ii) of Assumption 8.1
with c = 1/2 and (8.23) for some constant di > 0, where Y and Ai are chosen as in (8.3)
with T c0 < T c1. Then, (T A0) ∩ (T A1) = ∅. In addition,

wYn ∼ wY ,A0
n + wY ,A1

n ∼ n1−α(d0�0(n)+ d1) (n → ∞),

and d0�0(x)+ d1 is slowly varying at ∞, since, for any λ > 0,∣∣∣∣d0�0(λx)+ d1

d0�0(x)+ d1
− 1

∣∣∣∣ =
∣∣∣∣d0(�0(λx)− �0(x))

d0�0(x)+ d1

∣∣∣∣ ≤
∣∣∣∣�0(λx)

�0(x)
− 1

∣∣∣∣ → 0 (x → ∞).

Therefore, condition (A1) is verified. Moreover, there exist μ-probability density functions
H(0), H(1) : [0, 1] → [0, ∞) such that H(i) is supported and has bounded variation on
(T Ai) \ Ai ⊂ Y (i = 0, 1), and (8.5) holds. Note that condition (A3) does not hold because
H(0) �= H(1) and (8.24). By [27, Theorem 8.1],H0 andH1 are uniformly sweeping for 1Y .
Hence, there exists N ∈ N such that{

1

w
Y ,Ai
n

n−1∑
k=0

T̂ k1Yk∩Ai
}
n≥N ; i=0,1

is L∞(μ)-bounded and uniformly sweeping for 1Y . Therefore, conditions (A2) and (B2)
are verified, as desired.
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